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Quantitative estimates in uniform and pointwise
approximation by Bernstein-Durrmeyer-Choquet operators

SORIN G. GAL and SORIN TRIFA

ABSTRACT. For the qualitative results of uniform and pointwise approximation obtained in [8], we present
here general quantitative estimates in terms of the modulus of continuity and of a K-functional, in approxima-
tion by the generalized multivariate Bernstein-Durrmeyer operator Mn,Γn,x , written in terms of Choquet inte-
grals with respect to a family of monotone and submodular set functions, Γn,x, on the standard d-dimensional
simplex. If d = 1 and the Choquet integrals are taken with respect to some concrete possibility measures, the
estimate in terms of the modulus of continuity is detailed. Examples improving the estimates given by the
classical operators also are presented.

1. INTRODUCTION

In the very recent paper [8], the first author have jointly obtained qualitative uniform
and pointwise approximation results in approximation by the multivariate Bernstein-
Durrmeyer linear operator defined in terms of the nonlinear Choquet integral with respect
to a nonnegative, monotone, normalized and submodular set function µ : BSd → R+,
given by

Mn,µ(f)(x)

(1.1) =
∑
|α|=n

(C)
∫
Sd f(t)Bα(t)dµ(t)

(C)
∫
Sd Bα(t)dµ(t)

·Bα(x) :=
∑
|α|=n

c(α, µ) ·Bα(x), x ∈ Sd, n ∈ N,

where BSd denotes the sigma algebra of all Borel measurable subsets in the power set
P(Sd) and f is supposed to be Choquet µ-integrable on the standard simplex

Sd = {(x1, ..., xd); 0 ≤ x1, ..., xd ≤ 1, 0 ≤ x1 + ...+ xd ≤ 1}.

Note that in (1.1), it is used the notation

Bα(x) =
n!

α0! · α1! · ... · αd!
(1− x1 − x2 − ...− xd)α0 · xα1

1 · ... · x
αd

d

=:
n!

α0! · α1! · ... · αd!
· Pα(x),

where α = (α0, α1, ..., αd), αj ∈ N
⋃
{0}, j = 0, ..., d, |α| = α0 + α1 + ...+ αd = n.

The results in [8] generalize the results in [1]-[2], where µ is a nonnegative and bounded
Borel measure on BSd .
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The main goal of this paper is to obtain quantitative pointwise and uniform estimates
in terms of the modulus of continuity and of a K-functional, in approximation by the
more general multivariate Bernstein-Durrmeyer polynomial operators defined by

(1.2) Mn,Γn,x
(f)(x) =

∑
|α|=n

c(α, µn,α,x) ·Bα(x), x ∈ Sd, n ∈ N,

where

c(α, µn,α,x) =
(C)

∫
Sd f(t)Bα(t)dµn,α,x(t)

(C)
∫
Sd Bα(t)dµn,α,x(t)

=
(C)

∫
Sd f(t)Pα(t)dµn,α,x(t)

(C)
∫
Sd Pα(t)dµn,α,x(t)

and for every n ∈ N and x ∈ Sd, Γn,x = (µn,α,x)|α|=n is a family of bounded, monotone,
submodular and strictly positive set functions on BSd .

If the family Γn,x reduces to one bounded, monotone, submodular and strictly positive
set function (i.e. µn,α,x = µ for all n, x and α), then the operator given by (1.2) reduces to
the operator considered in [8].

The plan of the paper is as follows. Section 2 contains some preliminaries on possi-
bility theory and on Choquet integral. In Section 3, pointwise and uniform quantitative
estimates in terms of the modulus of continuity and a K-functional for the approximation
by the operatorsMn,Γn,x

(f)(x) defined by (1.2) are obtained. In Section 4, in the particular
case when d = 1 and the Choquet integrals are taken with respect to some concrete possi-
bility measures, the pointwise estimate in terms of the modulus of continuity is detailed.
Section 5 contains some concrete examples of Bernstein-Durrmeyer-Choquet operators
improving the classical error estimates.

2. PRELIMINARIES

Firstly, we present a few known concepts in possibility theory useful for the next con-
siderations. For details, see, e.g., [6].

Definition 2.1. For the non-empty set Ω, denote by P(Ω) the family of all subsets of Ω.
(i) A function λ : Ω→ [0, 1] with the property sup{λ(s); s ∈ Ω} = 1, is called possibility

distribution on Ω.
(ii) P : P(Ω) → [0, 1] is called possibility measure, if it satisfies the axioms P (∅) = 0,

P (Ω) = 1 and P (
⋃
i∈I Ai) = sup{P (Ai); i ∈ I} for all Ai ⊂ Ω, and any I , an at most

countable family of indices. Note that if A,B ⊂ Ω, A ⊂ B, then the last property easily
implies that P (A) ≤ P (B) and that P (A

⋃
B) ≤ P (A) + P (B).

Any possibility distribution λ on Ω, induces the possibility measure Pλ : P(Ω)→ [0, 1],
Pλ(A) = sup{λ(s); s ∈ A}, A ⊂ Ω. Also, if f : Ω → R+, then the possibilistic integral of
f on A ⊂ Ω with respect to Pλ is defined by (Pos)

∫
A
fdPλ = sup{f(t) · λ(t); t ∈ A} (see,

e.g., [6], Chapter 1).

Some known concepts and results concerning the Choquet integral can be summarized
by the following.

Definition 2.2. Suppose Ω 6= ∅ and let C be a σ-algebra of subsets in Ω.
(i) (see, e.g., [10], p. 63) The set function µ : C → [0,+∞] is called a monotone set

function (or capacity) if µ(∅) = 0 and µ(A) ≤ µ(B) for all A,B ∈ C, with A ⊂ B. Also, µ is
called bounded if µ(Ω) < +∞ and submodular if

µ(A
⋃
B) + µ(A

⋂
B) ≤ µ(A) + µ(B), for all A,B ∈ C.

(ii) (see, e.g., [10], p. 233, or [4]) If µ is a monotone set function, normalized on C and
if f : Ω → R is C-measurable (i.e., for any Borel subset B ⊂ R we have f−1(B) ∈ C), then
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for any A ∈ C, the Choquet integral is defined by

(C)

∫
A

fdµ =

∫ +∞

0

µ
(
Fβ(f)

⋂
A
)
dβ +

∫ 0

−∞

[
µ
(
Fβ(f)

⋂
A
)
− µ(A)

]
dβ,

with Fβ(f) = {ω ∈ Ω; f(ω) ≥ β}. If f ≥ 0 on A, then above we get
∫ 0

−∞ = 0.
The function f will be called Choquet integrable on A if (C)

∫
A
fdµ ∈ R.

In what follows, we list some known properties of the Choquet integral.

Remark 2.1. If µ : C → [0,+∞] is a monotone set function, then the following properties
hold :

(i) For all a ≥ 0 we have (C)
∫
A
afdµ = a · (C)

∫
A
fdµ (if f ≥ 0 then see, e.g., [10],

Theorem 11.2, (5), p. 228 and if f is of arbitrary sign, then see, e.g., [5], p. 64, Proposition
5.1, (ii)).

(ii) For all c ∈ R and f of arbitrary sign, we have (see, e.g., [10], pp. 232-233, or [5], p.
65) (C)

∫
A

(f + c)dµ = (C)
∫
A
fdµ+ c · µ(A).

If µ is submodular too, then for all f, g of arbitrary sign and lower bounded, we have
(see, e.g., [5], p. 75, Theorem 6.3)

(C)

∫
A

(f + g)dµ ≤ (C)

∫
A

fdµ+ (C)

∫
A

gdµ.

(iii) If f ≤ g on A then (C)
∫
A
fdµ ≤ (C)

∫
A
gdµ (see, e.g., [10], p. 228, Theorem 11.2, (3)

if f, g ≥ 0 and p. 232 if f, g are of arbitrary sign).
(iv) Let f ≥ 0. If A ⊂ B then (C)

∫
A
fdµ ≤ (C)

∫
B
fdµ. In addition, if µ is finitely

subadditive, then (C)
∫
A

⋃
B
fdµ ≤ (C)

∫
A
fdµ+ (C)

∫
B
fdµ.

(v) It is immediate that (C)
∫
A

1 · dµ(t) = µ(A).
(vi) The formula µ(A) = γ(M(A)), where γ : [0, 1]→ [0, 1] is an increasing and concave

function, with γ(0) = 0, γ(1) = 1 andM is a probability measure (or only finitely additive)
on a σ-algebra on Ω (that is, M(∅) = 0, M(Ω) = 1 and M is countably additive), gives
simple examples of normalized, monotone and submodular set functions (see, e.g., [5],
pp. 16-17, Example 2.1). For example, we can take γ(t) =

√
t.

If the above γ function is increasing, concave and satisfies only γ(0) = 0, then for any
bounded Borel measure m ≤ 1, µ(A) = γ(m(A)) gives a simple example of bounded,
monotone and submodular set function.

Note that any possibility measure µ is normalized, monotone and submodular. Indeed,
the axiom µ(A

⋃
B) = max{µ(A), µ(B)} implies the monotonicity, while the property

µ(A
⋂
B) ≤ min{µ(A), µ(B)} implies the submodularity.

(vii) If µ is a countably additive bounded measure, then the Choquet integral (C)
∫
A
fdµ

reduces to the usual Lebesgue type integral (see, e.g., [5], p. 62, or [10], p. 226).

3. POINTWISE AND UNIFORM ESTIMATE FOR GENERAL
BERNSTEIN-DURRMEYER-CHOQUET OPERATORS

Recall that µ : BSd → [0,+∞) is said strictly positive if for every open set A ⊂ Rn with
A ∩ Sd 6= ∅, we have µ(A ∩ Sd) > 0.

The support of µ is defined by

supp(µ) = {x ∈ Sd;µ(Nx) > 0 for every open neighborhood Nx ∈ BSd of x}.
Note that the strict positivity of µ, evidently implies the condition supp(µ) \ ∂Sd 6= ∅,
which guarantees that (C)

∫
Sd Bα(t)dµ(t) > 0, for all Bα.

Let us consider C+(Sd) = {f : Sd → R+; f is continuous on Sd}, endowed with the
norm ‖F‖C(Sd) = sup{|F (x)|;x ∈ Sd}.
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The main result of this section consists in the following general quantitative estimates
in pointwise and uniform approximation.

Theorem 3.1. For each fixed n ∈ N and x ∈ Sd, let Γn,x = {µn,α,x}|α|=n be a family of bounded,
monotone, submodular and strictly positive set functions on BSd .

(i) For every f ∈ C+(Sd), x = (x1, ..., xd) ∈ Sd, n ∈ N, we have

|Mn,Γn,x(f)(x)− f(x)| ≤ 2ω1(f ;Mn,Γn,x(ϕx)(x))Sd ,

where Mn,Γn,x(f)(x) is given by (1.2), ‖x‖ =
√∑d

i=1 x
2
i , ϕx(t) = ‖t − x‖ and ω1(f ; δ)Sd =

sup{|f(t)− f(x)|; t, x ∈ Sd, ‖t− x‖ ≤ δ}.
(ii) Suppose that the family Γn,x does not depend on x. Then, for any f ∈ C+(Sd) and n ∈ N,

we get

‖Mn,Γn
(f)− f‖C(Sd) ≤ 2K

(
f ;

∆n

2

)
,

where ∆n =
∑d
i=1 ‖Mn,Γn

(|ϕei − xi1|)‖C(Sd),

K(f ; t) = inf
g∈C1

+(Sd)
{‖f − g‖C(Sd) + t‖∇g‖C(Sd)},

C1
+(Sd) is the subspace of all functions g ∈ C+(Sd) with continuous partial derivatives ∂ig,

i ∈ {1, ..., d} and ‖∇g‖C(Sd) = maxi={1,...,d}{‖∂ig‖C(Sd)}, ϕei(x) = xi, i ∈ {1, ..., d}, x =

(x1, ..., xd), 1(x) = 1, for all x ∈ Sd.

Proof. (i) For x ∈ Sd, n ∈ N and |α| = n arbitrary fixed, let us consider Tn,α,x : C+(Sd) →
R+ defined by

Tn,α,x(f) = (C)

∫
Sd

f(t)Pα(t)dµn,α,x(t), f ∈ C+(Sd).

Since each µn,α,x is monotone and submodular, by the proof and statement of Lemma
3.1 in [8] (implied in fact by the previous Remark 2.1, (i), (ii), (iii)), it follows that each
Tn,α,x is positively homogeneous, sublinear and monotonically increasing and satisfies
|Tn,α,x(f)− Tn,α,x(g)| ≤ Tn,α,x(|f − g|).

This immediately implies thatMn,Γn,x keeps the same properties and as a consequence,
it follows

|Mn,Γn,x
(f)(x)−Mn,Γn,x

(g)(x)| ≤Mn,Γn,x
(|f − g|)(x),(3.3)

Mn,Γn,x
(λf) = λMn,Γn,x

(f), Mn,Γn,x
(f + g) ≤ Mn,Γn,x

(f) + Mn,Γn,x
(g) and that f ≤ g on

Sd implies Mn,Γn,x
(f) ≤ Mn,Γn,x

(g) on Sd, for all λ ≥ 0, f, g ∈ C+(Sd), n ∈ N, |α| = n,
x ∈ Sd.

Denoting e0(t) = 1 for all t ∈ Sd, since obviously Mn,Γn,x
(e0)(x) = 1 for all x ∈ Sd and

taking into account the properties in Remark 2.1, (i) and (3.3), for any fixed x we obtain

|Mn,Γn,x(f)(x)− f(x)| = |Mn,Γn,x(f(t))(x)−Mn,Γn,x(f(x))(x)|
≤ Mn,Γn,x(|f(t)− f(x)|)(x).(3.4)

But taking into account the properties of the modulus of continuity, for all t, x ∈ Sd and
δ > 0, we get

|f(t)− f(x)| ≤ ω1(f ; ‖t− x‖)Sd ≤
[

1

δ
‖t− x‖+ 1

]
ω1(f ; δ)Sd .(3.5)
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Now, from (3.4) and applying Mn,Γn,x
to (3.5), by the properties of Mn,Γn,x

mentioned
after the inequality (3.3), we immediately get

|Mn,Γn,x
(f)(x)− f(x)| ≤

[
1

δ
Mn,Γn,x

(ϕx)(x) + 1

]
ω1(f ; δ)Sd .

Choosing here δ = Mn,Γn,x(ϕx)(x), we obtain the desired estimate.
(ii) Let f, g ∈ C+(Sd). We have

f(x)−Mn,Γn
(f)(x)

= f(x)− g(x) +Mn,Γn(g)(x)−Mn,Γn(f)(x) + g(x)−Mn,Γn(g)(x),

which, by using (3.3) too, implies

|f(x)−Mn,Γn(f)(x)|

≤ |f(x)− g(x)|+ |Mn,Γn
(g)(x)−Mn,Γn

(f)(x)|+ |g(x)−Mn,Γn
(g)(x)|

≤ |f(x)− g(x)|+Mn,Γn(|g − f |)(x) + |g(x)−Mn,Γn(g)(x)|
≤ 2‖f − g‖C(Sd) + |g(x)−Mn,Γn

(g)(x)|.
By following the lines in the proof of Theorem 4.5 in [3], since from the lines after relation
(3.3) in the above point (i), the operator Mn,Γn

is monotone and subadditive, for all g ∈
C1

+(Sd), x ∈ Sd, we immediately get

|g(x)−Mn,Γn
(g)(x)|

≤Mn,Γn(|g − g(x)1|)(x) ≤ ‖∇g‖C(Sd) ·Mn,Γn

(
d∑
i=1

|ϕei − xi1|

)
(x)

≤ ‖∇g‖C(Sd) ·
d∑
i=1

Mn,Γn (|ϕei − xi1|) (x) ≤ ‖∇g‖C(Sd) ·∆n.

Concluding, it follows

‖f −Mn,Γn(f)‖C(Sd) ≤ 2

[
‖f − g‖C(Sd) +

∆n

2
‖∇g‖C(Sd)

]
,

which immediately implies the required estimate in (ii). �

Remark 3.2. The positivity of function f in Theorem 3.1, (i), (ii) is necessary because
of the positive homogeneity of the Choquet integral used in its proof. However, if f is
of arbitrary sign and lower bounded on Sd with f(x) − m ≥ 0, for all x ∈ Sd, then
the statement of Theorem 3.1, (i), (ii) can be restated for the slightly modified Bernstein-
Durrmeyer operator defined by

M∗n,Γn,x
(f)(x) = Mn,Γn,x

(f −m)(x) +m.

Indeed, in the case of Theorem 3.1, (i), this is immediate from ω1(f −m; δ)Sd = ω1(f ; δ)Sd

and from M∗n,Γn,x
(f)(x)− f(x) = Mn,Γn,x(f −m)(x)− (f(x)−m). Note that in the case of

Theorem 3.1, (ii), since we may consider here thatm < 0, we immediately get the relations

K(f −m; t) = inf
g∈C1

+(Sd)
{‖f − (g +m)‖C(Sd) + t‖∇g‖C(Sd)}

= inf
g∈C1

+(Sd)
{‖f − (g +m)‖C(Sd) + t‖∇(g +m)‖C(Sd)}

= inf
h∈C1(Sd), h≥m

{‖f − h‖C(Sd) + t‖∇h‖C(Sd)}.
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4. PARTICULAR BERNSTEIN-DURRMEYER-CHOQUET OPERATORS

Since the estimates in Theorem 3.1, (i), (ii) are of very general and abstract form, involv-
ing the apparently difficult to be calculated Choquet integrals, it is of interest to obtain
concrete expressions for the orders of approximation.

In this sense, we will apply Theorem 3.1, (i) for d = 1 and for some special choices of
the submodular set functions.

Thus, we will consider the case of the measures of possibility. Denoting pn,k(x) =(
n
k

)
xk(1 − x)n−k, let us define λn,k(t) =

pn,k(t)

kkn−n(n−k)n−k(n
k)

= tk(1−t)n−k

kkn−n(n−k)n−k , k = 0, ..., n.

Here, by convention we consider 00 = 1, so that the cases k = 0 and k = n have sense.
By considering the root k

n of p′n,k(x), it is easy to see that max{pn,k(t); t ∈ [0, 1]} =

kkn−n(n − k)n−k
(
n
k

)
, which implies that each λn,k is a possibility distribution on [0, 1].

Denoting by Pλn,k
the possibility measure induced by λn,k and Γn,x := Γn = {Pλn,k

}nk=0

(i.e. Γ is independent of x), the nonlinear Bernstein-Durrmeyer polynomial operators
given by (1.2), in terms of the Choquet integrals with respect to the set functions in Γn,
will become

Dn,Γn(f)(x) =

n∑
k=0

pn,k(x) ·
(C)

∫ 1

0
f(t)tk(1− t)n−kdPλn,k

(t)

(C)
∫ 1

0
tk(1− t)n−kdPλn,k

(t)
.(4.6)

It is easy to see that any possibility measure Pλn,k
is bounded, monotone, submodular

and strictly positive, n ∈ N, k = 0, 1, ..., n, so that we are under the hypothesis of Theorem
3.1.

We can state the following result.

Theorem 4.2. If Dn,Γn
(f)(x) is given by (4.6), then for every f ∈ C+([0, 1]), x ∈ [0, 1] and

n ∈ N, n ≥ 2, we have

|Dn,Γn(f)(x)− f(x)| ≤ 2ω1

(
f ;

(1 +
√

2)
√
x(1− x) +

√
2
√
x√

n
+

1

n

)
[0,1]

.

For its proof, we need the following auxiliary result.

Lemma 4.1. Let n ∈ N, n ≥ 2 and x ∈ [0, 1]. Denoting

An,k(x) := sup{|t− x|tk(1− t)n−k; t ∈ [0, 1]} =

max{sup{(t− x)tk(1− t)n−k; t ∈ [x, 1]}, sup{(x− t)tk(1− t)n−k; t ∈ [0, x]}},

with the convention 00 = 1, for all k = 0, ..., n we have

An,k(x) = max{(t2 − x)tk2(1− t2)n−k, (x− t1)tk1(1− t1)n−k},

with t1, t2 given by

t1 =
nx+ k + 1−

√
∆

2(n+ 1)
, t2 =

nx+ k + 1 +
√

∆

2(n+ 1)
,(4.7)

where

∆ = (nx+ k + 1)2 − 4kx(n+ 1) = n2

[
(x+ (k + 1)/n)2 − 4x

k

n
· n+ 1

n

]
= (nx− k)2 + 2x(n− k) + 2k(1− x) + 1 ≥ 1.
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Proof. Let us denote Hn,k(t) = tk(1− t)n−k|t− x|, with k ∈ {0, ..., n}. We have two cases :
(i) 1 ≤ k ≤ n− 1 and (ii) k = 0 or k = n.

Case (i). For t ∈ [x, 1] we obtain Hn,k(t) = (t − x)tk(1 − t)n−k and from H ′n,k(t) =

tk−1(1−t)n−k−1[−t2(n+1)+t(nx+k+1)−kx] = 0, it follows−t2(n+1)+t(nx+k+1)−kx =
0, which has the discriminant

∆ = (nx+ k + 1)2 − 4kx(n+ 1) = (nx− k)2 + 2x(n− k) + 2k(1− x) + 1 ≥ 1.

Therefore, the quadratic equation has two real distinct solutions t1 < t2

t1 =
nx+ k + 1−

√
∆

2(n+ 1)
, t2 =

nx+ k + 1 +
√

∆

2(n+ 1)
,

where by simple calculation we derive 0 ≤ t1 < t2 ≤ 1. Also, since Hn,k(0) = Hn,k(x) =
Hn,k(1) = 0 and Hn,k(t) ≥ 0 for t ∈ [x, 1], simple graphical reasonings show that the only
possibility is 0 ≤ t1 ≤ x ≤ t2 ≤ 1, with t = t2 maximum point on [x, 1] for Hn,k(t).

Similarly, for t ∈ [0, x], since Hn,k(t) = (x− t)tk(1− t)n−k, using the above reasonings
we obtain H ′n,k(t) = tk−1(1 − t)n−k−1[t2(n + 1) − t(nx + k + 1) + kx] and that t1 is a
maximum point of Hn,k(t) on [0, x].

In conclusion, with t1, t2 given by (4.7), we get

An,k(x) = max{(t2 − x)tk2(1− t2)n−k, (x− t1)tk1(1− t1)n−k}.
Case (ii). Suppose first that k = 0. By the calculation from the case (i), for t ∈ [x, 1] we

get 0 = t1 ≤ x ≤ t2 = nx+1
n+1 ≤ 1, Hn,0(t) ≥ 0 and Hn,0(x) = Hn,0(1) = 0, which by similar

graphical reasonings leads to the fact that the maximum of Hn,0(t) on [x, 1] is Hn,0(t2) =
(t2 − x)(1 − t2)n. Therefore, we recapture the case (i) with the convention that 00 = 1.
Similarly, for t ∈ [0, x], we get that the maximum of Hn,0(t) is Hn,0(t1) = (x− t1)(1− t1)n

The subcase k = n is similar, which proves the lemma. �

Proof of Theorem 4.2. According to Theorem 3.1, (i) we have to estimate

Dn,Γn
(ϕx)(x) =

n∑
k=0

pn,k(x) ·
(C)

∫ 1

0
|t− x|tk(1− t)n−kdPλn,k

(t)

(C)
∫ 1

0
tk(1− t)n−kdPλn,k

(t)
.

First of all, by Definition 2.2, (ii), we get

(C)

∫ 1

0

tk(1− t)n−kdPλn,k
(t) =

∫ +∞

0

Pλn,k
({t ∈ [0, 1]; tk(1− t)n−k ≥ β})dβ

=

∫ 1

0

Pλn,k
({t ∈ [0, 1]; tk(1− t)n−k ≥ β})dβ

=

∫ 1

0

sup{λn,k(s); s ∈ {t ∈ [0, 1]; tk(1− t)n−k ≥ β}}dβ

=
1

kkn−n(n− k)n−k
·
∫ 1

0

sup{sk(1− s)n−k; s ∈ {t ∈ [0, 1]; tk(1− t)n−k ≥ β}}dβ.

For simplicity, denote En,k = kkn−n(n − k)n−k, where again we take 00 = 1. Since for
β > En,k we have {t ∈ [0, 1]; tk(1 − t)n−k ≥ β} = ∅ and since we can take sup{sk(1 −
s)n−k; s ∈ ∅} = 0, it follows

(C)

∫ 1

0

tk(1− t)n−kdPλn,k
(t)

=
1

En,k
·
∫ En,k

0

sup{sk(1− s)n−k; s ∈ {t ∈ [0, 1]; tk(1− t)n−k ≥ β}}dβ
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=
1

En,k
·
∫ En,k

0

En,kdβ = En,k.(4.8)

On the other hand, denoting An,k(x) = sup{|t− x|tk(1− t)n−k; t ∈ [0, 1]}, by Remark 2.1,
(iii), (v) and by Lemma 4.1, for t1 < t2 in (4.7) we obtain

(C)

∫ 1

0

|t− x|tk(1− t)n−kdPλn,k
(t) ≤ (C)

∫ 1

0

An,k(x)dPλn,k
(t)

= An,k(x)(C)

∫ 1

0

1dPλn,k
(t) = max{(t2 − x)tk2(1− t2)n−k, (x− t1)tk1(1− t1)n−k}

≤ (t2 − x)tk2(1− t2)n−k + (x− t1)tk1(1− t1)n−k.

Since tk2 (1−t2)n−k

kkn−n(n−k)n−k ≤ 1, tk1 (1−t1)n−k

kkn−n(n−k)n−k ≤ 1 and by Lemma 4.1 we get

An,k(x)

kkn−n(n− k)n−k
≤ (t2 − x) · tk2(1− t2)n−k

kkn−n(n− k)n−k
+ (x− t1) · tk1(1− t1)n−k

kkn−n(n− k)n−k

≤ t2 − t1 =

√
∆

n+ 1
≤
√

(nx− k)2 + 2x(n− k) + 2k(1− x) + 1

n

≤
√

(x− k/n)2 + 2x/n+ (2k/n) · (1− x)/n+ 1/n2

≤ |x− k/n|+
√

2x/
√
n+ (

√
2k/
√
n) ·

√
(1− x)/n+ 1/n,

this immediately implies

Dn,Γn
(ϕx)(x) ≤

n∑
k=0

pn,k(x)(|x− k/n|+
√

2x/
√
n+

√
2k/n ·

√
(1− x)/n+ 1/n)

≤
√
x(1− x)√

n
+

√
2x√
n

+

√
2
√
x(1− x)√
n

+
1

n
=

(1 +
√

2)
√
x(1− x) +

√
2
√
x√

n
+

1

n
.

Above we have used the well-known estimate
∑n
k=0 pn,k(x)|x − k/n| ≤

√
x(1−x)√
n

and the

Cauchy-Schwarz inequality for Bernstein polynomials, Bn(f)(x) ≤
√
Bn(f2)(x), applied

for f(t) =
√
t.

Finally, applying Theorem 3.1, (i) the proof of Theorem 4.2 follows. �

5. EXAMPLES IMPROVING THE CLASSICAL ESTIMATES

This section contains some concrete examples improving the classical estimates.

Example 5.1. Since the Bernstein-Durrmeyer-Choquet operators in this paper can be de-
fined with respect to a family of Borel or Choquet measures, combined in various ways,
this fact offers a very high flexibility and generality, allowing to construct operators hav-
ing even better approximation properties. As a first example, it is clear that Bn(f)(x) can
also be viewed as the Bernstein-Durrmeyer operators in the case when Γn is composed
by the Dirac measures δk/n, k = 0, ..., n. With this occasion, we note that since the Dirac
measures are not strictly positive, it is clear that the strict positivity of the set functions in
Theorem 3.1 is not always necessary.

Example 5.2. In formula (4.6), let us replace the family Γn of measures of possibilities
Pλn,k

, k = 0, ..., n, by the family consisting in the Dirac measures δk/n, k = 0, 1, ..., n − 1,
(which are Borel measures and therefore with the corresponding Choquet integrals re-
ducing to the classical ones) together with a monotone, submodular, strictly positive set
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function µ. Then, denoting byBn(f)(x) the classical Bernstein operators, forDn,Γn
in (4.6)

we get

Dn,Γn(f)(x)− f(x) =

[
n−1∑
k=0

pn,k(x)f

(
k

n

)
+ xn ·

(C)
∫ 1

0
f(t)tndµ(t)

(C)
∫ 1

0
tndµ(t)

]
− f(x)

= Bn(f)(x)− f(x) + xn

[
(C)

∫ 1

0
f(t)tndµ(t)

(C)
∫ 1

0
tndµ(t)

− f(1)

]
.

Suppose now that f ≥ 0 is strictly increasing and strictly convex on [0, 1] and, for example,
that µ(A) =

√
m(A) or µ(A) = sin[m(A)], with m the Lebesgue measure. The strict

convexity implies Bn(f)(x)− f(x) > 0 for all x ∈ (0, 1) and the property of f to be strictly
increasing easily implies

(C)
∫ 1

0
f(t)tndµ(t)

(C)
∫ 1

0
tndµ(t)

− f(1) <
f(1) · (C)

∫ 1

0
tndµ(t)

(C)
∫ 1

0
tndµ(t)

− f(1) = 0.

So, for x ∈ (0, 1), Dn,Γn
(f)(x) approximates better than Bn(f)(x), since

|Dn,Γn
(f)(x)− f(x)| < max

{
|Bn(f)(x)− f(x)|, xn

∣∣∣∣∣ (C)
∫ 1

0
f(t)tndµ(t)

(C)
∫ 1

0
tndµ(t)

− f(1)

∣∣∣∣∣
}
.

Example 5.3. In formula (4.6), let us replace the family of measures of possibilities Γn =
{Pλn,k

}nk=0, by the family Γn = {νn,0, νn,n, µn−2,k−1, k = 1, ..., n − 1}, where the set func-
tions µn−2,k−1, k = 1, ..., n − 1 are the Lebesgue measure, νn,0 = δ0 (Dirac measure),
νn,n is a monotone, submodular and strictly positive set function and define the genuine
Bernstein-Durrmeyer-Choquet operators by

Un,Γn
(f)(x) = pn,0(x) ·

(C)
∫ 1

0
f(t)(1− t)ndνn,0

(C)
∫ 1

0
(1− t)ndνn,0

+ pn,n(x) ·
(C)

∫ 1

0
f(t)tndνn,n

(C)
∫ 1

0
tndνn,n

+

n−1∑
k=1

pn,k(x) ·
(C)

∫ 1

0
f(t)pn−2,k−1(t)dµn−2,k−1(t)

(C)
∫ 1

0
pn−2,k−1(t)dµn−2,k−1(t)

.

Denoting by Gn(f)(x), the classical genuine Bernstein-Durmeyer operator (see, e.g., [9]),
we immediately obtain

Un,Γn
(f)(x)− f(x) = Gn(f)(x)− f(x) + xn

[
(C)

∫ 1

0
f(t)tndνn,n(t)

(C)
∫ 1

0
tndνn,n(t)

− f(1)

]
.

Since the strict convexity of f implies Gn(f)(x) − f(x) > 0 for all x ∈ (0, 1) (see, e.g.,
Lemma 2.1, (iv) in [9]), similar reasonings with those for the previous example show that
if f ≥ 0 is strictly convex and strictly increasing on [0, 1] (and, for example, νn,n(A) =√
m(A) or νn,n(A) = sin[m(A)]), then Un,Γn

(f)(x) approximates better f on (0, 1) than
Gn(f)(x).

Example 5.4. In [7], for the nonlinear Picard-Choquet operators we have obtained a gen-
eral estimate similar to that for the classical Picard operators, while for functions of the
form f(x) = Me−Ax, M,A > 0, we got there essentially better estimates.

Remark 5.3. Since the formula for the operators Dn,Γn(f) in (4.6) involves Choquet in-
tegrals with respect to possibilistic measures, it is natural to ask for a study of the con-
vergence properties of Dn,Γn

(f), in the case when the Choquet integrals (C)
∫ 1

0
in (4.6)

are replaced (all, or some of them only !) by possibilistic integrals (Pos)
∫ 1

0
, as they are
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defined by Definition 2.1, (ii). For example, if all the Choquet integrals are replaced by
possibilistic integrals, from (4.6) we easily get the new operators (which seem still to have
good convergence properties !)

Dn,Γn
(f)(x) =

n∑
k=0

pn,k(x) ·
(Pos)

∫ 1

0
f(t)tk(1− t)n−kdPλn,k

(t)

(Pos)
∫ 1

0
tk(1− t)n−kdPλn,k

(t)

=

n∑
k=0

pn,k(x) · sup{f(t)[tk(1− t)n−k]2; t ∈ [0, 1]}
sup{[tk(1− t)n−k]2; t ∈ [0, 1]}

.

A detailed study of the convergence properties for all these kinds of Bernstein-Durrmeyer-
possibilisitc operators will be made elsewhere.
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