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Bézier variant of genuine-Durrmeyer type operators based
on Pólya distribution

TRAPTI NEER1 , ANA MARIA ACU2 and P. N. AGRAWAL1

ABSTRACT. In this paper we introduce the Bézier variant of genuine-Durrmeyer type operators having Pólya
basis functions. We give a global approximation theorem in terms of second order modulus of continuity, a
direct approximation theorem by means of the Ditzian-Totik modulus of smoothness and a Voronovskaja type
theorem by using the Ditzian-Totik modulus of smoothness. The rate of convergence for functions whose deriva-
tives are of bounded variation is obtained. Further, we show the rate of convergence of these operators to certain
functions by illustrative graphics using the Maple algorithms.

1. INTRODUCTION

In 1968, Stancu [23] introduced a sequence of positive linear operators P (α)
n : C[0, 1] −→

C[0, 1], depending on a non negative parameter α as

P (α)
n (f ;x) =

n∑
k=0

f

(
k

n

)
p
(α)
n,k(x),(1.1)

where p(α)n,k(x) is the Pólya distribution with density function given by

p
(α)
n,k(x) =

(
n

k

)∏k−1
v=0(x+ vα)

∏n−k−1
µ=0 (1− x+ µα)∏n−1

λ=0(1 + λα)
, x ∈ [0, 1].

Lupaş and Lupaş [18] considered a special case of the operators given by (1.1) for α =
1

n
which can be expressed as

P
( 1
n )

n (f ;x) =
2(n!)

(2n)!

n∑
k=0

(
n

k

)
f

(
k

n

)
(nx)k(n− nx)n−k,(1.2)

where the rising factorial (x)n is given by (x)n = x(x+1)(x+2).....(x+n−1) with (x)0 = 1.
Gupta and Rassias [13] introduced the Durrmeyer type integral modification of the
operators (1.2) and established local and global direct error estimates and a Voronovskaja
type asymptotic formula. Recently in [4], to approximate Lebsegue integrable functions,
a Kantorovich variant of the operators given by (1.1) was introduced and the properties
of local and global approximation were investigated in univariate and bivariate cases.
Recently, Gupta [12] defined a genuine-Durrmeyer type modification of the operators
given by (1.2) and obtained a Voronovskaja type asymptotic theorem and a local

Received: 29.10.2015. In revised form: 08.01.2016. Accepted: 26.03.2016
2010 Mathematics Subject Classification. 41A25, 26A15.
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Table 1.1 Error of approximation for Uρn and U
ρ

n

x |Uρn(f ;x)− f(x)| |U
ρ

n(f ;x)− f(x)|
0.60 0.001239490900 0.001509158700
0.61 0.000351701000 0.001971924300
0.62 0.0004378093000 0.002365328800
0.63 0.001135096600 0.002695352000
0.64 0.001746098000 0.002967653800
0.65 0.002276601100 0.003187565800
0.66 0.002732224700 0.003360091000
0.67 0.003118397000 0.003489901500
0.68 0.003440343200 0.003581349400

approximation theorem. Very recently in [20], for a function f ∈ C[0, 1], a genuine-
Durrmeyer type integral modification of the operators given by (1.2) was introduced as
follows:

(1.3) Uρn(f ;x) =

n∑
k=0

F ρn,kp
( 1
n )

n,k (x), ρ > 0,

where

F ρn,k =


∫ 1

0
f(t)µρn,k(t)dt, 1 ≤ k ≤ n− 1

f(0), k = 0
f(1), k = n,

and

µρn,k(t) =
tkρ−1(1− t)(n−k)ρ−1

B(kρ, (n− k)ρ)
,

B(m,n) being the Euler’s Beta-function. A Voronovskaja type asymptotic theorem, global
and local approximation theorems have been proved in this paper.

Remark 1.1. Let us consider the class of operators U
ρ

n : C[0, 1] →
∏
n introduced in [21]

by Păltănea as follows

U
ρ

n(f ;x) :=

n−1∑
k=1

(∫ 1

0

tkρ−1(1− t)(n−k)ρ−1

β(kρ, (n− k)ρ)
f(t)dt

)
pn,k(x) + f(0)(1− x)n + f(1)xn,

where ρ > 0, x ∈ [0, 1] and pn,k(x) =
(
n

k

)
xk(1− x)n−k.

In the Table 1.1 for ρ=1, n=20 and the function f : [0, 1]→R, f(x)=
{
x2 sin 1

x , x 6= 0,

0, x = 0,

we computed the error of approximation for Uρn and U
ρ

n at certain points from [0.6, 0.7].
From the above results it follows that the error of approximation for Uρn is better than U

ρ

n

to the function f at the points xi = 0.6 + 0.01 · i, i = 0, 8.

It is a well known fact that Bézier curves play an important role in computer aided
designs and computer graphics systems. These curves were invented by Pierre Etienne
Bézier, a French engineer at Renault. Zeng and Piriou [26] pioneered the study of Bézier
variant of Bernstein operators. Subsequently, the research work on different positive
linear Bézier operators motivated us to study further in this direction (cf. [4], [7], [11],
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[24] and [25] etc.). We propose a Bézier variant of the operators given by (1.3) as

(1.4) Uρn,α(f ;x) =

n∑
k=0

F ρn,kQ
(α)
n,k(x),

where Q(α)
n,k(x) = [Jn,k(x)]

α − [Jn,k+1(x)]
α
, α ≥ 1 with Jn,k(x) =

∑n
j=k p

(1/n)
n,j (x), when

k ≤ n and 0 otherwise. Clearly, Uρn,α is a sequence of linear positive operators. If α = 1,
then the operators Uρn,α reduce to the operators Uρn.

The study of the rate of convergence for the functions with a derivative of bounded
variation is an active area of research in approximation theory. Recently Ispir et al. [16]
considered the Kantorovich modification of Lupaş operators based on Pólya distribution
and estimated the rate of convergence for absolutely continuous functions having a de-
rivative equivalent with a function of bounded variation. Very recently, the same problem
has been investigated for the Bézier variant of summation integral type operators having
Pólya and Bernstein basis functions and for the modified Srivastava-Gupta operators by
Agrawal et al. [4] and Maheshwari [19] respectively. In this direction, significant contri-
bution are due to (cf. [1], [2], [5], [6], [14], [15], and [17] etc.)

The aim of this paper is to study some approximation properties of the operators (1.4),
to investigate a direct approximation result, a global approximation theorem, a quan-
titative Voronovskaja type theorem and the rate of convergence for functions f whose
derivative f ′ are of bounded variation on [0, 1]. Lastly, we show the rate of convergence
of these operators by some graphics to certain functions.

Throughout this paper, C denotes a positive constant not necessarily the same at each
occurrence.

2. AUXILIARY RESULTS

In what follows let ‖.‖ denotes uniform norm on C[0, 1].

Lemma 2.1. [20] For Uρn(tm;x), m = 0, 1, 2, one has

(i) Uρn(1;x) = 1,

(ii) Uρn(t;x) = x,

(iii) Uρn(t2;x) =
nρ

nρ+ 1

(
x2 +

2x(1− x)
n+ 1

)
+

x

nρ+ 1
.

Consequently, for every x ∈ [0, 1] it follows

Uρn((t− x)2;x) ≤
2ρ+ 1

nρ+ 1
φ2(x) = δ2n,ρ(x),

where φ2(x) = x(1− x).

Lemma 2.2. For every f ∈ C[0, 1], we have

‖Uρnf‖ ≤ ‖f‖.

Applying Lemma 2.1 , the proof of this lemma easily follows. Hence the details are
omitted.

Lemma 2.3. a) Let f ∈ C[0, 1]. Then we have ‖Uρn,αf‖ ≤ ‖f‖.
b) Let x ∈ [0, 1] and f ∈ C[0, 1] such that f ≥ 0 on [0, 1]. Then we have Uρn,α(f ;x) ≤ αUρn(f ;x).
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Proof. a) By (1.4) and (1.3), we obtain

|Uρn,α(f ;x)| ≤
n∑
k=0

|F ρn,k|Q
(α)
n,k(x) ≤ ‖f‖

n∑
k=0

Q
(α)
n,k(x) = ‖f‖,

because

Uρn,α(1;x)=

n∑
k=0

Q
(α)
n,k(x)=

n∑
k=0

{[Jn,k(x)]α−[Jn,k+1(x)]
α}=[Jn,0(x)]

α
=

 n∑
j=0

p
(1/n)
n,j (x)

α=1.

b) Using the inequality |aα − bα| ≤ α|a − b|, where 0 ≤ a, b ≤ 1 and α ≥ 1, from the
definition of Q(α)

n,k(x) we obtain

0 < [Jn,k(x)]
α − [Jn,k+1(x)]

α ≤ α(Jn,k(x)− Jn,k+1(x)) = αp
(1/n)
n,k (x).

Hence, in view of the definition of Uρn,α and the positivity of f , we get Uρn,α(f ;x) ≤
αUρn(f ;x), which was to be proved. �

The operators Uρn,α can be expressed in an integral form as follows:

Uρn,α(f ;x) =

∫ 1

0

Kρ
n,α(x, t)f(t)dt,(2.5)

where the kernel Kρ
n,α is given by

Kρ
n,α(x, t) =

n−1∑
k=1

Q
(α)
n,k(x)µ

ρ
n,k(t) +Q

(α)
n,0(x)δ(t) +Q(α)

n,n(x)δ(1− t),

δ(u) being the Dirac-delta function.

Lemma 2.4. For a fixed x ∈ (0, 1) and sufficiently large n, we have

(i) ξρn,α(x, y) =
∫ y

0

Kρ
n,α(x, t)dt ≤ α

δ2n,ρ(x)

(x− y)2
, 0 ≤ y < x,

(ii) 1− ξρn,α(x, z) =
∫ 1

z

Kρ
n,α(x, t)dt ≤ α

δ2n,ρ(x)

(z − x)2
, x < z < 1,

where δn,ρ(x) is defined in Lemma 2.1.

Proof. (i) Using Lemmas 2.1 and 2.3, we get

ξρn,α(x, y) =

y∫
0

Kρ
n,α(x, t)dt ≤

∫ y

0

(
x− t
x− y

)2

Kρ
n,α(x, t)dt

≤
Uρn,α((t− x)2;x)

(x− y)2
≤ αU

ρ
n((t− x)2;x)
(x− y)2

≤ α
δ2n,ρ(x)

(x− y)2
.

The proof of (ii) is similar, therefore the details are omitted. �

3. MAIN RESULTS

First we establish a direct approximation theorem for the operators Uρn,α, using the
second order modulus of smoothness and the classical modulus of continuity.
Let

W 2[0, 1] =

{
g ∈ C[0, 1] : g′′ ∈ C[0, 1]

}
.
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For f ∈ C[0, 1] and δ > 0, the corresponding Peetre’s K-functional [22] is defined by

K2(f ; δ) = inf
g∈W 2[0,1]

{
‖f − g‖+ δ‖g′′‖

}
.

From [8], there exists an absolute constant C > 0 such that

K2(f ; δ) ≤ Cω2(f ;
√
δ),(3.6)

where ω2 is the second order modulus of smoothness of f ∈ C[0, 1], defined as

ω2(f ; δ) = sup
0<h≤δ

sup
x,x+2h∈[0,1]

|f(x+ 2h)− 2f(x+ h) + f(x)|.

The usual modulus of continuity of f ∈ C[0, 1] is given by

ω(f ; δ) = sup
0<h≤δ

sup
x,x+h∈[0,1]

|f(x+ h)− f(x)|.

Theorem 3.1. Let f ∈ C[0, 1] and x ∈ [0, 1]. Then there exists an absolute constant C > 0 such
that

|Uρn,α(f ;x)− f(x)| ≤ Cαω2(f ; δn,ρ(x)) + ω(f ;
√
αδn,ρ(x)),

where δn,ρ(x) is defined in Lemma 2.1.

Proof. In view of (1.4) and (1.3), we have

0 ≤ Uρn,α(t;x) =
n−1∑
k=1

Q
(α)
n,k(x)

∫ 1

0

tµρn,k(t)dt+Q(α)
n,n(x)

=

n−1∑
k=1

Q
(α)
n,k(x)

B(kρ+ 1, (n− k)ρ)
B(kρ, (n− k)ρ)

+Q(α)
n,n(x)

=

n−1∑
k=1

k

n
Q

(α)
n,k(x) +Q(α)

n,n(x) ≤
n∑
k=0

Q
(α)
n,k(x) = 1

for all x ∈ [0, 1]. This means that we can introduce the auxiliary operators U
ρ

n,α defined
by

(3.7) U
ρ

n,α(f ;x) = Uρn,α(f ;x)− f(Uρn,α(t;x)) + f(x), x ∈ [0, 1].

Then the operators U
ρ

n,α are linear and preserve the linear functions:

U
ρ

n,α(at+ b;x) = ax+ b.

Let g ∈W 2[0, 1] and t ∈ [0, 1]. Then, by Taylor’s expansion, we have

g(t)− g(x) = (t− x)g′(x) +
∫ t

x

(t− u)g′′(u)du.

Now applying U
ρ

n,α to both sides of the previous equation, we get, by (3.7), that

U
ρ

n,α(g;x)− g(x) = U
ρ

n,α

(∫ t

x

(t− u)g′′(u)du;x
)

= Uρn,α

(∫ t

x

(t− u)g′′(u)du;x
)
−
∫ Uρn,α(t;x)

x

(
Uρn,α(t;x)− u

)
g′′(u)du.
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Hence

|Uρn,α(g;x)− g(x)| ≤ ‖g′′‖Uρn,α
(
(t− x)2;x

)
+ ‖g′′‖

(
Uρn,α(t;x)− x

)2
= ‖g′′‖

{
Uρn,α

(
(t− x)2;x

)
+
(
Uρn,α(t− x;x)

)2}
.

Using Cauchy-Schwarz inequality and Lemmas 2.1 and 2.3, we obtain

(3.8) |Uρn,α(g;x)− g(x)| ≤ ‖g′′‖
{
αδ2n,ρ(x) + Uρn,α

(
(t− x)2;x

)}
≤ 2αδ2n,ρ(x)‖g′′‖.

On the other hand, by (3.7) and Lemma 2.3, we have for each f ∈ C[0, 1] and x ∈ [0, 1]
that

|Uρn,α(f ;x)| ≤ |Uρn,α(f ;x)|+ |f(Uρn,α(t;x))|+ |f(x)| ≤ 3‖f‖.
Hence

(3.9) ‖Uρn,αf‖ ≤ 3‖f‖.

Now, combining (3.7)-(3.9), we obtain

|Uρn,α(f ;x)− f(x)| ≤ |U
ρ

n,α(f ;x)− f(x)|+ |f(Uρn,α(t;x))− f(x)|

≤ |Uρn,α(f−g;x)−(f−g)(x)|+|U
ρ

n,α(g;x)−g(x)|+ω(f ; |Uρn,α(t;x)−x|)
≤ 4‖f − g‖+ 2αδ2n,ρ(x)‖g′′‖+ ω(f ;Uρn,α(|t− x|;x))

≤ 4‖f − g‖+ 2αδ2n,ρ(x)‖g′′‖+ ω(f ; (Uρn,α((t− x)2;x))1/2)
≤ 4α

{
‖f − g‖+ δ2n,ρ(x)‖g′′‖

}
+ ω(f ;

√
αδn,ρ(x)).

Taking the infimum on the right-hand side over all g ∈W 2[0, 1] and using (3.6), we arrive
at the assertion of the theorem. �

To describe our next result, we recall the definitions of the Ditzian-Totik first order
modulus of smoothness and the K-functional [9]. Let φ(x) =

√
x(1− x) and f ∈ C[0, 1].

The first order modulus of smoothness is given by

(3.10) ωφ(f ; t) = sup
0<h≤t

{ ∣∣∣∣f(x+
hφ(x)

2

)
− f

(
x− hφ(x)

2

)∣∣∣∣ , x± hφ(x)

2
∈ [0, 1]

}
.

Further, the corresponding K-functional to (3.10) is defined by

Kφ(f ; t) = inf
g∈Wφ[0,1]

{||f − g||+ t||φg′||} (t > 0),

where Wφ[0, 1] = {g : g ∈ ACloc[0, 1], ‖φg′‖ < ∞} and g ∈ ACloc[0, 1] means that g is
absolutely continuous on every interval [a, b] ⊂ [0, 1]. It is well known ([9], p.11 ) that
there exists a constant C > 0 such that

Kφ(f ; t) ≤ Cωφ(f ; t).(3.11)

Now, we establish a global approximation theorem by means of Ditzian-Totik modulus of
smoothness.

Theorem 3.2. Let f be in C[0, 1] and φ(x) =
√
x(1− x), then for every x ∈ [0, 1], we have

|Uρn,α(f ;x)− f(x)| ≤ Cωφ
(
f ;

√
2ρ+ 1

nρ+ 1

)
,

where C is a constant independent of n and x.
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Proof. Using the representation

g(t) = g(x) +

∫ t

x

g′(u)du,

we get ∣∣Uρn,α(g;x)− g(x)∣∣ =

∣∣∣∣Uρn,α(∫ t

x

g′(u)du;x

)∣∣∣∣ .(3.12)

For any x ∈ (0, 1) and t ∈ [0, 1] we find that∣∣∣∣ ∫ t

x

g′(u)du

∣∣∣∣ ≤ ||φg′||∣∣∣∣ ∫ t

x

1

φ(u)
du

∣∣∣∣.(3.13)

But, ∣∣∣∣ ∫ t

x

1

φ(u)
du

∣∣∣∣ = ∣∣∣∣ ∫ t

x

1√
u(1− u)

du

∣∣∣∣ ≤ ∣∣∣∣ ∫ t

x

(
1√
u
+

1√
1− u

)
du

∣∣∣∣(3.14)

≤ 2

(
|
√
t−
√
x | + |

√
1− t−

√
1− x |

)
= 2|t− x|

(
1√

t+
√
x
+

1√
1− t+

√
1− x

)
< 2|t− x|

(
1√
x
+

1√
1− x

)
≤ 2
√
2 |t− x|
φ(x)

.

Combining (3.12)-(3.14) and using Cauchy-Schwarz inequality, we obtain

|Uρn,α(g;x)− g(x)| < 2
√
2||φg′||φ−1(x)Uρn,α(|t− x|;x)

≤ 2
√
2||φg′||φ−1(x)

(
Uρn,α((t− x)2;x)

)1/2

≤ 2
√
2||φg′||φ−1(x)

(
α Uρn((t− x)2;x)

)1/2

.

Now using Lemma 2.1, we get

|Uρn,α(g;x)− g(x)| ≤ 2
√
2α

√
2ρ+ 1

nρ+ 1
‖φg′‖.(3.15)

Using Lemma 2.3 and (3.15) we can write

| Uρn,α(f ;x)− f(x) | ≤| Uρn,α(f − g;x) | +|f(x)− g(x)|+ | Uρn,α(g;x)− g(x) |

≤ 2
√
2α

(
||f − g||+

√
2ρ+ 1

nρ+ 1
||φg′||

)
.

Taking infimum on the right hand side of the above inequality over all g ∈ Wφ[0, 1], we
get

|Uρn,α(f ;x)− f(x)| ≤ 2
√
2αKφ

(
f ;

√
2ρ+ 1

nρ+ 1

)
.

Using the relation (3.11) this theorem is proven. �

In the following we prove a quantitative Voronovskaja type theorem for the operator
Uρn,α. This result is given using the first order Ditzian-Totik modulus of smoothness.

Theorem 3.3. For any f ∈ C2[0, 1] the following inequalities hold



80 T. Neer, A. M. Acu and P. N. Agrawal

i)
∣∣nE (Uρn,α; f ;x)∣∣ ≤ Cωφ (f ′′, φ(x)n−1/2) ,

ii)
∣∣nE (Uρn,α; f ;x)∣∣ ≤ Cφ(x)ωφ (f ′′, n−1/2) ,

where

E
(
Uρn,α; f ;x

)
:= Uρn,α(f ;x)−f(x)−f ′(x)Uρn,α(t−x;x)−

1

2
f ′′(x)Uρn,α

(
(t−x)2;x

)
.

Proof. Let f ∈ C2[0, 1] be given and t, x ∈ [0, 1]. Then by Taylor’s expansion, we have

f(t)− f(x) = (t− x)f ′(x) +
∫ t

x

(t− u)f ′′(u)du.

Hence

f(t)− f(x)− (t− x)f ′(x)− 1

2
(t− x)2f ′′(x) =

∫ t

x

(t− u)f ′′(u)du−
∫ t

x

(t− u)f ′′(x)du

=

∫ t

x

(t− u)[f ′′(u)− f ′′(x)]du.

Applying Uρn,α(·;x) to both sides of the above relation, we get

(3.16)
∣∣E (Uρn,α; f ;x)∣∣ ≤ Uρn,α(∣∣∣∣∫ t

x

|t− u||f ′′(u)− f ′′(x)|du
∣∣∣∣ ;x) .

The quantity
∣∣∣∣∫ t

x

|f ′′(u)− f ′′(x)| |t− u|du
∣∣∣∣was estimated in [10, p. 337] as follows:

(3.17)
∣∣∣∣∫ t

x

|f ′′(u)− f ′′(x)||t− u|du
∣∣∣∣ ≤ 2‖f ′′ − g‖(t− x)2 + 2‖φg′‖φ−1(x)|t− x|3,

where g ∈Wφ[0, 1].
We have

Uρn
(
(t− x)4;x

)
= φ2(x)

A(ρ, n)φ2(x) +B(ρ, n)

(n+ 1)(n+ 2)(n+ 3)(1 + ρn)(2 + ρn)(3 + ρn)
,

where

A(ρ, n) = −3
[
−ρ(2ρ+ 1)2n4 + 2(14ρ3 + 14ρ2 + 9ρ+ 3)n3 + (120ρ2 + 109ρ+ 36)n2

+6(23ρ+ 11)n+ 36] ,

B(ρ, n) = 2
[
(13ρ3 + 18ρ2 + 11ρ+ 3)n3 + (−ρ3 + 54ρ2 + 55ρ+ 18)n2 + 33(2ρ+ 1)n+ 18

]
.

Therefore, there exists a constant C > 0 such that

(3.18) Uρn
(
(t− x)4;x

)
≤ C

n2
φ2(x).
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Now combining (3.16)-(3.18) and applying Lemmas 2.3 and 2.1, the Cauchy-Schwarz
inequality, we get∣∣E (Uρn,α; f ;x)∣∣ ≤ 2‖f ′′ − g‖Uρn,α

(
(t− x)2;x

)
+ 2‖φg′‖φ−1(x)Uρn,α

(
|t− x|3;x

)
≤ 2‖f ′′ − g‖αδ2n,ρ(x) + 2α‖φg′‖φ−1(x)

{
Uρn(t− x)2;x

}1/2 {
Uρn
(
(t− x)4;x

)}1/2
≤ 2‖f ′′ − g‖αδ2n,ρ(x) + 2α

C

n
‖φg′‖δn,ρ(x) ≤ C

{
δ2n,ρ(x)‖f ′′ − g‖+

1

n
δn,ρ(x)‖φg′‖

}
= C

{
2ρ+ 1

nρ+ 1
φ2(x)‖f ′′ − g‖+ 1

n

√
2ρ+ 1

nρ+ 1
φ(x)‖φg′‖

}
≤ C

n

{
φ2(x)‖f ′′ − g‖+ n−1/2φ(x)‖φg′‖

}
.

Since φ2(x) ≤ φ(x) ≤ 1, x ∈ [0, 1], we obtain∣∣E (Uρn,α; f ;x)∣∣ ≤ C

n

{
‖f ′′−g‖+ n−1/2φ(x)‖φg′‖

}
.

Also, the following inequality can be obtained∣∣E (Uρn,α; f ;x)∣∣ ≤ C

n
φ(x)

{
‖f ′′ − g‖+ n−1/2‖φg′‖

}
.

Taking the infimum on the right hand side of the above relations over g ∈Wφ[0, 1], we get∣∣nE (Uρn,α; f ;x)∣∣ ≤ { CKφ

(
f ′′;φ(x)n−1/2

)
,

Cφ(x)Kφ

(
f ′′;n−1/2

)
.

Using (3.11) the theorem is proved. �

Lastly we discuss the approximation of functions with a derivative of bounded varia-
tion on [0, 1]. Let DBV [0, 1] denote the class of differentiable functions f defined on [0, 1],
whose derivatives are of bounded variation on [0, 1]. The functions f ∈ DBV [0, 1] has the
following representation

f(x) =

∫ x

0

g(t)dt+ f(0),

where g ∈ BV [0, 1], i.e., g is a function of bounded variation on [0, 1].

Theorem 3.4. Let f ∈ DBV [0, 1]. Then, for every x ∈ (0, 1) and sufficiently large n, we have

|Uρn,α(f ;x)− f(x)| ≤ {|f ′(x+) + αf ′(x−)|+ α|f ′(x+)− f ′(x−)|}
√
α

α+ 1
δn,ρ(x)

+
αδ2n,ρ(x)

x

[
√
n]∑

k=1

 x∨
x−x/k

f ′x

+
x√
n

 x∨
x−x/

√
n

f ′x


+
αδ2n,ρ(x)

1− x

[
√
n]∑

k=1

x+(1−x)/k∨
x

f ′x

+
1− x√
n

x+(1−x)/
√
n∨

x

f ′x

 ,

where
∨b
a f denotes the total variation of f on [a, b] and f ′x is defined by

f ′x(t) =

 f ′(t)− f ′(x−), 0 ≤ t < x
0, t = x

f ′(t)− f ′(x+) x < t ≤ 1.
(3.19)
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Proof. Since Uρn,α(1;x) = 1, using (2.5), for every x ∈ (0, 1) we get

(3.20) Uρn,α(f ;x)− f(x) =
∫ 1

0

Kρ
n,α(x, t)(f(t)− f(x))dt =

∫ 1

0

Kρ
n,α(x, t)

∫ t

x

f ′(u)du dt.

For any f ∈ DBV [0, 1], from (3.19) we may write

f ′(u) = f ′x(u) +
1

α+ 1
(f ′(x+) + αf ′(x−))(3.21)

+
1

2
(f ′(x+)−f ′(x−))

(
sgn(u−x)+α−1

α+1

)
+δx(u)[f

′(u)− 1

2
(f ′(x+)+f ′(x−))],

where

δx(u) =

{
1 , u = x
0 , u 6= x

.

Obviously,∫ 1

0

(∫ t

x

(
f ′(u)− 1

2
(f ′(x+) + f ′(x−))

)
δx(u)du

)
Kρ
n,α(x, t)dt = 0.(3.22)

Using (2.5), we get

A1 =

∫ 1

0

(∫ t

x

1

α+ 1
(f ′(x+) + αf ′(x−))du

)
Kρ
n,α(x, t)dt(3.23)

=
1

α+ 1
(f ′(x+) + αf ′(x−))

∫ 1

0

(t− x)Kρ
n,α(x, t)dt

=
1

α+ 1
(f ′(x+) + αf ′(x−))Uρn,α((t− x);x)

and

A2 =

∫ 1

0

Kρ
n,α(x, t)

(∫ t

x

1

2
(f ′(x+)− f ′(x−))

(
sgn(u− x) + α− 1

α+ 1

)
du

)
dt(3.24)

=
1

2

(
f ′(x+)− f ′(x−)

)[
−
∫ x

0

(∫ x

t

(
sgn(u− x) + α− 1

α+ 1

)
du

)
Kρ
n,α(x, t)dt

+

∫ 1

x

( t∫
x

(
sgn(u− x) + α− 1

α+ 1

)
du

)
Kρ
n,α(x, t)dt

]

=
α

α+ 1

(
f ′(x+)− f ′(x−)

)∫ 1

0

|t− x|Kρ
n,α(x, t)dt

=
α

α+ 1

(
f ′(x+)− f ′(x−)

)
Uρn,α

(
|t− x| ;x

)
.

Using Lemma 2.3, the equalities (3.20-3.24) and applying Cauchy-Schwarz inequality,
we obtain

|Uρn,α(f ;x)−f(x)|≤
1

α+ 1
|f ′(x+)+αf ′(x−)|

√
αδn,ρ(x)+

α

α+1
|f ′(x+)−f ′(x−)|

√
αδn,ρ(x)

(3.25)

+

∣∣∣∣ ∫ x

0

(∫ t

x

f ′x(u)du

)
Kρ
n,α(x, t)dt

∣∣∣∣+ ∣∣∣∣ ∫ 1

x

(∫ t

x

f ′x(u)du

)
Kρ
n,α(x, t)dt

∣∣∣∣.
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Now, let

Aρn,α(f
′
x, x) =

∫ x

0

(∫ t

x

f ′x(u)du

)
Kρ
n,α(x, t)dt,

and

Bρn,α(f
′
x, x) =

∫ 1

x

(∫ t

x

f ′x(u)du

)
Kρ
n,α(x, t)dt.

Thus our problem is reduced to calculate the estimates of the terms Aρn,α(f ′x, x) and
Bρn,α(f

′
x, x). From the definition of ξρn,α given in Lemma 2.4, we can write

Aρn,α(f
′
x, x) =

∫ x

0

(∫ t

x

f ′x(u)

)
∂

∂t
ξρn,α(x, t)dt.

Applying the integration by parts, we get

∣∣Aρn,α(f ′x, x)∣∣ ≤ ∫ x

0

|f ′x(t)|ξρn,α(x, t)dt

≤
∫ x− x√

n

0

|f ′x(t)|ξρn,α(x, t)dt+
∫ x

x− x√
n

|f ′x(t)|ξρn,α(x, t)dt := I1 + I2.

Since f ′x(x) = 0 and ξρn,α(x, t) ≤ 1, we have

I2 :=

∫ x

x− x√
n

|f ′x(t)− f ′x(x)| ξρn,α(x, t)dt ≤
∫ x

x− x√
n

(
x∨
t

f ′x

)
dt

≤

 x∨
x− x√

n

f ′x

∫ x

x− x√
n

dt =
x√
n

 x∨
x− x√

n

f ′x

 .

By applying Lemma 2.4 and considering t = x− x

u
, we get

I1 ≤ αδ2n,ρ(x)
∫ x− x√

n

0

|f ′x(t)− f ′x(x)|
dt

(x− t)2
≤ αδ2n,ρ(x)

∫ x− x√
n

0

(
x∨
t

f ′x

)
dt

(x− t)2

=
αδ2n,ρ(x)

x

∫ √n
1

 x∨
x− xu

f ′x

 du ≤
αδ2n,ρ(x)

x

[
√
n]∑

k=1

 x∨
x− xk

f ′x

 .

Therefore,

|Aρn,α(f ′x, x)| ≤
αδ2n,ρ(x)

x

[
√
n]∑

k=1

 x∨
x− xk

f ′x

+
x√
n

 x∨
x− x√

n

f ′x

 .(3.26)
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Also, using integration by parts in Bρn(f
′
x, x) and applying Lemma 2.4 with

z = x+ (1− x)/
√
n, we have

|Bρn,α(f ′x, x)| =
∣∣∣∣ ∫ 1

x

(∫ t

x

f ′x(u)du

)
Kρ
n,α(x, t)dt

∣∣∣∣
=

∣∣∣∣∫ z

x

(∫ t

x

f ′x(u)du

)
∂

∂t
(1−ξρn,α(x, t))dt+

∫ 1

z

(∫ t

x

f ′x(u)du

)
∂

∂t
(1−ξρn,α(x, t))dt

∣∣∣∣
=

∣∣∣∣[ ∫ t

x

(f ′x(u)du)(1− ξρn,α(x, t))
]z
x

−
∫ z

x

f ′x(t)(1− ξρn,α(x, t))dt

+

∫ 1

z

∫ t

x

(f ′x(u)du)
∂

∂t
(1− ξρn,α(x, t))dt

∣∣∣∣
=

∣∣∣∣ ∫ z

x

(f ′x(u)du)(1− ξρn,α(x, z))−
∫ z

x

f ′x(t)(1− ξρn,α(x, t))dt

+

[ ∫ t

x

(f ′x(u)du)(1− ξρn,α(x, t))
]1
z

−
∫ 1

z

f ′x(t)(1− ξρn,α(x, t))dt
∣∣∣∣

=

∣∣∣∣ ∫ z

x

f ′x(t)(1− ξρn,α(x, t))dt+
∫ 1

z

f ′x(t)(1− ξρn,α(x, t))dt
∣∣∣∣

≤ αδ2n,ρ(x)
∫ 1

z

(
t∨
x

f ′x

)
(t− x)−2dt+

∫ z

x

t∨
x

f ′xdt

≤ αδ2n,ρ(x)
∫ 1

x+(1−x)/
√
n

(
t∨
x

f ′x

)
(t− x)−2dt+ 1− x√

n

x+(1−x)/
√
n∨

x

f ′x

 .

By substituting u = (1− x)/(t− x), we get

|Bρn,α(f ′x, x)| ≤ αδ2n,ρ(x)

∫ √n
1

x+(1−x)/u∨
x

f ′x

 (1− x)−1du+
1− x√
n

x+(1−x)/
√
n∨

x

f ′x


≤

αδ2n,ρ(x)

1− x

[
√
n]∑

k=1

x+(1−x)/k∨
x

f ′x

+
1− x√
n

x+(1−x)/
√
n∨

x

f ′x

 .(3.27)

Collecting the estimates (3.25 - 3.27), we get the required result. This completes the proof.
�

Example 3.1. Let us consider the following two functions

f : [0, 1]→ R, f(x)=
{
x2 sin 1

x , x 6= 0

0, x = 0
and g : [0, 1]→ R, g(x) =

{
(1− x) cos π

1−x , x 6= 1

0, x = 1

The function f is differentiable and of bounded variation on [0, 1], while g is continuous
but is not of bounded variation on [0, 1].

For n = 20, ρ = 1 and α ∈
{
1, 32 , 2

}
, the convergence of Uρn,αf to f and Uρn,αg to g is

illustrated in Figure 1 and Figure 2, respectively.
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Figure 1: The convergence of Uρn,α(f ;x) to f(x)

Figure 2: The convergence of Uρn,α(g;x) to g(x)
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bution, Appl. Math. Comput., 261 (2015), 323–329

[17] Karsli, H., Rate of convergence of new Gamma type operators for functions with derivatives of bounded variation,
Math. Comput. Modelling, 45 (2007), 617–624
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