
CARPATHIAN J. MATH.
33 (2017), No. 1, 01 - 08

Online version at http://carpathian.ubm.ro

Print Edition: ISSN 1584 - 2851 Online Edition: ISSN 1843 - 4401

Stability in non-autonomous periodic systems with grazing
stationary impacts

MARAT AKHMET and AYSEGUL KIVILCIM

ABSTRACT. This paper examines impulsive non-autonomous periodic systems whose surfaces of disconti-
nuity and impact functions are not depending on the time variable. The W−map which alters the system with
variable moments of impulses to that with fixed moments and facilitates the investigations, is presented. A par-
ticular linearizion system with two compartments is utilized to analyze stability of a grazing periodic solution.
A significant way to keep down a singularity in linearizion is demonstrated. A concise review on sufficient
conditions for the linearizion and stability is presented. An example is given to actualize the theoretical results.

1. INTRODUCTION

Grazing occurs whenever the solution of the impacting system meets the surface of
discontinuity with zero velocity [8] or tangentially [3, 7, 10]. Our aim in this paper is
to demonstrate regular behavior around the grazing solutions of the system as a differ-
ent than the existing results which consider the complexity such as bifurcation and chaos
around the grazing [5, 8, 10]. For this reason, by considering the geometry of the near so-
lution with respect to the surfaces of discontinuity a special linearizion system is obtained
around a periodic solution. To consider the application results, one can take into account
the paper [9], where such systems can be applied for the analysis of the neural networks,
where grazing is seen as a boundary between the firing and non-firing stages.

2. THE GRAZING SOLUTIONS

Let R, N and Z be the sets of all real numbers, natural numbers and integers, respec-
tively. Consider the open connected and bounded set G ∈ Rn. Let Φ : G → R be a
function, differentiable up to second order. S = Φ−1(0) is a closed subset of G.

Let x(θ−) and x(θ+) be the left and right limits of a function x(t) at the moment
θ, respectively. Define ∆x(θ) := x(θ+)− x(θ−) as the jump operator for x(t) such that
x(θ) ∈ S and t = θ is a moment when the solution meets the surface of discontinuity.

In this paper, we take into account the following system

(2.1)
x′ = f(t, x),

∆x|x∈S = I(x),

where (t, x) ∈ R × G, continuous function f(t, x) is continuously differentiable with re-
spect to x up to second order and Γ = {(t, x)|Φ(x) = 0} ⊆ R × S is the surface of discon-
tinuity. The system is with stationary impulse conditions, since the differentable function
I(x) and the surface S do not depend on time.

For the convenience in notation, let us separate the differential equation part of the
system (2.1)
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(2.2) y′ = f(t, y).

Assume that a solution x0(t) = x(t, t0, x0), of (2.1) has discontinuities at moments t =
θi, i ∈ Z. Set the gradient vector of Φ with respect to x as ∇Φ(x). The normal vec-
tor of Γ at a meeting moment, t = θi, of the solution x0(t) can be determined as −→n =
(0,∇Φ(x0(θi))) ∈ Rn+1. For tangency, vectors −→n and (1, f(θi, x0(θi))) should be perpen-
dicular. That is, 〈∇Φ(x0(θi)), f(θi, x0(θi))〉 = 0, where 〈, 〉 is the usual dot product.

In what follows, let ‖ · ‖ be the Euclidean norm, that is for a vector x = (x1, x2, . . . , xn)

in Rn, the norm is equal to
√
x2

1 + x2
2 + . . .+ x2

n.
Consider a functionH(t, x) := 〈∇Φ(x), f(t, x)〉,with (t, x) ∈ R×S.A point (θi, x0(θi)) is

a grazing point and θi a grazing moment for the solution x0(t) of (2.1) ifH(θi, x0(θi)) = 0 and
I(x0(θi)) = 0. The solution x0(t) of (2.1) is grazing if it has a grazing point (θi, x0(θi)). The
moment θi is the grazing moment of the solution x0(t). A point (θi, x0(θi)) is a transversal
point and θi a transversal moment for x0(t) if H(θi, x0(θi)) 6= 0.

In what follows, the following condition will be needed.
(H1) For each grazing point (θi, x0(θi)) there is a number δ > 0 such that H(t, x) 6= 0

and J(x) /∈ S if 0 < |t− θi| < δ and 0 < ‖x− x0(θi)‖ < δ.

It is also clear that function H(t, x) 6= 0 near a transversal point.
Consider a solution x(t) = x(t, θi, x0 + ∆x) of (2.1) with a small ‖∆x‖. Due to the

geometrical reasons caused by the tangency at the grazing point, this solution may not
intersect the surface of discontinuity near (θi, x0(θi)). So, there are two different behaviors
of it with respect to the surface of discontinuity, they are:

(N1) The solution x(t) intersects the surface of discontinuity Γ at a moment near to θi.
(N2) There is no intersection moment of x(t) close to θi.

2.1. B-equivalence to a system with fixed moments of impulses. Consider the solution
x0(t) : I → Rn, I ⊆ R, of (2.1). Assume that all discontinuity points θi of x0(t), i ∈ A,
are interior points of I, whereA is an interval in Z. There exists a positive number r, such
that r-neighborhoods Gi(r) of (θi, x0(θi)) do not intersect each other. Fix i ∈ A and let
ξ(t) = x(t, θi, x), (θi, x) ∈ Gi(r), be a solution of (2.2), which satisfies (N1), and τi = τi(x)
the meeting time of ξ(t) with S and ψ(t) = x(t, τi, ξ(τi) + J(ξ(τi))) another solution of
(2.2). Denote Wi(x) = ψ(θi)− x and one can define the map Wi(x) as

(2.3) Wi(x) =

∫ τi

θi

f(s, ξ(s))ds+ J(x+

∫ τi

θi

f(s, ξ(s))ds) +

∫ θi

τi

f(s, ψ(s))ds.

It is a map of an intersection of the plane t = θi with Gi(r) into the plane t = θi. Let us
present the following system of differential equations with impulses at fixed moments,

(2.4)
y′ = f(t, y),

∆y|t=θi = Wi(y(θi)),

where f is the same as the function in system (2.4) and the map Wi, i ∈ A, is defined
by equation (2.3) if x(t) satisfies condition (N1). Otherwise, if a solution x(t) satisfies
(N2), then we assume that it admits the discontinuity moment θi with zero jump such
that Wi(x(θi)) = 0. Let us introduce the sets Fr = {(t, x)|t ∈ I, ‖x − x0(t)‖ < r},
and G+

i (r), i ∈ A, an r− neighborhood of the point (θi, x0(θi+)). Write Gr = F1 ∪
(∪i∈AGi(r))∪ (∪i∈AG+

i (r)). Take r sufficiently small so that Gr ⊂ R×G. Denote by G(h)
an h-neighborhood of x0(0). Systems (2.1) and (2.4) are B−equivalent in Gr [1], i.e. solu-
tions of the system with the same initial data coincide on their common domains except
possibly intervals near θi. The complete description of the equivalence is given in [1].
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3. LINEARIZATION AROUND GRAZING SOLUTIONS

Consider a grazing solution x0(t) = x(t, 0, x0), x0 ∈ G, of (2.1) which was introduced
in the last section. We will demonstrate that one can write the variational system for the
solution as follows:

(3.5)
u′ = A(t)u,

∆u|t=θi = Biu(θi),

where the matrix A(t) ∈ Rn×n of the form A(t) = ∂f(t,x0(t))
∂x . We call the second equation

in (3.5) as the linearization at a moment of discontinuity or at a point of discontinuity. It is dif-
ferent for transversal and grazing points. However, the first differential equation in (3.5)
is common for all type of solutions. The matrices Bi will be described in the remaining
part of the paper for each type.

Linearization at the transversal point is analyzed completely in Chapter 6, [1]. The B−
equivalent system (2.4) is involved in the analysis, since the solution x0(t) satisfies also
the equation (2.4) at all moments of time, and near solutions do the same for all moments
except small neighborhoods of the discontinuity moment, θi. Thus, it is easy to see that the
system of variations around x0(t) for (2.1) and (2.4) are identical. Let x0(θi) be a transver-
sal point. We consider the reduced B-equivalent system and use the functions τi(x) and
Wi(x), defined by equation (2.3), are presented in Subsection 2.1 for linearization. Differ-
entiating Φ(x(τi(x))) = 0, we have

(3.6)
∂τi(x0(θi))

∂x0j
= −

〈Φx(x0(θi)),
∂x0(θi)
∂x0j

〉
〈Φx(x0(θi)), f(θi, x0(θi))〉

, j = 1, . . . , n.

The Jacobian Wix(x0(θi)) = [∂Wi(x0(θi))
∂x01

, ∂Wi(x0(θi))
∂x02

, . . . , ∂Wi(x0(θi))
∂x0n

] is evaluated by the
following expression
(3.7)
∂Wi(x0(θi))

∂x0j
= (f(θi, x0(θi))−f(θi, x0(θi)+I(x0(θi))))

∂τi
∂x0j

+
∂I

∂x0
(ej+f(θi, x0(θi))

∂τi
∂x0j

),

where ej = (0, . . . , 1︸ ︷︷ ︸
j

, 0, . . . , 0), j = 1, 2, . . . , n. Next, considering the second equation

in (2.4) and using mean value theorem, we obtain that ∆(x(θi) − x0(θi)) = Wi(x(θi) −
x0(θi)) = Wix(x0(θi))(x(θi) − x0(θi)) + O(‖x(θi) − x0(θi)‖). From that, it is seen that the
linearization at a transversal moment is determined with the matrix Bi = Wix(x0(θi)).

By means of these discussions, one can conclude that the matrix Bi in (3.5) can be in
the following form

Bi =

{
On if (N1) is valid,
Wix if (N2) is valid,

(3.8)

where On denotes the n × n zero matrix. There may appear singularity in Wix for the
linearization at a grazing point. To overcome the singularity, the following conditions
will be needed.

(A1) The map Wi(x) in (2.3) is differentiable if x = x0(θi).
(A2) The inequality τi(x) < θi+1 − θi − ε is true for some positive ε on a set of points

near x0(θi), which satisfy condition (N1).

Denote by x̄(t), j = 1, 2, . . . , n, a solution of (2.4) such that x̄(t0) = x0 + ∆x, ∆x =
(ξ1, ξ2, . . . , ξn), and let ηj be the moments of discontinuity of x̄(t).

The following conditions are required in what follows.
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(A) For all t ∈ I\ ∪i∈A (̂ηi, θi], the following equality is satisfied

x̄(t)− x0(t) =

n∑
i=1

ui(t)ξi +O(‖∆x‖),(3.9)

where ui(t) ∈ PC(I, θ) and I is a finite subset of R.
(B) There exist constants νij , j ∈ A, such that

ηj − θj =

n∑
i=1

νijξi +O(‖∆x‖);(3.10)

(C) The discontinuity moment ηj of the near solution x̄(t) approaches to the disconti-
nuity moment θj , j ∈ A, of grazing one as ξ tends to zero.

If x0(θi) is a transversal point and the conditions (A) and (B) are valid, then the solu-
tion x̄(t) has a linearization with respect to solution x0(t). If the point x0(θi) is grazing, the
condition (B) may not be true. So, to obtain a linearization at a grazing point, the condi-
tions (A) and (B) or (A) and (C) should be validated. The solution x0(t) is differentiable
with respect to the initial value x0 on I, t0 ∈ I, if for each solution x̄(t) with sufficiently
small ∆x the linearization exists. The functions ui(t) and νij depend on ∆x and uniformly
bounded on a neighborhood of x0.

The systems (2.1) and (2.4) are B−equivalent, that is why it is acceptable to linearize
system (2.4) instead of system (2.1) around x0(t) = x(t, t0, x0), which is a solution of both
systems. Thus, by applying linearization to (2.4), the system (3.5) is obtained. Addition-
ally, the linearization matrix Bi in (3.5) for the grazing point also has to be defined by the
formula (3.8), where Wix exists by condition (A1).

4. STABILITY OF GRAZING PERIODIC SOLUTIONS

Assume additionally that f(t, x) in (2.1) is T− periodic in time, i.e. f(t+T, x) = f(t, x),
for T > 0, with a grazing T−periodic solution Ψ(t) : R+ → D and θi, i ∈ Z, be the points
of discontinuity satisfy θi+p = θi + T, p is a natural number. In what follows, we assume
the validity of the next condition.

(A3) For each ∆x ∈ Rn, the variational system for the near solution x(t) = x(t, t0, x0 +
∆x) to Ψ(t) is one of the following m periodic homogeneous linear impulsive
systems

(4.11)
u′ = A(t)u,

∆u|t=θi = B
(j)
i u,

such that B(j)
i+p = B

(j)
i , i ∈ Z, j = 1, . . . ,m, where the number m cannot be larger

than 2k, k denotes the number of grazing point in the interval [0, T ].

The collection of m systems (4.11) is the variational system around the periodic grazing so-
lution. For each of these systems, we find the matrix of monodromy, Uj(T ) and denote
corresponding Floquet multipliers by ρ(j)

i , i = 1, . . . , n, j = 1, . . . ,m. Next, the following
assumption is needed,

(A4) |ρ(j)
i | < 1, i = 1, . . . , n, for each j = 1, . . . ,m.

Theorem 4.1. Under the assumption that conditions (H1), (A1) − (A4) are valid. Then, T−
periodic solution Ψ(t) of (2.1) is asymptotically stable, if the Lipschitz constant l is sufficiently
small.
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Proof. Let θi, i ∈ Z, be the discontinuity moments of Ψ(t). There exists a natural number
p, such that θi+p = θi+T for all i ∈ Z. Because of conditions (H1) andB−differentiability
of Ψ(t), there exists continuous dependence on initial data and consequently there exists
a neighborhood of (θi, x0(θi)) such that any solutions which starts in the set will have
moments of discontinuity which constitute a B− sequence [1] with difference between
neighbors approximately equal to the distance between corresponding neighbor moments
of discontinuity of the periodic solution Ψ(t). For this reason, the variational system for
Ψ(t), can be determined through B-reduced system. �

On the basis of above discussion, the variational system takes the form

(4.12)
z′ = A(t)z + φ(t, z),

∆z|t=θi = B
(j)
i z + ψi(z), j = 1, 2, . . . ,m,

where φ(t, z) = [f(t,Ψ(t)+z)−f(t,Ψ(t))]−A(t)z and ψi(z) = Wi(Ψ(θi)+z)−Wi(Ψ(θi))−
B

(j)
i z, are continuous functions, and matrices B(j)

i satisfy condition (A4). Denote Yj(t),
j = 1, 2, . . . ,m the fundamental matrix of (4.13) adjoint to (4.12) linear homogeneous
system

(4.13)
y′ = A(t)y,

∆y|t=θi = B
(j)
i y.

Due to the conditions (A3) and (A4), there exist numbers K > 0 and γ > 0 such that
for all j = 1, 2, . . . ,m, the following estimate holds

(4.14) ‖Yj(t, s)‖ ≤ Ke−γ(t−s).

Any solution of (4.12) neighbor to the trivial one can be written as one of the following
form

(4.15) z(t, z0) = Z(t, t0)z0 +

t∫
t0

Yj(t, s)φ(s, z(s, z0))ds+
∑

t0≤θi<t

Yj(t, θi)ψi(z(θi, z0)).

The functions φ(t, z) and ψ(t, z) satisfy the inequalities

(4.16) ‖φ(t, z)‖ ≤ l‖z‖, ‖ψi(z)‖ ≤ l‖z‖,
and for all t > t0, ‖z‖ < k, k > 0. There exists positive θ such that the inequality θi+1−θi >
θ is true. Using inequalities (4.14), (4.16), and Gronwall-Bellman Lemma [1], we obtain the
following estimate ‖z(t, t0)‖ ≤ Ke−(γ−Kl− 1

θ ln(1+kl))(t−t0)‖z0‖. For sufficiently small l, it
is true that γ −Kl − 1

θ ln(1 + kl) > 0. The theorem is proved.

Example 4.1. In this example, we consider the following non-autonomous system of dif-
ferential equation with variable moments of impulses

(4.17)

x′1 = x2,

x′2 = −0.002x2 − x1 − 1− 0.002 sin(t),

x′3 = −0.2x3 − 0.1x2,

∆x2|x∈S = −(1 + 0.9x2)x2,

where x = (x1, x2, x3) and the discontinuity surface S is written as S = {(x1, x2, x3)|Φ(x) =
x1 = 0}. It has a periodic solution Ψ(t) = (−1 + cos(t),− sin(t), x3(t)), where x3(t) is the
periodic solution of the third system in (4.17). Consider the function H(t, x) at the point
(θi,Ψ(θi)) = (2πi,Ψ(2πi)), i ∈ Z. It is true that H(2πi,Ψ(2πi)) = 0, J(Ψ(2πi)) = 0 and
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H(t, x) 6= 0 for some number δ > 0, such that |t−2πi| < δ and ‖x−Ψ(2πi)‖ < δ. This vali-
dates (H1).Moreover, fix some θi = 2πi then we can say that (θi,Ψ(θi)) = (2πi,Ψ(2πi)) =
(2πi, 0, 0) is a grazing point. Since the point (2πi, 0, 0), i ∈ Z, belongs to Ψ(t), then we can
say that Ψ(t) is a grazing periodic solution. Additionally, all points (2πi,Ψ(2πi)), i ∈ Z
are grazing. In the system (4.17), we will take into first two equations together with the
jump equation to analyze the asymptotic stability of the grazing cycle of it. Because, the
equation without perturbation −0.1x2, is itself asymptotically stable. We will conclude at
the end whole system have asymptotically stable grazing periodic solution.

Next, let us continue with the linearization. Because the point (2πi, 0, 0) is a grazing
point, we will consider the linearization by applying formulas (3.6) and (3.8). By means
of condition (H1), it is true that the solutions intersect the surface of discontinuity trans-
versely near the grazing one. Denote the grazing point by x∗ = (Ψ(0)) = (0, 0). Assume
that x(t) = x(t, 0, x∗ + ∆x), ∆x = (∆x1,∆x2) is not a grazing solution. That is, the
point x∗ + ∆x is not a point of Ψ(t). So, the meeting point x̄ = (x̄1, x̄2) = (x1(ξ, 0, (x∗ +
∆x)), x2(ξ, 0, (x∗ + ∆x)), is transversal one. Moreover, let ξ be the meeting moment with
Γ. It is clear x̄1 = 0 and x̄2 > 0. Due to the transversality of x̄, the first component ∂τi(x̄)

∂x1

of the gradient ∇τi(x̄) can be determined by formula (3.6) and it is ∂τi(x̄)
∂x1

= − 1
x̄2
. At the

grazing point, the derivative is evaluated as ∂τi(x
∗)

∂x1
= −∞.

To find a linearization, let ξ(t) = x(t, θi, x) be a solution of first two equations in (4.17)
and τi = τi(x) be meeting time of it, and ψ(t) = x(t, τi, ξ(τi) + J(ξ(τi)) be an another
solution of them. Taking derivative of the formula (2.3) with respect to x(t), we get

∂Wi(x)

∂x0
1

=
τi(x)∫
θi

∂f(s,x(s))
∂x

∂x(s)
∂x0

1
ds+ f(s, x(s))∂τi(x)

∂x0
1

+ Jx(x)(e1 + f(s, x(s))∂τi(x)
∂x0

1
)

+f(s, ψ(s))∂τi(x)
∂x0

1
+

θi∫
τi(x)

∂f(s,ψ(s))
∂x

∂x(s)
∂x0

1
ds,(4.18)

where e1 = (1, 0)T , T denotes the transpose of a matrix. Considering the formula (3.6) for
the point x̄ = (x̄1, x̄2), the derivative ∂τi(x̄)

∂x0
1

can be evaluated as ∂τi(x̄)
∂x0

1
= − 1

x̄2
. Substituting

x = x̄ to (4.18), and considering (4.17) with it, we have

∂Wi(x̄)
∂x0

1
=

[
Rx̄2 − 1

0.002(1−Rx̄2) + 2R(0.002x̄2 − x̄1 − 1− 0.002 sin(ξ))

]
.(4.19)

Similarly, differentiating (2.3) with x(t) we get

∂Wi(x)
∂x0

2
=

τi(x)∫
θi

∂f(s,x)
∂x

∂x(s)
∂x0

2
ds+ f(s, x(s))∂τi(x)

∂x0
2

+ Jx(x)(e2 + f(s, x(s))∂τi(x)
∂x0

2
)

+f(s, ψ(s))∂τi(x)
∂x0

2
+

θi∫
τi(x)

∂f(s,ψ(s))
∂x

∂x(s)
∂x0

2
ds,(4.20)

where e2 = (0, 1)T .

Evaluating ∂τi(x̄)
∂x0

2
with (3.6) at the transversal point x̄ = (x̄1, x̄2), then we get ∂τi(x̄)

∂x0
2

= 0.

Considering the right hand side of (4.20) at the point x = x̄, we obtain

∂Wi(x̄)

∂x0
2

=

[
0

−2Rx̄2

]
.(4.21)
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Joining (4.19) and (4.21), the matrix Wix(x̄) can be obtained as

Wix(x̄) =

[
Rx̄2 − 1 0

0.002(1−Rx̄2) + 2R(0.002x̄2 − x̄1 − 1− 0.002 sin(ξ)) −2Rx̄2

]
.(4.22)

Taking into account formula (4.22), we can say that the map Wi(x) is differentiable at
x = x∗. Thus, condition (A1) is true. The meeting moment τi(x) can not been taken into
account whenever it satisfies (N1). So, to validate (A2), we should only consider those
which satisfies (N2). To verify it, let us take into account a solution of the first equation in
(4.17) which starts at the point x̄ = (0, x̄2) ∈ S. The solution of (4.17) at x̄ is the form

x(t, 0, x̄) =
x̄2√

1− (0.001)2
exp(0.001t) sin(

√
1− (0.001)2t).

This solution meets the surface S at the moment t̄ = 2π√
1−(0.001)2

, again. Thus, the meeting

moment τi(x) = t̄ < 2π − ε, where ε is a small positive number and this verifies (A2).
We apply it when x→ x∗, as well as ξ → 2π, where 2π is the first grazing discontinuity

point of periodic solution Ψ(t), then we obtain that

Wix(x∗) =

[
−1 0

0.002− 2R 0

]
.(4.23)

Consequently, the function Wi(x) is differentiable at the grazing point x = x∗ and (A1) is
valid.

On the basis of the above discussion, we can say that the variational system consists of
m = 2 linear homogenous subsystems:

(4.24)
z′ = A(t)z,

∆z|t=θi = B(j)z, j = 1, 2,

where A(t) =

[
0 1
−1 −0.002

]
, θi = 2πi, B(1) = O2 and B(2) =

[
−1 0

0.002− 2R 0

]
.

One can check easily that system (4.24) is a (2π, 1)−periodic system this validates (A3).

The multipliers of (4.24) are ρ(1)
1 = 0.9844, ρ

(1)
2 = 0.9844, ρ

(2)
1 = 0.9844, ρ

(2)
2 = 0.098. Thus,

the condition (A4) is valid. Consequently, by means of above assertion, it is easy to say
that the periodic solution Ψ(t) is asymptotically stable.
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(2.6, 0, 1.9), x(0) = (2, 0, 1.9) and x(0) =
(1.98, 0, 1.9), in blue, green and red, respec-
tively.
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(B) The green is the periodic solution Ψ(t) of
the system, the blue and red curves are the
phase portraits of the solutions of the sys-
tem with initial values x0 = (2.6, 0, 1.9) and
x(0) = (1.98, 0, 1.9).
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In Fig. 1a, the three dimensional components are depicted with initial values x(0) =
(2.6, 0, 1.9), x(0) = (2, 0, 1.9) and x(0) = (1.98, 0, 1.9), in blue, green and red, respectively.
It is hard to see the behavior of the solution in three dimensional space. For this reason, we
consider the projection of Fig. 1a to the two dimensional space x1 − x2 which is depicted
in Fig. 1b. In Fig. 1b, one can see that the blue curves approaches the grazing cycle Ψ(t)
which is drawn in green as time increases and the inside red solution is approaching the
grazing cycle as well.
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