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Abstract linear second order differential equations with
two small parameters and depending on time operators

ANDREI PERJAN and GALINA RUSU

ABSTRACT. In a real Hilbert space H consider the following singularly perturbed Cauchy problem{
ε u′′εδ(t) + δ u′εδ(t) +A(t)uεδ(t) = f(t), t ∈ (0, T ),
uεδ(0) = u0, u′εδ(0) = u1,

where A(t) : V ⊂ H → H, t ∈ [0,∞), is a family of linear self-adjoint operators, u0, u1 ∈ H , f : [0, T ] 7→ H

and ε, δ are two small parameters.
We study the behavior of solutions uεδ to this problem in two different cases: ε→ 0 and δ ≥ δ0 > 0; ε→ 0

and δ → 0, relative to solution to the corresponding unperturbed problem.
We obtain some a priori estimates of solutions to the perturbed problem, which are uniform with respect

to parameters, and a relationship between solutions to both problems. We establish that the solution to the
perturbed problem has a singular behavior, relative to the parameters, in the neighbourhood of t = 0. We show
the boundary layer and boundary layer function in both cases.

1. INTRODUCTION

Let H be a real Hilbert space endowed with the scalar product (·, ·) and the norm | · |,
and V be a real Hilbert space endowed with the norm || · ||. Let A(t) : V ⊂ H → H,
t ∈ [0, T ], be a family of linear self-adjoint operators. Consider the following Cauchy
problem:

(Pεδ)

{
εu′′εδ(t) + δ u′εδ(t) +A(t)uεδ(t) = f(t), t ∈ (0, T ),
uεδ(0) = u0, u′εδ(0) = u1,

where u0, u1, f : [0, T ] → H and ε, δ are two small parameters. We investigate the beha-
vior of solutions uεδ to the problem (Pεδ) in two different cases:
(i) ε→ 0 and δ ≥ δ0 > 0, relative to the solutions to the following unperturbed system:

(Pδ)

{
δl′δ(t) +A(t)lδ(t) = f(t), t ∈ (0, T ),

lδ(0) = u0;

(ii) ε→ 0 and δ → 0, relative to the solutions to the following unperturbed system:

(P0) A(t)v(t) = f(t), t ∈ [0, T ).

The problem (Pεδ) is the abstract model of singularly perturbed problems of hyperbolic-
parabolic type. Many physical processes are described by systems of type (Pεδ). For
example in [3], is considered the equation

ρvtt + γvt = σ∆v
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(where ρ, γ, σ are the mass density per unit area of the membrane, the coefficient of vis-
cosity of the medium, and the tension of the membrane, respectively). This equation
characterizes the vibration of a membrane in a viscous medium, and it can be rewritten as

ε2utt + ut = ∆u,

with ε = (ρσ)1/2/γ.
In the case when the medium is highly viscous (γ � 1), or the density ρ is very small,

we have ε → 0 and the formal ”limit” of this equation will be the following first order
equation

ut = ∆u.

Without pretending to make a complete analysis, let us mention some works dedicated
to the study of singularly perturbed Cauchy problems for linear or nonlinear differential
equations of second order of type (Pεδ). The case when δ = 1 was widely studied by
various mathematicians (see, e.g. [4], [5], [10], [12] and the bibliography therein). In [7]
the asymptotic behavior of solutions to singular perturbation problems for second order
equations, as ε → 0 and δ → 0, is studied. In [2], [8], [15], some numerical results about
singular behaviour of solutions to the problem (Pεδ) for some ordinary differential equa-
tions and their applicability in modeling of different physical and engineering processes
are presented.

The framework of our paper will be determined by the following conditions:
(H1) V is separable and densely and continuously embedded in H i. e.

|u|2 ≤ γ||u||2, ∀u ∈ V ;

(H2) The operators A(t) : V ⊂ H → H are linear, self-adjoint and positive definite for
t ∈ [0, T ], i.e. there exists ω > 0 such that

(A(t)u, u) ≥ ω ||u||2, ∀u ∈ V, ∀t ∈ [0, T ];

(H3) For each u, v ∈ V the function t 7→ (A(t)u, v) is twice continuously differentiable on
[0, T ] and

|(A′(t)u, v)|+ |(A′′(t)u, v)| ≤ a0||u|| ||v||, ∀u, v ∈ V, ∀t ∈ [0, T ].

In [6] the following results concerning the solvability of problems (Pεδ) and (Pδ) are
proved.

Theorem 1.1. Let T > 0. Let us assume that the conditions (H1), (H2) are fulfilled and for each
u, v ∈ V the function t 7→ (A(t)u, v) is continuously differentiable on [0, T ]. If u0 ∈ V , u1 ∈ H
and f ∈ L2(0, T ;H), then there exists the unique function uεδ ∈ W 2,2(0, T ;H)

⋂
L2(0, T ;V ),

A(·)uεδ ∈ L2(0, T ;H) (strong solution) which satisfies the equation a.e. on (0, T ) and the initial
conditions from (Pεδ). If, in addition, u1 ∈ V , f ∈W 1,2(0, T ;H), thenA(·)uεδ ∈W 1,2(0, T ;H)
and uεδ ∈W 3,2(0, T ;H)

⋂
W 1,2(0, T ;V ).

Theorem 1.2. Let T > 0. Let us assume that the conditions (H1), (H2) are fulfilled and for each
u, v ∈ V the function t 7→ (A(t)u, v) is continuously differentiable on [0, T ]. If u0 ∈ H and
f ∈ L2(0, T ;H), then there exists the unique function lδ ∈ W 1,2(0, T ;H)

⋂
L2(0, T ;V ) which

satisfies a. e. on (0, T ) the equation and the initial conditions from (Pδ).

The problems (Pεδ) and (Pδ) can be rewritten as follows:

(Pµ)

{
µU ′′µ (s) + U ′µ(s) + A(s)Uµ(s) = F (s), s ∈ (0, T/δ),

Uµ(0) = u0, U ′µ(0) = δu1,
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and

(P0)

{
L′(s) + A(s)L(s) = F (s), s ∈ (0, T/δ),

L(0) = u0,

where Uµ(s) = uεδ(δ s), L(s) = lδ(sδ), A(s) = A(sδ), F (s) = f(sδ) and µ = ε/δ2. Using
the results obtained in the paper [14] for solutions of problems (Pµ) and (P0) we get the
following two theorems.

Theorem 1.3. Let T > 0, δ ≥ δ0 > 0. Let us assume that the conditions (H1), (H2) and (H3) are
fulfilled. If u0, u1 ∈ V and f ∈ W 1,2(0, T ;H), then there exist constants ε0 = ε0(γ, a0, ω, δ0),
ε0 ∈ (0, 1), C = C(T, γ, a0, ω, δ0) > 0, such that

||uεδ − lδ||C([0,T ];H) ≤ C ε
1/4
(
|A(0)u0|+ |A1/2(0)u1|+ ||f ||W 1,2(0,T ;H)

)
, ∀ε ∈ (0, ε0],

where uεδ and lδ are strong solutions to the problems (Pεδ) and (Pδ), respectively.

Theorem 1.4. Let T > 0, δ ≥ δ0 > 0. Let us assume that the conditions (H1)–(H3) are fulfilled.
If u0, A(0)u0, u1, f(0) ∈ V and f ∈ W 2,2(0, T ;H), then there exist constants
ε0 = ε0(γ, a0, ω, δ0), ε0 ∈ (0, 1), C = C(T, γ, a0, ω, δ0) > 0, such that∣∣∣∣∣∣∣∣u′εδ − l′δ +Hεδexp

{
− δ2 t

ε

}∣∣∣∣∣∣∣∣
C([0,T ];H)

≤ Cε1/4 ∀ε ∈ (0, ε0],

where Hεδ = δ−1 f(0)− u1 − δ−1A(0)u0,

C = |A3/2(0)u0|+ |A1/2(0)u1|+ |A1/2(0)f(0)|+ ||A(·)Hεδ||L2(0,∞;H) + ||f ||W 2,2(0,T ;H),

uεδ and lδ are strong solutions to the problems (Pεδ) and (Pδ), respectively.

2. MAIN RESULTS

The main result of this paper is presented in the following theorem.

Theorem 2.5. Let T > 0. Let us assume that the conditions (H1)–(H3) are fullfiled. If
u0, u1 ∈ V and f ∈W 1,2(0, T ;H), then there exists constant C = C(T, γ, a0, ω) > 0, such that

(2.1) ||uεδ − v − hδ||C([0,T ];H) ≤ CM
(ε1/4

δ9/4
+
√
δ
)
, ∀ε ∈ (0, µ0 δ

2], ∀δ ∈ (0, 1],

where uεδ and v are strong solutions to the problems (Pεδ) and (P0), respectively, and

M = |A(0)u0|+ |A1/2(0)u1|+ ||f ||W 1,2(0,T ;H), µ0 = min
{

1,
ω

6 a0

}
.

The function hδ is the solution to the problem

(2.2)

{
δh′δ(t) +A(t)hδ(t) = 0, t ∈ (0, T ),

hδ(0) = u0 −A−1(0)f(0),

and |hδ(t)| ≤ |u0 −A−1(0)f(0)|e−δt/ω, t ∈ [0, T ].

The proof of this theorem is based on two key points:
(i) a priori estimates of solutions to the perturbed problem (Pµ), which are uniform

with respect to small parameter µ;
(ii) the relationship between solutions to the problems (Pµ) and (P0).
In what follows we will present some results, obtained in our previous researches,

which will be used to prove the last theorem.
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Lemma 2.1. Let us assume that the condition (H1) is fulfilled and the operators A(t) satisfy
conditions (H2) and (H3) with t ∈ [0,∞). If u0, u1 ∈ V and F ∈ W 1,2(0,∞;H), then there
exist constants C(γ, a0, ω) > 0 and µ0 = min

{
1; ω

6a0

}
, such that for every strong solution Uµ

to the problem (Pµ) the following estimate holds:

(2.3)
∣∣∣∣A(·)Uµ

∣∣∣∣
L∞(0,∞;H)

+ ||Uµ ||C1([0,∞);H) +
∣∣∣∣A1/2(·)Uµ

∣∣∣∣
W 1,2(0,∞;H)

≤ CM,

∀µ ∈ (0, µ0], where M = |A(0)u0|+ |A1/2(0)u1|+ ||F ||W 1,2(0,∞;H).

Proof. From Theorem 1.1 it follows that the problem (Pµ) has a unique strong solution
Uµ which possesses the following properties: Uµ ∈ W 2,2(0, T ;H)

⋂
L2(0, T ;V ),A(·)Uµ ∈

L2(0, T ;H) for any T > 0.
Denote by

E(Uµ, t) = µ2|U ′µ(t)|2 +
1

2
|Uµ(t)|2 + µ

(
A(t)Uµ(t), Uµ(t)

)
+

+

t∫
0

(
A(τ)Uµ(τ), Uµ(τ)

)
dτ + µ

(
U ′µ(t), Uµ(t)

)
+ µ

t∫
0

|U ′µ(τ)|2dτ, t ≥ 0.

For every strong solution Uµ of problem (Pµ) we have

d

dt
E(Uµ, t) =

(
F (t), Uµ(t) + 2µU ′µ(t)

)
+ µ

(
A′(t)Uµ(t), Uµ(t)

)
, ∀t ≥ 0.

Integrating on (0, t) we get

E(Uµ, t) = E(Uµ, 0) +

t∫
0

(
F (τ), Uµ(τ) + 2µU ′µ(τ)

)
dτ+

(2.4) +µ

t∫
0

(
A′(τ)Uµ(τ), Uµ(τ)

)
dτ, ∀t ≥ 0.

If the conditions (H2) and (H3) are fulfilled for t ∈ [0,∞), then

(2.5)
(
A(t)u, u

)
= (A(δt)u, u) ≥ ω ||u||2, ∀u ∈ V, ∀t ∈ [0,∞)

and

(2.6)
∣∣(A′(t)u, v)∣∣ = δ

∣∣(A′(δt)u, v)∣∣ ≤ a0 δ ||u|| ||v||, ∀u, v ∈ V, ∀t ∈ [0,∞],

(2.7)
∣∣(A′′(t)u, v)∣∣ = δ2

∣∣(A′′(δt)u, v)∣∣ ≤ a0 δ
2 ||u|| ||v||, ∀u, v ∈ V, ∀t ∈ [0,∞],

Therefore
t∫

0

(
F (τ), Uµ(τ)

)
dτ ≤ 1

2

t∫
0

(
A(τ)Uµ(τ), Uµ(τ)

)
dτ +

γ

2ω

t∫
0

|F (τ)|2dτ,

2µ

t∫
0

∣∣(F (τ), U ′µ(τ)
)∣∣dτ ≤ µ2

t∫
0

∣∣U ′µ(τ)|2dτ +

t∫
0

∣∣F (τ)|2dτ,

µ

t∫
0

∣∣(A′(τ)Uµ(τ), Uµ(τ)
)∣∣dτ ≤ a0 δµ

ω

t∫
0

(
A(τ)Uµ(τ), Uµ(τ)

)
dτ.
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Thus

E(Uµ, t) ≤ E(Uµ, 0) +
(1

2
+
a0 δ µ

ω

) t∫
0

(
A(τ)Uµ(τ), Uµ(τ)

)
dτ+

(2.8) +µ2

t∫
0

∣∣U ′µ(τ)
∣∣2dτ +

(
1 +

γ

2ω

) t∫
0

∣∣F (τ)
∣∣2dτ, ∀t ≥ 0.

As

(2.9) µ2|U ′µ(t)|2 +
1

2
|Uµ(t)|2 + µ

(
Uµ(t), U ′µ(t)

)
≥ 1

3
µ2 |U ′µ(t)|2 +

1

8
|Uµ(t)|2, ∀µ ≥ 0,

then from (2.8) it follows that

µ2|U ′µ(t)|2 + |Uµ(t)|2 +

t∫
0

(
A(τ)Uµ(τ), Uµ(τ)

)
dτ ≤

≤ C
(
E(Uµ, 0) +

t∫
0

∣∣F (τ)|2 dτ
)
, ∀t ≥ 0, δ ∈ (0, 1], µ ∈ (0, µ0], µ0 = min

{
1;

ω

6a0

}
.

The last estimate implies

µ ||U ′µ||L∞(0,∞;H) + ||Uµ ||C([0,∞);H) +
∣∣∣∣A1/2(·)Uµ

∣∣∣∣
L2(0,∞;H)

≤

(2.10) ≤ CM, ∀µ ∈ (0, µ0], ∀δ ∈ (0, 1].

In what follows, let as observe that condition (H3) implies that A′(·)Uµ ∈ L2(0, T ;H)
for any T > 0. Then, from Theorem 1.1 it follows that function Vµ = U ′µ is the strong
solution to the problemµV

′′
µ (t) + V ′µ(s) + A(t)Vµ(t) = F ′(t)− A′(t)Uµ(t), t > 0,

Vµ(0) = u1, V ′µ(0) =
1

µ

(
f(0)− δu1 −A(0)u0

)
and Vµ ∈ W 2,2(0, T ;H)

⋂
L2(0, T ;V ), A(·)Vµ ∈ L2(0, T ;H) for any T > 0. Similarly as

was obtained the equality (2.4), we get

E(Vµ, t) = E(Vµ, 0) +

t∫
0

(
F ′(τ)− A′(τ)Uµ(τ), Vµ(τ) + 2µV ′µ(τ)

)
dτ+

+µ

t∫
0

(
A′(τ)Vµ(τ), Vµ(τ)

)
dτ, ∀t ≥ 0.

Integrating by parts, we have
t∫

0

(
A′(τ)Uµ(τ), V ′µ(τ)

)
dτ =

(
A′(t)Uµ(t), Vµ(t)

)
−
(
A′(0)Uµ(0), Vµ(0)

)
−

−
t∫

0

(
A′′(τ)Uµ(τ), Vµ(τ)

)
dτ −

t∫
0

(
A′(τ)Vµ(τ), Vµ(τ)

)
dτ, ∀t ≥ 0.
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Then, using (2.5), (2.6), (2.7) and (2.10), we get

2µ
∣∣∣ t∫

0

(
A′(τ)Uµ(τ), V ′µ(τ)

)
dτ
∣∣∣ ≤ a0 δ µ

ω

(∣∣A1/2(0)u0

∣∣2 +
∣∣A1/2(0)u1

∣∣2)+

+
a2

0 δ
2 µ

ω

(
Uµ(t), Uµ(t)

)
+ µ

(
A(t)Vµ(t), Vµ(t)

)
+

+
8 a0 δ

2 µ

ω

t∫
0

(
A(τ)Uµ(τ), Uµ(τ)

)
dτ +

a0 δ µ

ω

(δ
8

+ 2
) t∫

0

(
A(τ)Vµ(τ), Vµ(τ)

)
dτ ≤

≤ CM2 + µ
(
A(t)Vµ(t), Vµ(t)

)
+
a0 δ µ

ω

(δ
8

+ 2
) t∫

0

(
A(τ)Vµ(τ), Vµ(τ)

)
dτ, ∀t ≥ 0,

2

t∫
0

∣∣(A′(τ)Uµ(τ), Vµ(τ)
)∣∣dτ ≤ 8 a2

0 δ

ω2

t∫
0

(
A(τ)Uµ(τ), Uµ(τ)

)
dτ+

+
δ

8

t∫
0

(
A(τ)Vµ(τ), Vµ(τ)

)
dτ ≤ CM2 +

δ

8

t∫
0

(
A(τ)Vµ(τ), Vµ(τ)

)
dτ, ∀t ≥ 0,

t∫
0

∣∣(F ′(τ), Vµ(τ) + 2µV ′µ(τ)
)∣∣dτ ≤ (1 +

2 γ2

ω

) t∫
0

∣∣F ′(τ)
∣∣2 dτ+

+
1

8

t∫
0

(
A(τ)Vµ(τ), Vµ(τ)

)
dτ + µ2

t∫
0

∣∣V ′µ(τ)
∣∣2 dτ, ∀t ≥ 0.

Thus, for δ ∈ (0, 1] and µ ∈ (0, µ0] we have

E(Vµ, t) ≤ E(Vµ, 0) + µ
(
A(t)Vµ(t), Vµ(t)

)
+

(2.11) +
2

3

t∫
0

(
A(τ)Vµ(τ), Vµ(τ)

)
dτ + µ2

t∫
0

∣∣V ′µ(τ)
∣∣2dτ + CM2, ∀t ≥ 0.

As the inequality (2.9) is also true for Vµ and

E
(
Vµ, 0

)
≤ CM2, ∀δ ∈ (0, 1), ∀µ ∈ (0, µ0],

then from (2.11) it follows that

µ2|V ′µ(t)|2 + |Vµ(t)|2 +

t∫
0

(
A(τ)Vµ(τ), Vµ(τ)

)
dτ ≤

≤ CM2, ∀t ≥ 0, δ ∈ (0, 1], µ ∈ (0, µ0].

The last estimate implies

µ ||U ′′µ ||L∞(0,∞;H) + ||U ′µ ||C([0,∞);H) +
∣∣∣∣A1/2(·)U ′µ

∣∣∣∣
L2(0,∞;H)

≤

(2.12) ≤ CM, ∀µ ∈ (0, µ0], ∀δ ∈ (0, 1].

From (2.12), using the equation from (Pµ) we get∣∣∣∣A(·)Uµ
∣∣∣∣
L∞(0,∞;H)

≤
∣∣∣∣F ∣∣∣∣

L∞(0,∞;H)
+
∣∣∣∣U ′µ∣∣∣∣L∞(0,∞;H)

+ µ
∣∣∣∣U ′′µ ∣∣∣∣L∞(0,∞;H)

≤



Abstract linear second order differential equations... 239

(2.13) ≤ CM, ∀µ ∈ (0, µ0], ∀δ ∈ (0, 1].

Finally, using (2.10), (2.12) and (2.13), we obtain (2.3).
Lemma 2.1 is proved. �

In what follows for ε > 0 denote by

K(t, τ, ε) =
1

2
√
πε

(
K1(t, τ, ε) + 3K2(t, τ, ε)− 2K3(t, τ, ε)

)
, ∀ε > 0,

where
K1(t, τ, ε) = exp

{3t− 2τ

4ε

}
λ
(2t− τ

2
√
εt

)
,

K2(t, τ, ε) = exp
{3t+ 6τ

4ε

}
λ
(2t+ τ

2
√
εt

)
,

K3(t, τ, ε) = exp
{τ
ε

}
λ
( t+ τ

2
√
εt

)
, λ(s) =

∫ ∞
s

e−η
2

dη.

The properties of kernel K(t, τ, ε) are collected in the following lemma.

Lemma 2.2. [11] The function K(t, τ, ε) possesses the following properties:
(i) K ∈ C([0,∞)× [0,∞)) ∩ C2((0,∞)× (0,∞));

(ii) Kt(t, τ, ε) = εKττ (t, τ, ε)−Kτ (t, τ, ε), ∀t > 0, ∀τ > 0;
(iii) εKτ (t, 0, ε)−K(t, 0, ε) = 0, ∀t ≥ 0;

(iv) K(0, τ, ε) =
1

2ε
exp

{
− τ

2ε

}
, ∀τ ≥ 0;

(v) For every t > 0 fixed and every q, s ∈ N there exist constants C1(q, s, t, ε) > 0 and
C2(q, s, t) > 0 such that∣∣∂st ∂qτK(t, τ, ε)

∣∣ ≤ C1(q, s, t, ε) exp{−C2(q, s, t)τ/ε}, ∀τ > 0;

(vi) K(t, τ, ε) > 0, ∀t ≥ 0, ∀τ ≥ 0;
(vii) For every continuous function ϕ : [0,∞) → H with |ϕ(t)| ≤ M exp{γ t} the following

equality is true:

lim
t→0

∣∣∣ ∫ ∞
0

K(t, τ, ε)ϕ(τ)dτ −
∫ ∞

0

e−τϕ(2ετ)dτ
∣∣∣ = 0, for every ε ∈

(
0, (2 γ)−1

)
;

(viii) ∫ ∞
0

K(t, τ, ε)dτ = 1, ∀t ≥ 0,

(ix) Let q ∈ [0, 1]. Then∫ ∞
0

K(t, τ, ε) |t− τ |q dτ ≤ C εq/2
(
1 +
√
t
)q
, ∀ε > 0, ∀t ≥ 0;

(x) Let p ∈ (1,∞] and f : [0, ∞)→ H , f(t) ∈W 1,p(0,∞;H). Then∣∣∣f(t)−
∫ ∞

0

K(t, τ, ε)f(τ)dτ
∣∣∣ ≤

≤ C(p) ‖f ′‖Lp(0,∞;H)

(
1 +
√
t
) p−1

p ε(p−1)/2p, ∀ε > 0, ∀t ≥ 0.

Lemma 2.3. [11] Let us assume that the condition (H1) is fulfilled and the operators A(t) satisfy
conditions (H2) and (H3) with t ∈ [0,∞). If F ∈ L∞(0,∞;H), Uµ is the strong solution to
the problem (Pµ) with Uµ ∈ W 2,∞(0,∞;H) ∩ L∞(0,∞;V ), A(·)Uµ ∈ L∞(0,∞;H), then the
function wµ, defined by

wµ(s) =

∫ ∞
0

K(s, τ, µ)Uµ(τ) dτ,
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is the strong solution in H to the problemw′µ(s) + A(s)wµ(s) = F0(s, µ) +

∫ ∞
0

K(s, τ, µ)
[
A(s)− A(τ)

]
Uµ(τ)dτ, a.e. s > 0,

Wµ(0) = ϕµ,

F0(s, µ) =
1√
π

[
2 exp

{ 3s

4µ

}
λ
(√ s

µ

)
− λ
(1

2

√
s

µ

)]
δu1 +

∫ ∞
0

K(s, τ, µ)F (τ) dτ,

ϕµ =

∫ ∞
0

e−τ Uµ(2µτ) dτ.

Proof of Theorem 2.5. During the proof, we will agree to denote byC all constantsC(T, γ, a0, ω).
Consider the function f ∈W 1,2(0, T ;H). Define on [0,∞) the function f̃ as follows:

f̃(t) =


f(t), 0 ≤ t ≤ T,
2T − t
T

f(T ), T < t < 2T,

0, t ≥ 2T.

As

|f(t)|2 = |f(τ)|2 + 2

∫ t

τ

(
f(s), f ′(s)

)
ds ≤

≤ |f(τ)|2 +

∫ t

τ

(
|f(s)|2 + |f ′(s)|2

)
ds ≤ |f(τ)|2 + ||f ||2W 1,2(0,T ;H), 0 ≤ τ ≤ t ≤ T,

then integrating we get

T |f(t)|2 ≤
∫ T

0

|f(τ)|2dτ + T ||f ||2W 1,2(0,T ;H), ∀t ∈ [0, T ],

equivalent to

|f(t)| ≤
√

1 +
1

T
||f ||W 1,2(0,T ;H), ∀t ∈ [0, T ].

Using the last estimate we obtain

(2.14) ||f̃ ||W 1,2(0,∞;H) ≤ 2

√
T +

1

T 2
||f ||W 1,2(0,T ;H).

Also denote by

Ã(t) =


A(t), 0 ≤ t ≤ T,
A0(t), T < t ≤ a+ T,

A0(T + a), t ≥ a+ T,

where
A0(t) = A(T ) +A′(T )(t− T ) +

1

2
A′′(T )(t− T )2−

−
[ 2

3a
A′′(T ) +

1

a2
A′(T )

]
(t− T )3 +

[ 1

4a2
A′′(T ) +

1

2a3
A′(T )

]
(t− T )4,

and a = min
{

1,
ω

8a0

}
. If Ã(t) = Ã(δt), then, for each u, v ∈ V the function t 7→ (Ãu, v) is

twice continuously differentiable on [0,∞),(
Ã(t)u, u

)
≥ ω

2
||u||, ∀u ∈ V, ∀t ∈ [0,∞),

(2.15)
∣∣∣(Ã′(t)u, v)

∣∣∣+
∣∣∣(Ã′′(t)u, v)

∣∣∣ ≤ C δ||u|| ||v||, ∀u, v ∈ V, ∀t ∈ [0,∞), ∀δ ∈ (0, 1].
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If we denote by Ũµ the unique strong solution to the problem (Pµ), defined on (0,∞)

instead of (0, S) with S = T/δ, Ã instead of A, f̃ instead of f , and F̃ (s) = f̃(sδ) then, from
Lemma 2.1, it follows that Ũµ ∈ W 2,∞(0,∞;H)∩ W 1,2(0,∞;V ), Ã(·)Ũµ ∈ L∞(0,∞;H)

and Ũµ = Uµ on (0, S). Moreover,

||F̃ ||2W 1,2(0,∞;H) =

∞∫
0

[
|F̃ (s)|2 + |F̃ ′(s)|2

]
ds =

∞∫
0

[
|f̃(sδ)|2 +

∣∣∣df̃
ds

(sδ)
∣∣∣2] ds =

=

∞∫
0

[1

δ
|f̃(s)|2 + δ |f̃ ′(s)|2

]
ds ≤

(
δ +

1

δ

)
||f̃ ||2W 1,2(0,∞;H), ∀δ > 0.

Then the estimate (2.14) imply

||F̃ ||W 1,2(0,∞;H) ≤ 2
(
δ1/2 + δ−1/2

)√
T +

1

T 2
||f ||W 1,2(0,T ;H) ≤

(2.16) ≤ CMδ−1/2, ∀δ ∈ (0, 1].

Due to these estimates and Lemma 2.1, the following estimates

||Ã(·)Ũµ||L∞(0,∞;H) + ||Ũµ ||C1([0,∞;H) + ||Ã1/2(·)Ũµ||W 1,2(0,∞;H) ≤

(2.17) ≤ CM δ−1/2, ∀µ ∈ (0, µ0], ∀δ ∈ (0, 1],

are valid.
By Lemma 2.3, the function Wµ, defined by

Wµ(s) =

∞∫
0

K(s, τ, µ) Ũµ(τ) dτ,

is the strong solution in H to the problem
(2.18)

W ′µ(s) + Ã(s)Wµ(s) = F̃0(s, µ) +

∞∫
0

K(s, τ, µ)
[
Ã(s)− Ã(τ)

]
Ũµ(τ) dτ, a.e. s > 0,

Wµ(0) = ϕµ,

where

F̃0(s, µ) = δf0(s, µ)u1 +

∞∫
0

K(s, τ, µ) F̃ (τ) dτ,

f0(s, µ) =
1√
π

[
2 exp

{ 3s

4µ

}
λ
(√ s

µ

)
− λ
(1

2

√
s

µ

)]
,

ϕµ =

∞∫
0

e−τ Ũµ(2µτ) dτ.

Using the property (x) from Lemma 2.2 and (2.17), we obtain that

||Ũµ −Wµ||C([0, s];H) ≤ CMµ1/4 δ−1/2
√

1 +
√
s ≤

(2.19) ≤ CM ε1/4

δ5/4
, ∀ε > 0, ∀δ ∈ (0, 1], ∀s ∈ [0, S].
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Denote byR(s, µ) = L̃(s)−Wµ(s), where L̃ is the strong solution to the problem (P0) with
f̃ instead of f, T = ∞ and Wµ is the strong solution of (2.18). Then, due to Theorem 1.2,
R(·, µ) ∈W 1,2(0,∞; H) and R is the strong solution in H to the problem

R′(s, µ) + Ã(s)R(s, µ) = F(s, µ)−
∞∫

0

K(s, τ, µ)
[
Ã(s)− Ã(τ)

]
Ũµ(τ) dτ, a.e. t > 0,

R(0, µ) = u0 − ϕµ,

where

(2.20) F(s, µ) = F̃ (s)−
∞∫

0

K(s, τ, µ)F̃ (τ) dτ − δ f0(s, µ)u1.

Taking the inner product in H by R and then integrating, we obtain

|R(s, µ)|2 + 2

s∫
0

∣∣∣Ã1/2(ξ)R(ξ, µ)
∣∣∣2 dξ ≤ |R(0, µ)|2 + 2

s∫
0

|F(ξ, µ)| |R(ξ, µ)| dξ−

(2.21) −2

s∫
0

∞∫
0

K(ξ, τ, µ)
([

Ã(ξ)− Ã(τ)
]
Ũµ(τ), R(ξ, µ)

)
dτdξ, ∀s ≥ 0.

Using condition (2.15), property (ix) from Lemma 2 and (2.17), we get
s∫

0

∞∫
0

K(ξ, τ, µ)
∣∣∣([Ã(ξ)− Ã(τ)

]
Ũµ(τ), R(ξ, µ)

)∣∣∣ dτdξ ≤
≤ C δ1/2M

s∫
0

||R(ξ, µ)||
∞∫

0

K(ξ, τ, µ) |ξ − τ | dτ dξ ≤

≤ C δ1/2 µ1/2M
s∫

0

∣∣∣Ã1/2(ξ)R(ξ, µ)
∣∣∣ (1 +

√
ξ) dξ ≤

≤ C δ µM2

s∫
0

(1 +
√
ξ )2 dξ +

s∫
0

∣∣∣Ã1/2(ξ)R(ξ, µ)
∣∣∣2 dξ ≤

≤ CM2 ε

δ3
+

s∫
0

∣∣∣Ã1/2(ξ)R(ξ, µ)
∣∣∣2 dξ, ∀s ∈ [0, S], ∀ε ∈ (0, µ0δ

2], ∀δ ∈ (0, 1].

Then from (2.21) it follows that

|R(s, µ)|2 +

s∫
0

∣∣∣Ã1/2(ξ)R(ξ, µ)
∣∣∣2 dξ ≤ |R(0, µ)|2 + CM2 ε

δ3
+

+2

s∫
0

|F(ξ, µ)| |R(ξ, µ)| dξ, ∀s ∈ [0, S], ∀ε ∈ (0, µ0δ
2], ∀δ ∈ (0, 1].
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Applying Lemma of Brézis (see, e.g., [9] ), we get

|R(s, µ)|+

 s∫
0

∣∣∣A1/2R(ξ, µ)
∣∣∣2 dξ

1/2

≤

(2.22) ≤ C
(
|R(0, µ)|+M ε1/2

δ3/2
+

s∫
0

|F(ξ, µ)| dξ
)
, ∀s ∈ [0, S], ∀ε ∈ (0, µ0δ

2], ∀δ ∈ (0, 1].

Using (2.17), we obtain

∣∣R(0, µ)
∣∣ ≤ ∞∫

0

e−τ
∣∣∣Ũµ(2µτ)− u0

∣∣∣ dτ ≤ ∞∫
0

e−τ
2µτ∫
0

∣∣Ũ ′µ(ξ)
∣∣ dξ dτ ≤

(2.23) ≤ C µM δ−1/2 = CM ε

δ5/2
, ∀ε ∈ (0, µ0 δ

2], ∀δ ∈ (0, 1].

In what follows, we will estimate
∣∣F(s, µ)

∣∣. Using the property (x) from Lemma 2.2 and
(2.16), we have∣∣∣F̃ (s)−

∞∫
0

K(s, τ, µ) F̃ (τ) dτ
∣∣∣ ≤ C‖F̃ ′‖L2(0,∞ ;H)

(
1 +
√
s
) 1

2µ
1
4 ≤

(2.24) ≤ CM ε1/4

δ5/4
, ∀µ > 0, ∀s > 0.

Since eξλ(
√
ξ) ≤ C, ∀ξ ≥ 0, the estimates

s∫
0

e3ξ/4µλ
(√

ξ/µ
)
dξ = µ

s/µ∫
0

e3 ξ/4 λ
(√

ξ
)
dξ ≤ C µ

∞∫
0

e−ξ/4 dξ ≤ Cµ, ∀s ≥ 0,

s∫
0

λ
(1

2

√
ξ

µ

)
dξ ≤ µ

∞∫
0

λ
(1

2

√
ξ
)
dξ ≤ C µ, ∀s ≥ 0, ∀µ > 0,

hold, then

(2.25)
∣∣∣δ s∫

0

f0(ξ, µ)u1dξ
∣∣∣ ≤ C δµ|u1| ≤ CM

ε

δ
, ∀ε > 0, ∀δ > 0, ∀s ≥ 0.

Using (2.24) and (2.25), from (2.20), we obtain
s∫

0

∣∣F(ξ, µ)
∣∣ dξ ≤ s∫

0

∣∣∣F̃ (ξ)−
∞∫

0

K(ξ, τ, µ) F̃ (τ) dτ
∣∣∣dξ + CM ε

δ
≤

(2.26) ≤ CM
(
S
ε1/4

δ5/4
+
ε

δ

)
≤ CM

(ε1/4

δ9/4
+
ε

δ

)
, ∀s ∈ [0, S], ∀ε > 0, δ > 0.

From (2.22), using (2.23) and (2.26), we get the estimate

(2.27) ||R||C([0, S];H) ≤ CM
ε1/4

δ9/4
, ∀ε ∈ (0, µ0 δ

2], ∀δ ∈ (0, 1].
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Consequently, from (2.19) and (2.27), we deduce

||Ũµ − L̃||C([0,S];H) ≤ ||Ũµ −Wµ||C([0,S];H) + ||R||C([0,S];H) ≤

(2.28) ≤ CM ε1/4

δ9/4
, ∀ε ∈ (0, µ0 δ

2], ∀δ ∈ (0, 1].

Since Uµ(s) = Ũµ(s), L(s) = L̃(s), for all s ∈ [0, S], Uµ(s) = uεδ(δ s) and L(s) = lδ(δ s),
from (2.28) we get

(2.29) ||uεδ − lδ||C([0,T ];H) ≤ CM
ε1/4

δ9/4
, ∀ε ∈ (0, µ0 δ

2], ∀δ ∈ (0, 1].

In what follows, let us denote by R1(t, δ) = lδ(t) − v(t) − hδ(t), where lδ is the solution
to the problem (Pδ), v is the solution to the problem (P0) and hδ is the solution to the
problem {

δh′δ(t) +A(t)hδ(t) = 0, t ∈ (0, T ),

hδ(0) = u0 −A−1(0)f(0).

Due to Theorem 1.2 and condition (H3), from the last statements, we deduce that R1 is
the strong solution to the problem{

δR′1(t, δ) +A(t)R1(t, δ) = −δA−1(t)
(
f ′(t)−A′(t)A−1(t) f(t)

)
, t ∈ (0, T ),

R1(0) = 0.

Taking the inner product in H by R1 and then integrating, we obtain

δ |R1(t, δ)|2 + 2

t∫
0

∣∣∣A1/2(τ)R1(τ, δ)
∣∣∣2 dτ =

(2.30) −2δ

t∫
0

(
A−1(τ)

(
f ′(τ)−A′(τ)A−1(τ) f(τ)

)
, R1(τ, δ)

)
dτ, t ∈ (0, T ).

Using conditions (H1), (H2) and (H3), we get

2δ

t∫
0

∣∣(A−1(τ) f ′(τ), R1(τ, δ)
)∣∣ dτ ≤ 2 δ

γ

ω

t∫
0

|f ′(τ)| |R1(τ, δ)| dτ ≤

≤ 1

2

t∫
0

|A1/2R1(τ, δ)|2 dτ +
2δ2γ3

ω3

t∫
0

|f ′(τ)|2 dτ

and

2δ

t∫
0

∣∣(A′(τ)A−1(τ)f(τ), A−1(τ)R1(τ, δ)
∣∣ dτ ≤ 2δa0

t∫
0

||A−1(τ)f(τ)||||A−1(τ)R1(τ, δ)||dτ ≤

≤ 1

2

t∫
0

∣∣∣A1/2R1(τ, δ)
∣∣∣2 dτ +

2δ2 a2
0 γ

3

ω5

t∫
0

|f(τ)|2 dτ.

Then from (2.30) we obtain

δ |R1(t, δ)|2 ≤ CM2 δ2, ∀t ∈ [0, T ], ∀δ ∈ (0, 1].
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Consequently, we get

(2.31) |R1(t, δ)| ≤ CM
√
δ, ∀t ∈ [0, T ], ∀δ ∈ (0, 1].

Thus, the estimate (2.1) is a simple consequence of (2.29) and (2.31). Theorem 2.5 is proved.
�

Remark 2.1. From estimate (2.1) it follows that ||uεδ − v||C([0,T ];H) → 0 only if u0 −
A−1(0)f(0) = 0. In the opposite case the solution uεδ has a singular behavior relative
to parameters ε and δ. In the neighbourhood of t = 0 this behavior is defined by the
boundary layer function hδ , which is solution to the problem (2.2).

Remark 2.2. If, in conditions of Theorem 2.5, f = 0, then v = 0, R1 = 0, and lδ = hδ .
Consequently, the estimate (2.1) in this case takes the form

||uεδ − lδ||C([0,T ];H) ≤ C
(
|A(0)u0|+ |A1/2(0)u1|

) ε1/4

δ5/4
, ∀ε ∈ (0, µ0 δ

2], ∀δ ∈ (0, 1].

Finally, let us consider the following example. Let Ω ⊂ Rn be an open bounded set with
C1 boundary ∂Ω. In the real Hilbert space L2(Ω) we consider the following boundary-
value problem:

(2.32)


ε ∂2

t uεδ + δ ∂tuεδ +A(x, t, ∂x)uεδ = f(x, t), x ∈ Ω, t ∈ (0, T ),
uεδ(x, 0) = u0(x), ∂t uεδ(x, 0) = u1(x), x ∈ Ω,
uεδ
∣∣
∂Ω

= 0, t ∈ [0, T ),

where ε > 0 and δ are small positive parameters, uεδ, f : [0, T )→ L2(Ω) and A(x, t, ∂x), is
defined as follows:

D(A) = H2(Ω) ∩H1
0 (Ω),

A(x, t, ∂x)u(x) = −
n∑

i,j=1

∂xi

(
aij(x, t)∂xju(x, t)

)
+ a(x, t)u(x, t), u ∈ D(A).

In this case the corresponding problem (P0) takes the form:

(2.33)
{
A(x, t, ∂x)v(x, t) = f(x, t), x ∈ Ω, t ∈ (0, T ),
v
∣∣
∂Ω

= 0, t ∈ [0, T ).

Let us assume that the coefficients aij and a satisfy the following conditions:

(2.34)


aij , a ∈ C2

(
Ω× [0, T ]

)
, a(x, t) ≥ 0, ∀(x, t) ∈ Ω× [0, T ],

aij(x, t) = aji(x, t), ∀i, j = 1, n, ∀(x, t) ∈ Ω× [0, T ],
n∑

i,j=1

aij(x, t) ξi ξj ≥ ω ||ξ||2, ∀ξ ∈ Rn, ∀(x, t) ∈ Ω× [0, T ], ω > 0.

It is not difficult to see that conditions (2.34) provide the achievement of conditions (H1),
(H2) and (H3). Consequently, from Theorem 2.5 we obtain the following theorem.

Theorem 2.6. Let T > 0. Let us assume that the conditions (2.34) are fulfilled. If
u0, u1 ∈ H2(Ω)

⋂
H1

0 (Ω) and f ∈W 1,2(0, T ;L2(Ω)), then there exists constants
C(T, γ, a0, ω) > 0 and µ0 =

{
1; ω

6a0

}
, such that

||uεδ − v − hδ||C([0,T ];L2(Ω)) ≤ CM
(ε1/4

δ9/4
+
√
δ
)
, ∀ε ∈ (0, µ0 δ

2], ∀δ ∈ (0, 1],

where uεδ and v are strong solutions to the problems (2.32) and (2.33), respectively,

||hδ(t)||L2(Ω) ≤ CM e−δt/ω, ∀t ∈ [0, T ],

M = ||u0||H2(Ω) + ||u1||H1
0 (Ω) + ||f ||W 1,2(0,T ;L2(Ω)).
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