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On solutions of Saint-Venant’s problem for elastic dipolar
bodies with voids

MARIN MARIN1, RAHMAT ELLAHI2,3 and ADINA CHIRILĂ1

ABSTRACT. This study is dedicated to the Saint-Venant’s problem in the context of the theory of porous
dipolar bodies. We consider a right cylinder consisting of an inhomogeneous and anisotropic material. In the
equilibrium equations of this problem, the axial variable is regarded as a parameter. The main result describes a
class of semi-inverse solutions to the Saint-Venant’s problem in terms of some generalized plane strain problems.

1. INTRODUCTION

Our study can be useful in fields of applications which deal with porous materials,
such as geological materials, solid packed granular materials, the behavior of the human
or animal bones and many others. The first investigations on materials with voids were
published by Goodman and Cowin who in the paper [10] have created the well known
granular theory. Then the studies of models of porosity structures retained the attention
of many authors because many real structures can be modeled by this theory.

Also, similar studies appear in the paper [5] where the authors Cowin and Nunziato
introduce, as in fact Goodman and Cowin did, an extra degree of freedom in order to in-
vestigate the mechanical behavior of porous solids in which the matrix material is elastic
and the interstices are the voids of the material. This theory has found immediate appli-
cations to geological materials like rocks and soil and to manufactured porous materials,
like ceramics and pressed powders. The basic feature of this theory is the introduction of
a concept of material for which the bulk density is depicted as the product of two fields,
the matrix material density field and the volume fraction field, respectively. See also [6].
The initial theory of Cowin and Nunziato was dedicated to materials that do not conduct
heat, then in the papers by Nunziato and Cowin [21] and Ieşan [12], the thermal effect
for materials with voids was proposed. The problem of generalized thermoelasticity in a
thick-walled functionally graded materials cylinder with one relaxation time is presented
in the paper [1], and in [2] a general solution to the field equations of the two-temperature
generalized thermoelastic theory has been obtained in the context of the Green and Nag-
hdi model. The generalized magneto-thermoelasticity theory, based on the Green-Naghdi
model, is used to study the thermal shock problem of a fiber-reinforced anisotropic half-
space in [23].

The consideration of the thermal effect is motivated by the fact that materials which
operate at elevated temperatures will be subjected to heat flow at some time during the
normal use. Thus, such heat flow will imply a non-linear temperature distribution which
will give rise to the thermal stresses. Thus, the development, design and selection of
materials for high temperature applications implies a great deal of care. The role of the
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pertinent material properties and other variables which can affect the magnitude of the
thermal stress must be considered.

The importance of the dipolar structure of materials was highlighted by many valu-
able researchers. So, the study of dipolar bodies began with the published results of R.
D. Mindlin [20] as well as A. E. Green and R. S. Rivlin [11], who approached also in ot-
her papers the multipolar structures and in particular, the dipolar structures. Also M. E.
Gurtin has devoted a few articles on multipolar structures. For instance, in [9], Gurtin
together with E. Fried discover integral statements of the force balance, energy balance,
and entropy imbalance for an interface between a body and its environment.

We want to outline that in the theory of dipolar continua the degrees of freedom for
each particle are three translations and nine micro-deformations and each material point
is constrained to deform homogeneously. More recently, other models of dipolar bodies
([15]-[18] and [22]) were introduced, where the volume fraction field was further used.

It should be noted that the interest and need to combine the theory of thermoelasticity
of dipolar bodies with the granular theory have been emphasized since the studies on
porous bodies. Moreover, in [20] the author highlights that the porosity structure of a
continuous medium is influenced by the displacement field. Based on these findings, in
our present paper we consider the theory of thermoelastic dipolar bodies with pores.

The Saint-Venant’s problem has always been an attractive subject for many researchers
who have approached it in many contexts. Over time, many studies have been published
on this subject, from which we mention only a few. Among the first works on this subject,
in a prominent place we find the book of Ieşan [13]. Also, we can mention the book [14]
which enumerates some studies on Saint-Venant’s problem. The paper [7] is a study of
Saint-Venant’s problem for a cylinder consisting of a homogeneous and isotropic elastic
material. Also, the Saint-Venant’s principle in the theory of elastic materials with voids is
approached in [3]. In the context of viscoelasticity the Saint-Venant’s problem was studied
by Chiriţă [4].

We hope that the present study can be a first step to a better understanding of the
dipolar structure and thermal stress in the study of materials with voids.

2. BASIC EQUATIONS

For convenience the notations and terminology chosen are almost identical to those of
our study [19]. We will consider an anisotropic and inhomogeneous material which is an
elastic porous and dipolar continuum and which occupies, at time t = 0, a regular domain
B of the three-dimensional Euclidean space R3, namely a right cylinder of length L. We
denote by ∂B the boundary of B and by B̄ the closure of B, B̄ = B ∪ ∂B, where ∂B is
assumed to be a piecewise smooth surface. The motion of the body will report to a fix
system of rectangular Cartesian axes Oxi, i = 1, 2, 3 which is chosen so that the generator
of the cylinder is parallel to the Ox3 axis and the plane x1Ox2 contains one of the cylin-
der’s ends. ByD(x3) we denote the interior of the bounded cross section which is made at
distance x3 from the base x1Ox2. We will adopt the Cartesian tensor notation. Points in B
are denoted by xj and t∈[0,∞) is the temporal variable. We will use the Einstein summa-
tion convention over repeated indices. A superposed dot stands for the derivative with
respect to the t time variable, and a subscript j after a comma indicates partial differenti-
ation with respect to the spatial argument xj . All Greek indices are understood to range
over the integers (1, 2), while the Latin subscripts have the range (1, 2, 3). When there
is no likelihood of confusion, the spatial argument and the time argument of a function
will be omitted. The regularity hypotheses on the considered functions will be implied
without being stated, for clarity and simplification of the presentation. For instance, it is
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implied that the surface ∂B must be sufficiently regular to allow the application of the
divergence theorem.

The behavior of our body will be characterized with the help of the displacement vector
of components ui, the dipolar displacement tensor of components ϕij and the volume
distribution function ϕ, which in the reference state is ϕ0. In the following we will use the
volume distribution function σ given by the difference σ = ϕ− ϕ0.

Using the known procedure of Green and Rivlin we consider a new motion which dif-
fers from the given motion only by a superposed rigid motion defined by a rotation of
uniform rigid body angular velocity and suppose that for the given motion, all charac-
teristics of the body are unaltered by such superposed rigid motion. So we deduce the
following kinetic relations, which give expressions of the strain measures εij , γij , χijk and
φi with regard to the variables of motion

εij =
1

2
(ui,j + uj,i) , γij = uj,i − ϕij , χijk = ϕjk,i, φi = σ,i.(2.1)

We restrict our considerations to the case where the materials have a center of symmetry.
In the case that the body, in its reference configuration, is free from stress and has zero
intrinsic equilibrated body forces and body couples, we assume that the internal energy
density is a quadratic form with regards to its independent constitutive variables. Then
from the principle of conservation of energy, we deduce that the internal energy density
can be written in the following form

Ψ =
1

2
Cijmnεijεmn +Gijmnεijγmn + Fijmnrεijχmnr +

1

2
Bijmnγijγmn

+Dijmnrγijχmnr +
1

2
Aijkmnrχijkχmnr + aijεijσ + cijγijσ + eijkχijkσ +(2.2)

+bijkεijφk + dijkγijφk + fijkmχijkφm +
1

2
pijφiφj + diσφi +

1

2
ξσ2.

As a consequence, we will use the following constitutive equations that give the expressi-
ons for the stress measures in terms of the strain measures

τij = Cijmnεmn +Gmnijγmn + Fmnrijχmnr + aijσ + bijkφk,

ηij = Gijmnεmn +Bijmnγmn +Dijmnrχmnr + cijσ + dijkφk,

µijk=Fijkmnεmn+Dmnijkγmn+Aijkmnrχmnr+eijkσ+fijkmφm,(2.3)
λi = bmniεmn + dmniγmn + fmnriχmnr + diσ + pijφj ,

s = −aijεij − cijγij − eijkχijk − ξσ − diφi.

The material of the cylinder is assumed to be inhomogeneous in a cross-section of the
cylinder, that is, all the constitutive coefficients Cijmn, Gijmn, ..., ξ from (2) are functions
which depend on (x1, x2), that is

Cijmn = Cijmn (x1, x2) , Gijmn = Gijmn (x1, x2) , ...., ξ = ξ (x1, x2)

Also, these constitutive coefficients obey the following symmetry relations

Cijmn = Cjimn = Cmnij , Gijmn = Gjimn, Fijmnr = Fjimnr,

aij = aji, bijk = bjik, pij = pji.(2.4)

If we denote by ni the components of the outward unit normal to the surface ∂B, then
at each regular point of ∂B we can define the components of the surface traction ti, the
components of the surface couple µjk and the equilibrated surface traction h by

ti = (τij + ηij)nj , µjk = µijkni, h = λini.(2.5)
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The boundary of each cross section will be denoted by ∂D so that the lateral boundary of
the cylinder is ∂D × [0, L]. In the absence of body loads, the equations of equilibrium in
the context of elasticity of dipolar porous bodies are (see [13])

(τij + ηij),j = 0, µijk,i + ηjk = 0.(2.6)

In the same context, the balance of the equilibrated forces has the form

λi,i + s = 0.(2.7)

Together with equations (6) and (7) we will consider the following lateral boundary con-
ditions

ti = 0, µjk = 0, h = 0, on ∂D × [0, L](2.8)

and the end boundary conditions

t3i = t
(1)
i , µ3jk = µ

(1)
jk , λ3 = h(1), on D(0),

t3i = t
(2)
i , µ3jk = µ

(2)
jk , λ3 = h(2), on D(L),(2.9)

where t(1)i , t
(2)
i , µ

(1)
jk , µ

(2)
jk , h

(1) and h(2) are given functions on their domain of definition.
It is called the Saint-Venant’s problem for the domain B, the problem of determining
the displacement field ui, the dipolar displacement field ϕij and the volume distribution
function σ that satisfy the equations (6) and (7), the lateral boundary conditions (8) and
the end boundary conditions (9).
Using the procedure proposed by Ieşan and Ciarletta in [14] we deduce the necessary and
sufficient conditions for the existence of a solution to the problem of Saint-Venant, namely∫
D(0)

t
(1)
i dA+

∫
D(L)

t
(2)
i dA = 0,

∫
D(0)

µ
(1)
ij dA+

∫
D(L)

µ
(2)
ij dA = 0,

∫
D(0)

εijkxjt
(1)
k dA+

+

∫
D(L)

εijkxjt
(2)
k dA = 0,

∫
D(0)

εijkxiµ
(1)
jk dA+

∫
D(L)

εijkxiµ
(2)
jk dA = 0.(2.10)

In other words, the relations (10) state that for the equilibrium of the cylinder, the tractions
on the cylinder bases should have a null resultant and null torque.

Lemma 2.1. The equations of equilibrium (6) and the balance of the equilibrated forces (7) can be
written in the form

[(Cijmn +Gijmn)un,m + (Gmnij +Bijmn) (un,m − ϕmn) +

+ (Fmnrij +Dijmnr)ϕnr,m + (aij + cij)σ + (bijk + dijk)σ,k],j = 0,

[Fijkmnun,m +Dmnijk (un,m − ϕmn) +Aijkmnrϕnr,m + eijkσ+(2.11)
+fijkmσ,m],i +Gjkmnum,n +Bjkmn (un,m − ϕmn) +Djkmnrϕnr,m + cjkσ + djkmσ,m = 0,

[bmnium,n + dmni (un,m − ϕmn) + fmnriϕnr,m + diσ + pijσ,j ],i −
−aijui,j − cij (uj,i − ϕij)− eijkϕjk,i − ξσ − diσ,i = 0,

all these equations taking place in the domain B = D × (0, L).

Proof. By direct calculations, we take into account the geometric equations (1) and the
constitutive equations (3), then the equations of equilibrium (6) and the balance of the
equilibrated forces can be restated in the form (11). �
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Lemma 2.2. The lateral boundary conditions (8) can be written in the form

[(Ciαmn +Giαmn)un,m + (Gmniα +Biαmn) (un,m − ϕmn) +

+ (Fmnriα +Diαmnr)ϕnr,m + (aiα + ciα)σ + (biαk + diαk)σ,k]nα = 0,

[Fαjkmnun,m +Dmnαjk (un,m − ϕmn) +Aαjkmnrϕnr,m + eαjkσ+

+ fαjkmσ,m]nα = 0,(2.12)
[bmnαum,n + dmnα (un,m − ϕmn) + fmnrαϕnr,m + dασ + pαjσ,j ]nα = 0,

on ∂D × (0, L).

Proof. By direct calculations, we substitute the geometric equations (1) and the constitu-
tive equations (3) into the lateral boundary conditions (8) and obtain (12). �

Lemma 2.3. The end boundary conditions (9) can be written in the form

(Ci3mn +Gi3mn)un,m + (Gmni3 +Bi3mn) (un,m − ϕmn) +

+ (Fmnri3 +Di3mnr)ϕnr,m + (aij + cij)σ + (bi3k + di3k)σ,k = t
(1)
i , on D(0)

Fi3kmnun,m+Dmni3k (un,m−ϕmn)+Ai3kmnrϕnr,m+ei3kσ+fi3kmσ,m=µ
(1)
jk , on D(0)

bmn3um,n + dmn3 (un,m − ϕmn) + fmnr3ϕnr,m + d3σ + p3jσ,j = h(1), on D(0)

(Ci3mn +Gi3mn)un,m + (Gmni3 +Bi3mn) (un,m − ϕmn) +(2.13)

+ (Fmnri3 +Di3mnr)ϕnr,m + (ai3 + ci3)σ + (bi3k + di3k)σ,k = t
(1)
i , on D(L)

Fi3kmnun,m+Dmni3k (un,m−ϕmn)+Ai3kmnrϕnr,m+ei3kσ+fi3kmσ,m=µ
(1)
jk , on D(L)

bmn3um,n + dmn3 (un,m − ϕmn) + fmnr3ϕnr,m + d3σ + p3jσ,j = h(1), on D(L)

Proof. Using equations (1) and (3) into the end boundary conditions (9), we obtain, di-
rectly, the equations (13). �

In the following we will denote by (S-V) the problem consisting of the equations (11),
the lateral boundary conditions (12) and the end boundary conditions (13). Also, we
assume that the internal energy density Ψ, defined in (2), and associated to the solution of
the boundary value problem (S-V), is positive definite. According to [14], if the internal
energy density Ψ is positive definite, then the boundary value problem (S-V) has a unique
solution, except for a rigid displacement.

3. THE MAIN RESULTS

In several articles on Saint-Venant’s problem (see for instance [4]) the state of the gene-
ralized plane strain for the interior of the cross section is defined.

According to this, the displacement field u, the dipolar displacement field ϕ and the
volume distribution σ depend on D only on x1 and x2

ui = ui (x1, x2) , ϕij = ϕij (x1, x2) , σ = σ (x1, x2) , (x1, x2) ∈ D(3.14)

where the domain D ⊂ R2 is a cross section of the considered cylinder.
As a consequence, also, other functions involved in the (S-V) problem depend only on x1
and x2. So, as far as the stress measures are concerned, we have

τij = τij (x1, x2) , ηij = ηij (x1, x2) , µijk = µijk (x1, x2) ,

λi = λi (x1, x2) , s = s (x1, x2) , (x1, x2) ∈ D

and if we denote by U the components of the displacement field u, the dipolar displace-
ment field ϕ and the volume distribution σ in the domain D, that is, U = (ui, ϕij , σ), then
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the constitutive equations (3) can be rewritten in the form

τij(U) = Cijmαum,α +Gαnij (un,α − ϕαn) + Fαnrijϕnr,α + aijσ + bijασ,α,

ηij(U) = Gijmαum,α +Bijαn (un,α − ϕαn) +Dijαnrϕnr,α + cijσ + dijασ,α,

µijk(U) =Fijkmαum,α+Dαnijk (un,α − ϕαn)+Aijkαnrϕnr,α+eijkσ+fijkασ,α,(3.15)
λi(U) = bmαium,α + dαni (un,α − ϕαn) + fαnriϕnr,α + diσ + piασ,α,

s(U) = −aαjuj,α − cαj (uj,α − ϕαj)− eαjkϕjk,α − ξσ − dασ,α.

Now we are able to adapt the (S-V) problem above, for the domain D and its boundary
∂D, as a plane problem. We denote by (P-S-V) this plane problem and it consists of

- the equilibrium equations

(τiα(U) + ηiα(U)),α + fi = 0, µαjk,α(U) + ηjk(U) + gjk = 0,

λα,α(U) + s(U) + l = 0, in D(3.16)

where fi = fi (x1, x2) are the components of the body force, gjk = gjk (x1, x2) are the
components of the dipolar body force and l = l (x1, x2) is the extrinsic equilibrated force;

- the boundary conditions

(τiα(U) + ηiα(U))nα = t̃i, µαjk(U)nα = m̃jk, λα(U)nα = h̃, on ∂D(3.17)

where t̃i are the components of the boundary traction, m̃jk are the components of the
boundary couple traction and h̃ is the equilibrated boundary traction.
We can find another form of the problem (P-S-V) consisting of (16) and (17) by taking into
account the constitutive equations (15). So, the equilibrium equations take the form

Fi(U) ≡ [(Ciαmβ +Giαmβ)um,β + (Gβniα +Biαβn) (un,β − ϕβn) +

+ (Fβnriα+Diαβnr)ϕnr,β+(aiα+ciα)σ+(biαβ+diαβ)σ,β ],α=−fi,
Gjk(U) ≡ [Fαjkmβum,β+Dβnαjk (un,β − ϕβn)+Aαjkβnrϕnr,β+eαjkσ+fαjkβσ,β ],α +

+Gjkmαum,α+Bjkαn (un,α−ϕαn)+Djkαnrϕnr,α+cjkσ+djkασ,α=−gjk(3.18)
L(U) ≡ [bmβαum,β + dβnα (un,β − ϕβn) + fβnrαϕnr,β + dασ + pαβσ,β ],α −

−aαjuj,α − cαj (uj,α − ϕαj)− eαjkϕjk,α − ξσ − dασ,α = −l

and the boundary conditions become

Ti(U) ≡ [(Ciαmβ +Giαmβ)um,β + (Gβniα +Biαβn) (un,β − ϕβn) +

+ (Fβnriα+Diαβnr)ϕnr,β+(aiα+ciα)σ+(biαβ+diαβ)σ,β ]nα= t̃i,

Mjk(U)≡[Fαjkmβum,β+Dβnαjk (un,β−ϕβn)+Aαjkβnrϕnr,β+eαjkσ+fαjkβσ,β ]nα=m̃jk,(3.19)

H(U) ≡ [bmβαum,β + dβnα (un,β − ϕβn) + fβnrαϕnr,β + dασ + pαβσ,β ]nα = h̃.

We assume that the functions fi, gjk, l, t̃i, m̃jk and h̃ satisfy, on their domain of definition,
the necessary conditions of regularity for the existence of a solution of the above plane
problem (for example, as required in the paper [8]).
Recall that, according to [14], the necessary and sufficient conditions for the existence of a
solution of the plane problem are that the resultant and the torque of the supply loads are
null, that is∫

D

fidA+

∫
∂D

t̃ids = 0,

∫
D

g3idA+

∫
∂D

m̃3ids = 0,∫
D

ε3αβxαfβdA+

∫
∂D

ε3αβxαt̃βds=0,

∫
D

ε3αβxαg3βdA+

∫
∂D

ε3αβxαm̃3βds=0.(3.20)
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In order to obtain a generalized plane problem which corresponds to the system of equa-
tions (11) and to the lateral boundary conditions (12), we will consider that the balance
equations (11) are satisfied on the plane domain D, and the lateral boundary conditions
(12) are satisfied on the plane curve ∂D, the variable x3 being considered as a parameter,
x3 ∈ (0, L). As a consequence, on the cross-section D of the cylinder acts a resultant force
having the components

(Ri(U),Rjk(U)) , where Ri(U)=

∫
D

(τ3i+η3i) (U)dA, Rjk(U)=

∫
D

µ3jk(U)dA,(3.21)

and a resultant moment of the traction of components

Mi(U)=

∫
D

εijkxj (τ3k+η3k) (U)dA+

∫
D

εijkxjµ33k(U)dA.(3.22)

As a particular case, from (22) we deduce that

Mα(U) = ε3αβ

∫
D

xβ (τ33+η33) (U)dA+ ε3αβ

∫
D

xβµ333(U)dA−

−x3ε3αβ
∫
D

(τ3β+η3β) (U)dA− x3ε3αβ
∫
D

µ33β(U)dA,(3.23)

M3(U) = ε3αβ

∫
D

xα (τ3β+η3β) (U)dA+ ε3αβ

∫
D

xαµ33β(U)dA.

In the following theorem we will find a sufficient condition which allows the expression
of the solution of Saint-Venant’s problem in terms of the generalized plane strain.

Theorem 3.1. If U is a solution of Saint-Venant’s problem and the corresponding resultant force
(Ri(U),Rjk(U)) and resultant moment of the traction M3(U) are independent of x3, then U
can be expressed in terms of the generalized plane strain.

Proof. First, the plane boundary value problem consisting of equations (11) on D and the
lateral boundary conditions (12) on ∂D will be written in another form, by separating the
terms that refer to x3 which is considered as a parameter. So, equations (11) become

[(Ciαmβ +Giαmβ)um,β + (Gβniα +Biαβn) (un,β − ϕβn) +

+ (Fβnriα+Diαβnr)ϕnr,β+(aiα+ciα)σ+(biαβ+diαβ)σ,β ],α +

+ [(Ciαm3 +Giαm3)um,3 + (G3niα +Biα3n) (un,3 − ϕ3n) +

+ (F3nriα+Diα3nr)ϕnr,3+(biα3+diα3)σ,3],α + τ3i,3(U) + η3i,3(U) = 0,

[Fαjkmβum,β+Dβnαjk (un,β − ϕβn)+Aαjkβnrϕnr,β+eαjkσ+fαjkβσ,β ],α +

+Gjkmαum,α+Bjkαn (un,α−ϕαn)+Djkαnrϕnr,α+cjkσ+djkασ,α+(3.24)
+[Fαjkm3um,3+D3nαjk (un,3 − ϕ3n)+Aαjk3nrϕnr,3+fαjk3σ,3],α+µ3jk,3(U)=0

[bmβαum,β + dβnα (un,β − ϕβn) + fβnrαϕnr,β + dασ + pαβσ,β ],α −
−aαjuj,α − cαj (uj,α − ϕαj)− eαjkϕjk,α − ξσ − dασ,α +

+[bm3αum,3+d3nα (un,3−ϕ3n)+f3nrαϕnr,3+pα3σ,3],α+λ3,3(U)=0, in D
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and the lateral boundary conditions (12) are written in the form

[(Ciαmβ +Giαmβ)um,β + (Gβniα +Biαβn) (un,β − ϕβn) +

+ (Fβnriα+Diαβnr)ϕnr,β+(aiα+ciα)σ+(biαβ+diαβ)σ,β ]nα=

= − [(Ciαm3 +Giαm3)um,3 + (G3niα +Biα3n) (un,3 − ϕ3n) +

+ (F3nriα+Diα3nr)ϕnr,3+(biα3+diα3)σ,3]nα,

[Fαjkmβum,β+Dβnαjk (un,β − ϕβn)+Aαjkβnrϕnr,β+eαjkσ+fαjkβσ,β ]nα =(3.25)
= − [Fαjkm3um,3+D3nαjk (un,3 − ϕ3n)+Aαjk3nrϕnr,3+fαjk3σ,3]nα,

[bmβαum,β + dβnα (un,β − ϕβn) + fβnrαϕnr,β + dασ + pαβσ,β ]nα =

= − [bm3αum,3 + d3nα (un,3 − ϕ3n) + f3nrαϕnr,3 + pα3σ,3]nα, on ∂D

In this way, we can consider that the boundary value problem consisting of (24) and (25)
is a generalized plane strain boundary value problem, with the particular loads on D

fi = [(Ciαm3 +Giαm3)um,3 + (G3niα +Biα3n) (un,3 − ϕ3n) +

+ (F3nriα+Diα3nr)ϕnr,3+(biα3+diα3)σ,3],α + τ3i,3(U) + η3i,3(U),(3.26)

gjk = [Fαjkm3um,3+D3nαjk (un,3 − ϕ3n)+Aαjk3nrϕnr,3+fαjk3σ,3],α+µ3jk,3(U),

l = [bm3αum,3+d3nα (un,3−ϕ3n)+f3nrαϕnr,3+pα3σ,3],α+λ3,3(U),

and the particular tractions on ∂D

t̃i = − [(Ciαm3 +Giαm3)um,3 + (G3niα +Biα3n) (un,3 − ϕ3n) +

+ (F3nriα+Diα3nr)ϕnr,3+(biα3+diα3)σ,3]nα,(3.27)
m̃jk = − [Fαjkm3um,3+D3nαjk (un,3 − ϕ3n)+Aαjk3nrϕnr,3+fαjk3σ,3]nα,

h̃ = − [bm3αum,3 + d3nα (un,3 − ϕ3n) + f3nrαϕnr,3 + pα3σ,3]nα

Consistent with the necessary and sufficient conditions (20) we must have∫
D

(τ3i,3(U) + η3i,3(U)) dA = 0,

∫
D

µ3jk,3(U)dA = 0,∫
D

ε3αβxα (τ3β,3(U) + η3β,3(U)) dA = 0,

∫
D

ε3αβxαµ33β,3(U)dA = 0.(3.28)

If we take into account the constitutive equations (3) and the fact that all the constitutive
coefficients are functions which depend on (x1, x2), we deduce that

τ3i,3(U) + η3i,3(U) = τ3i(U,3) + η3i(U,3), µ3jk,3(U) = µ3jk(U,3)(3.29)

and, therefore, we can write (28) in the form∫
D

(τ3i(U,3) + η3i(U,3)) dA = 0,

∫
D

µ3jk(U,3)dA = 0,∫
D

ε3αβxα (τ3β(U,3) + η3β(U,3)) dA = 0,

∫
D

ε3αβxαµ33β(U,3)dA = 0.(3.30)

Considering relations (30), (21)-(23) we deduce that a sufficient condition which allows
the expression of the solution of Saint-Venant’s problem in terms of the generalized plane
strain is the fact that the resultant forces (Ri(U),Rjk(U)) and the resultant moment of the
tractionM3(U) are independent of x3. The proof of the theorem is complete. �

With the help of the results from Theorem 1, we obtain the next result.

Theorem 3.2. If U is a solution of the Saint-Venant’s problem so that the resultant forces (Ri(U),Rjk(U))
and the resultant moment of the tractionM3(U) are independent of x3, thenM1(U) andM2(U)
are also independent of x3.
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Proof. If we take into account the equations (6) and (7) and the lateral boundary conditions
(8), we can obtain the relations(∫

D

xα (τ33(U) + η33(U)) dA

)
,3

=

∫
D

xα (τ33,3(U) + η33,3(U)) dA =

= −
∫
D

xα (τβ3,β(U) + ηβ3,β(U)) dA = −
∫
D

(xα (τβ3(U) + ηβ3(U))),β dA+(3.31)

+

∫
D

(τα3(U)+ηα3(U)) dA=−
∫
∂D

xα (τβ3(U)+ηβ3(U))nβds+Rα(U)=Rα(U)

the last result being obtained with the help of the divergence theorem.
Now, we use the relation (23) in order to obtain the following relations

Mα,3(U)=ε3αβ

(∫
D

xβ (τ33(U)+η33(U)) dA

)
,3

−ε3αβRβ(U)−x3ε3αβRβ,3(U)(3.32)

Finally, we use the assumptions of the theorem and combine the results from relations
(31) and (32) so that we are led to the desired result and the proof of Proposition 1 is
concluded. �

It should be noted that taking into account that Rα(U) is independent of x3, by direct
calculations, from (31) we deduce that∫

D

xα (τ33(U,33) + η33(U,33)) dA = 0.(3.33)

Now we want to approach a class of semi-inverse solutions to Saint-Venant’s problem,
which can be expressed in terms of a state of the generalized plane strain.

With a suggestion given by (39) and (40) we will consider those solutions of Saint-
Venant’s problem having the property that the expressions of the displacemnt u,3 and the
dipolar displacement ϕ,3 are the same as a rigid displacement and the volume distribution
function σ is independent of x3.

Let us denote by (S − V )s the class of these solutions and by U0 an element from this
class, U0 =

(
u0,ϕ0, σ0

)
∈ (S − V )s. If we take into account (21)-(23), (29) and (30) then

we are led to the conclusion that(
Rα

(
U0
))
,3

= 0,
(
R3

(
U0
))
,3

= 0,
(
Mi

(
U0
))
,3

= 0.(3.34)

In the case of a rigid displacement and a dipolar rigid displacement, by direct integration,
we deduce that

u0α = −1

2
aαx

2
3 − ε3αβa4xβx3 + vα(x1, x2),

u03 = (a1x1 + a2x2 + a3)x3 + v3(x1, x2),

ϕ0
αk = −1

2
bαkx

2
3 − ε3αβb4kxβx3 + wαk(x1, x2),(3.35)

ϕ0
3k = (b1kx1 + b2kx2 + b3k)x3 + w3k(x1, x2),

σ0 = ψ(x1, x2),

for U0 =
(
u0,ϕ0, σ0

)
∈ (S − V )s. As usual, α = 1, 2. The coefficients am and bmk in (35)

are arbitrary constants, for m = 1, 2, 3, 4 and k = 1, 2, 3. Also, vi and wik are arbitrary
functions independent of x3, for i, k = 1, 2, 3.
If we substitute (35) into (3) we find the components of the stress in this class of solutions,
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namely

τij
(
U0
)

= Cij33 (a1x1 + a2x2 + a3)− a4Cijα3ε3αβxβ +

+Fijk33 (b1kx1 + b2kx2 + b3k)− b4kFijα33ε3αβxβ + τij (U) ,

ηij
(
U0
)

= Gij33 (a1x1 + a2x2 + a3)− a4Gijα3ε3αβxβ +

+Dijk33 (b1kx1 + b2kx2 + b3k)− b4kDijα33ε3αβxβ + ηij (U) ,

µijk
(
U0
)

= Fijk33 (a1x1 + a2x2 + a3)− a4Fijkα3ε3αβxβ +

+Aijkm33 (b1mx1 + b2mx2 + b3m)− b4mAijkmα3ε3αβxβ + µijk (U) ,(3.36)

λi
(
U0
)

= b33i (a1x1 + a2x2 + a3)− a4biα3ε3αβxβ +

+fik33 (b1kx1 + b2kx2 + b3k)− b4kfikα3ε3αβxβ + λi (U) ,

s
(
U0
)

= −a33 (a1x1 + a2x2 + a3)− a4aα3ε3αβxβ −
−e33k (b1kx1 + b2kx2 + b3k)− b4keα3kε3αβxβ − s (U) .

The expressions for τij (U), ηij (U), µijk (U), λi (U) and s (U) are those from (15).
Considering the relations (36), the equilibrium equations (18) receive the form

F0
i

(
U0
)

= Fi (U) +

+[(Ciα33+Giα33) aβxβ+(Ciα33+Giα33) a3−a4ε3γβ (Ciαγ3+Giαγ3)xβ ],α+

+[(Fiαk33+Diαk33)bβkxβ+(Fiαk33+Diαk33)b3k−b4kε3γβ (Fiαkγ3+Diαkγ3)xβ ],α=0,

G0ij
(
U0
)

= Gij (U) + [Fijα33aβxβ + Fijα33a3 − a4ε3γβFijαγ3xβ ],α +

+ [Aijαk33bβkxβ +Aijαk33b3k − b4kε3γβAijαkγ3xβ ],α = 0,(3.37)

L0
(
U0
)

= L (U) +

+ [(b33α + d33α) aβxβ + (b33α + d33α) a3 − a4ε3γβ (b3γα + d3γα)xβ ],α +

+ [fαk33bβkxβ + fαk33b3k − b4kε3γβfαkγ3xβ ],α −
−a33aβxβ − a33a3 + a4ε3γβaγ3xβ − e33kbβkxβ − e33kb3k + b4keγ3kε3γβxβ = 0,

which are satisfied in the domain D.
Also, with the help of (36), the boundary conditions (19) receive the form

T 0
i

(
U0
)

= Ti (U) +

+[(Ciα33+Giα33) aβxβ+(Ciα33+Giα33) a3−a4ε3γβ (Ciαγ3+Giαγ3)xβ ]nα+

+[(Fiαk33+Diαk33)bβkxβ+(Fiαk33+Diαk33)b3k−b4kε3γβ (Fiαkγ3+Diαkγ3)xβ ]nα=0

M0
ij

(
U0
)

=Mij (U) + [Fijα33aβxβ + Fijα33a3 − a4ε3γβFijαγ3xβ ]nα +(3.38)

+ [Aijαk33bβkxβ +Aijαk33b3k − b4kε3γβAijαkγ3xβ ]nα = 0,

H0
(
U0
)

= H (U) +

+ [(b33α + d33α) aβxβ + (b33α + d33α) a3 − a4ε3γβ (b3γα + d3γα)xβ ]nα +

+ [fαk33bβkxβ + fαk33b3k − b4kε3γβfαkγ3xβ ]nα = 0

which are satisfied on the surface ∂D.
In this way, the boundary value problem defined by (18) and (19) is replaced by the boun-
dary value problem defined by (37) and (38).
If we take into account the conditions (20), we deduce that the necessary and sufficient
conditions for the boundary value problem (37) and (38) to have a solution U = (ui, ϕjk, σ)
are satisfied for any as, s = 1, 2, 3, 4 and bsk, s = 1, 2, 3, 4, k = 1, 2, 3.
Now, we will consider three particular forms of the boundary value problem (37) and
(38), namely in the case when ai = δij , a4 = 0 and bik = δij , b4k = 0, where j is
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the number of the particular problem. The corresponding solutions will be denoted by
U(s) =

(
u
(s)
i , ϕ

(s)
ij , σ

(s)
)

, s = 1, 2, 3. Also, we will denote by U(4) =
(
u
(4)
i , ϕ

(4)
ij , σ

(4)
)

a
solution of the boundary value problem (37), (38) in the particular case when ai = 0, i =
1, 2, 3, a4 = 1 and bik = 0, i = 1, 2, 3, b4k = 1.
In other words, the functions U(s) =

(
u
(s)
i , ϕ

(s)
ij , σ

(s)
)
, s = 1, 2, 3, 4 satisfy the equations

Fi
(
U(s)

)
+ f

(s)
i = 0, Gij

(
U(s)

)
+ g

(s)
ij = 0, L

(
U(s)

)
+ l(s) = 0, in D,(3.39)

and the boundary conditions

Ti
(
U(s)

)
= T̃

(s)
i , Gij

(
U(s)

)
= M̃

(s)
ij , L

(
U(s)

)
= L̃(s), on ∂D.(3.40)

In (39) and (40) we used the notations

f
(β)
i = [(Ciα33 +Giα33)xβ + (Fiαk33 +Diαk33) δkβxβ ],α ,

f
(3)
i = [(Ciα33 +Giα33) + (Fiαk33 + Fiαk33) δk3],α ,

f
(4)
i = − [ε3γβ (Ciαγ3 +Giαγ3)xβ + ε3γβ (Fiαkγ3 +Diαkγ3) δk3xβ ],α ,

g
(β)
ij = [(Fijα33aβ +Aijαk33bβk)xβ ],α , g

(3)
ij = (Fijα33a3 +Aijαk33b3k),α ,

g
(4)
ij = − [ε3γβ (Fijαγ3 + δ3kAijαkγ3)xβ ],α ,

l(β) = [(bα33 + dα33)xβ + fαk33δkβxβ ],α − (a33 + ek33δk3)xβ ,

l(3) = [(bα33 + dα33) + fαk33δk3],α − (a33 + ek33δk3) ,

l(4) = − [ε3γβ (b3γα + d3γα + fαkγ3)xβ ],α + ε3γβ (aγ3 + eγ3kδk3) ,(3.41)

T̃
(β)
i = − [(Ciα33 +Giα33)xβ + (Fiαk33 +Diαk33) δkβxβ ]nα,

T̃
(3)
i = − [(Ciα33 +Giα33) + (Fiαk33 + Fiαk33) δk3]nα,

T̃
(4)
i = [ε3γβ (Ciαγ3 +Giαγ3)xβ + ε3γβ (Fiαkγ3 +Diαkγ3) δk3xβ ]nα,

M̃
(β)
ij = [(Fijα33aβ +Aijαk33bβk)xβ ]nα, M̃

(3)
ij = (Fijα33a3 +Aijαk33b3k)nα,

M̃
(4)
ij =[ε3γβ (Fijαγ3+δ3kAijαkγ3)xβ ]nα, L̃

(β)=−[(bα33+dα33)xβ+fαk33δkβxβ ]nα,

L̃(3) = − [(bα33 + dα33) + fαk33δk3]nα, L̃
(4) = [ε3γβ (b3γα + d3γα + fαkγ3)xβ ]nα.

Of course, if U(s) are the solutions of the problems above, then we can write

U =

4∑
s=1

asU
(s),(3.42)

because all the problems formulated above are linear. Therefore, if W0 =
(
u0,ϕ0, σ0

)
is a

solution from our class, W0 ∈ (S − V )s, then we have

W(0) =

4∑
s=1

asW
(s),(3.43)
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where the components of the solutions are defined by

u(β)α = −1

2
x23δαβ + v(β)α , u

(β)
3 = xβx3 + v

(β)
3 , u(3)α = v(3)α ,

u
(3)
3 = x3 + v

(3)
3 , u(4)α = ε3βαxβx3 + v(4)α , u

(4)
3 = v

(4)
3 ,

ϕ
(β)
α3 = −1

2
x23δαβ + w

(β)
α3 , ϕ

(β)
33 = xβx3 + w

(β)
33 , ϕ

(3)
α3 = w

(3)
α3 ,(3.44)

ϕ
(3)
33 = x3 + w

(3)
33 , ϕ

(4)
α3 = ε3βαxβx3 + w

(4)
α3 , ϕ

(4)
33 = w

(4)
33 .

According to (43) and (36), the components of the stress become

τij

(
W(0)

)
=

4∑
r=1

arτij

(
W(r)

)
, ηij

(
W(0)

)
=

4∑
r=1

arηij

(
W(r)

)
,

µijk

(
W(0)

)
=

4∑
r=1

arµijk

(
W(r)

)
, λi

(
W(0)

)
=

4∑
r=1

arλi

(
W(r)

)
,(3.45)

s
(
W(0)

)
=

4∑
r=1

ars
(
W(r)

)
,

where

τij

(
W(α)

)
= Cij33xα + Fijβ33δβ3xα + τij

(
U(α)

)
,

τij

(
W(3)

)
= Cij33 + Fijβ33δβ3 + τij

(
U(3)

)
,

τij

(
W(4)

)
= −ε3αβCijα3xβ − ε3γβFijkγ3δk3xβ + τij

(
U(4)

)
,

ηij

(
W(α)

)
= Gij33xα +Dijβ33δβ3xα + ηij

(
U(α)

)
,

ηij

(
W(3)

)
= Gij33 +Dijβ33δβ3 + ηij

(
U(3)

)
,

ηij

(
W(4)

)
= −ε3αβGijα3xβ − ε3γβDijkγ3δk3xβ + ηij

(
U(4)

)
,

µijk

(
W(α)

)
= Fijk33xα +Aijkβ33δβ3xα + µijk

(
U(α)

)
,

µijk

(
W(3)

)
= Fijk33 +Aijkβ33δβ3 + µijk

(
U(3)

)
,(3.46)

µijk

(
W(4)

)
= −ε3αβFijkα3xβ − ε3γβAijkmγ3δm3xβ + µijk

(
U(4)

)
,

λi

(
W(α)

)
= b33ixα + fiβ33δβ3xα + λi

(
U(α)

)
,

λi

(
W(3)

)
= b33i + fiβ33δβ3 + λi

(
U(3)

)
,

λi

(
W(4)

)
= −ε3αβb3αixβ − ε3γβfikγ3δk3xβ + λi

(
U(4)

)
,

s
(
W(α)

)
= −a33xα − e33βδβ3xα + s

(
U(α)

)
s
(
W(3)

)
= −a33 − e33βδβ3 + s

(
U(3)

)
s
(
W(4)

)
= ε3αβaα3xβ + ε3γβe3γkδk3xβ + s

(
U(4)

)
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If we use the relations (39), (45) and (46) we deduce that

ταi, α

(
W(s)

)
+ ηαi, α

(
W(s)

)
= 0, µαjk, α

(
W(s)

)
+ ηjk

(
W(s)

)
= 0,

λα, α

(
W(s)

)
+ s

(
W(s)

)
= 0, in D(3.47)

Similarly, using relations (40), (45) and (46) we get

ταi

(
W(s)

)
nα+ηαi

(
W(s)

)
nα=0, µαjk

(
W(s)

)
nα=0, λα

(
W(s)

)
nα=0, on ∂D.(3.48)

Now, we take into consideration the relations (22), (45), (47) and (48) so we get the follo-
wing two equations

Rα
(
W(0)

)
−
∫
D

4∑
s=1

[
τ3α

(
W(s)

)
+ η3α

(
W(s)

)]
dA−

−
∫
D

4∑
s=1

{[
xατ3β

(
W(s)

)]
,β

+
[
xαη3β

(
W(s)

)]
,β

}
dA = 0,(3.49)

Rαβ
(
W(0)

)
−
∫
D

4∑
s=1

µ3αβ

(
W(s)

)
dA−

∫
D

4∑
s=1

[
xα µ3βγ

(
W(s)

)]
,γ
dA = 0.(3.50)

We conclude our considerations noting that if
(
u0,ϕ0, σ0

)
is a solution from our class, that

is
(
u0,ϕ0, σ0

)
∈ (S − V )s, then, by using the notations

C3s=

∫
D

[
τ33

(
W(s)

)
+η33

(
W(s)

)]
dA,Cβs=

∫
D

xβ

[
τ33

(
W(s)

)
+η33

(
W(s)

)]
dA,

C4s =

∫
D

ε3αβxα

[
τ3β

(
W(s)

)
+ η3β

(
W(s)

)]
dA, s = 1, 2, 3, 4

we obtain

R3

(
W(0)

)
=

4∑
s=1

asC3s, Mα

(
W(0)

)
=

4∑
s=1

ε3αβasCβs, M3

(
W(0)

)
=

4∑
s=1

asC4s.

4. CONCLUSIONS

We presented an approach to the Saint-Venant’s problem for a cylinder consisting of
a dipolar porous material. To this end we reformulate the equilibrium equations as an
operator over the cross section of the cylinder, considering the axial variable as a parame-
ter. Thus, we could find the conditions in which the solution of Saint-Venant’s problem
might be treated as a generalized plane strain problem. Finally, we propose a class of
semi-inverse solutions to Saint-Venant’s problem.
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[13] Ieşan, D., Saint-Venant’s Problem, Lecture Notes in Math., Springer Verlag, Berlin, 1987
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