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Iterative methods for generalized split feasibility problems
in Banach spaces
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ABSTRACT. Inspired by the recent work of Takahashi et al. [W. Takahashi, H.-K. Xu and J.-C. Yao, Iterative
methods for generalized split feasibility problems in Hilbert spaces, Set-Valued Var. Anal., 23 (2015), 205–221], in this
paper, we study generalized split feasibility problems (GSFPs) in the setting of Banach spaces. We propose
iterative algorithms to compute the approximate solutions of such problems. The weak convergence of the
sequence generated by the proposed algorithms is studied. As applications, we derive some algorithms and
convergence results for some problems from nonlinear analysis, namely, split feasibility problems, equilibrium
problems, etc. Our results generalize several known results in the literature including the results of Takahashi et
al. [W. Takahashi, H.-K. Xu and J.-C. Yao, Iterative methods for generalized split feasibility problems in Hilbert spaces,
Set-Valued Var. Anal., 23 (2015), 205–221].

1. INTRODUCTION AND FORMULATIONS

The split feasibility problem (in short, SFP) is formulated as:

(1.1) Find x∗ ∈ C such that Ax∗ ∈ Q,

where C and Q are nonempty closed convex subsets of real Hilbert spaces H1 and H2,
respectively, and A : H1 → H2 is a bounded linear operator. There has been growing
interest in recent years in the theory of split feasibility problems. It has been considered
by many authors in several different directions because of its applications to medical im-
age reconstruction [7], intensity-modulated radiation therapy [12], signal processing and
image reconstruction [8], etc. For further details on SFP, we refer [3, 10, 11, 17, 25, 27]
and the references therein. In the recent past, several split type problems have been intro-
duced and studied. Byrne et al. [9] considered and studied the split common null point
problem (in short, SCNPP) in the setting of Hilbert spaces. They developed some algo-
rithms for finding the approximate solutions of SCNPP. Very recently, Takahashi and Yao
[26, 28] introduced SCNPP in the setting of Banach spaces. By using hybrid method and
Halpern-type method, they proposed some iterative algorithms for computing the ap-
proximate solutions of SCNPP. They also established some strong and weak convergence
theorems for such algorithms under some suitable conditions.

In this paper, we study the following generalized split feasibility problems (in short,
GSFP) in the setting of Banach spaces. Let B1 and B2 be uniformly convex and uniformly
smooth real Banach spaces. LetK : B1 ⇒ B∗1 be a maximal monotone set-valued mapping
such that K−10 6= ∅, and S : B2 → B2 be a nonexpansive mapping such that Fix(S) 6= ∅
and A : B1 → B2 be a bounded linear operator, where Fix(S) denotes the set of fixed
points of S. The generalized split feasibility problem in the setting of Banach spaces is
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defined as follows:

(1.2) Find x∗ ∈ Fix(V ) ∩K−10 such that Ax∗ ∈ Fix(S),

where V : C → C is a mapping such that Fix(V ) 6= ∅ and C is a nonempty closed convex
subset of B1. If we consider V ≡ I the identity mapping, then problem (1.2) reduces to
the following generalized split feasibility problem:

(1.3) Find x∗ ∈ K−10 such that Ax∗ ∈ Fix(S).

We denote by Λ and Γ the solution set of problem (1.2) and (1.3), respectively, and
assume that Λ 6= ∅ and Γ 6= ∅.

When B1 = H1 is a real Hilbert space and B2 = H2 is another real Hilbert space, then
problems (1.2) and (1.3) are considered and studied by Takahashi et al. [27].

In this paper, we propose iterative algorithms for finding the approximate solutions of
problems (1.2) and (1.3) in the setting of Banach spaces. We study the weak convergence
of proposed algorithms under some suitable conditions. At the end, we derive some
algorithms and convergence results for some problems from nonlinear analysis, namely,
split feasibility problems, equilibrium problems, etc.

2. PRELIMINARIES

Throughout this paper, we denote by N the set of positive integers and by R the set of
real numbers. Let B be a real Banach space with its topological dual space B∗ and 〈., .〉
denote the duality pairing between B and B∗. When {xn} is a sequence in B, we denote
the strong convergence of {xn} to x by xn → x and the weak convergence by xn ⇀ x.

Let S(B) be the unit sphere centered at the origin of B. The norm of B is said to be
Gâteaux differentiable if the limit

(2.4) lim
t→0

‖x+ ty‖ − ‖x‖
t

exists for each x, y ∈ S(B). The space B is said to be smooth if its norm is Gâteaux
differentiable. The norm of B is said to be uniformly Gâteaux differentiable if for each
y ∈ S(B), the limit in (2.4) is attained uniformly for all x ∈ S(B). The space B is said to
be uniformly smooth if the limit in (2.4) is attained uniformly for all x, y ∈ S(B). It is well
known that ifB is uniformly smooth, then norm ofB is uniformly Gâteaux differentiable.
A Banach space B is said to be strictly convex if ‖(x + y)/2‖ < 1 whenever x, y ∈ S(B)
and x 6= y. The spaceB is said to be uniformly convex if for all ε ∈ (0, 2], there exists δ > 0
such that x, y ∈ S(B) and ‖x− y‖ ≥ ε imply ‖(x+ y)/2‖ ≤ 1− δ.

Lemma 2.1. [18, 30] Let B be a uniformly convex Banach space. Then for any given number
r > 0, there exists a continuous strictly increasing function g : [0,∞) → [0,∞) such that
g(0) = 0 and ‖tx+ (1− t)y‖2 ≤ t‖x‖2 + (1− t)‖y‖2− t(1− t)g(‖x− y‖) for all x, y ∈ B with
‖x‖ ≤ r and ‖y‖ ≤ r, t ∈ [0, 1].

A function ρ : [0,∞)→ [0,∞), defined by

ρ(τ) = sup

{
1

2
(‖x+ y‖+ ‖x− y‖)− 1 : x, y ∈ B, ‖x‖ = 1, ‖y‖ = τ

}
,

is said to be the modulus of smoothness of B [13]. It is known that B is uniformly smooth
[13] if and only if limτ→0 ρ(τ)/τ = 0. For q > 1, a Banach spaceB is said to be q-uniformly
smooth [13] if there exists a constant c > 0 such that ρ(τ) ≤ cτ q for all τ > 0. It can be
easily seen that every q-uniformly smooth space is uniformly smooth.

The normalized duality mapping J : B ⇒ B∗ is defined as

J(x) :=
{
f∗ ∈ B∗ : 〈x, f∗〉 = ‖x‖2 = ‖f∗‖2 for all x ∈ B

}
.
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It is well-known that the normalized duality mapping J : B ⇒ B∗ is single-valued if B is
smooth (see, Theorem 4.3.1 in [23]).

The normalized duality mapping J from a smooth Banach space B into B∗ is said to
be weakly sequentially continuous if Jxn

∗
⇀ Jx whenever xn ⇀ x, where ∗

⇀ means the
weak∗ convergence in the dual space. For further details on geometry of Banach spaces,
we refer to [2, 13, 23].

Lemma 2.2. [23] Let B be a smooth Banach space and J be the normalized duality mapping on
B. Then, 〈x − y, Jx − Jy〉 ≥ 0 for all x, y ∈ B. Furthermore, if B is strictly convex and
〈x− y, Jx− Jy〉 = 0, then x = y.

Lemma 2.3. [30] Let B be a 2-uniformly smooth Banach space with best smooth constant κ > 0
and J be the normalized duality mapping on B. Then ‖x+ y‖2 ≤ ‖x‖2 + 2〈y, Jx〉+ 2‖κy‖2 for
all x, y ∈ B.

Let B be a smooth Banach space. Following Alber [1] and Kamimura and Takahashi
[16], let φ : B ×B → R be the mapping defined by

(2.5) φ(x, y) = ‖x‖2 − 2〈x, Jy〉+ ‖y‖2, for all x, y ∈ B.
If B is a Hilbert space, then we have φ(x, y) = ‖x− y‖2 for all x, y ∈ B. We know that

(2.6) (‖x‖ − ‖y‖)2 ≤ φ(x, y) ≤ (‖x‖+ ‖y‖)2, for all x, y ∈ B.
If B is strictly convex, then

(2.7) φ(x, y) = 0 ⇔ x = y.

If C is a nonempty closed convex subset of a smooth, strictly convex and reflexive
Banach space B, then, for all x ∈ B, there exists a unique point x0 ∈ C such that

(2.8) ‖x− x0‖ = min
y∈C
‖x− y‖.

We denote such a point x0 by PCx. The mapping PC is called the metric projection from
B onto C.

We also have

(2.9) φ(x, x0) = min
y∈C

φ(y, x).

Following Alber [1], we denote such a point x0 by ΠCx. The mapping ΠC is called the
generalized projection from B onto C.

The following lemmas on metric projection and generalized projection are well known.

Lemma 2.4. [23] Let B be a smooth, strictly convex, and reflexive Banach space. Let C be a
nonempty closed convex subset of B, x ∈ B and z ∈ C. Then the following conditions are
equivalent.

(i) z = PCx;
(ii) 〈z − y, J(x− z)〉 ≥ 0 for all y ∈ C.

Lemma 2.5. [1] (see also [16]) Let B be a reflexive, strictly convex, and smooth Banach space, C
be a nonempty closed convex subset of B, and x ∈ B. Then

(i) x0 = ΠCx⇔ 〈x0 − y, Jx− Jx0〉 ≥ 0 for each y ∈ C;
(ii) φ(y,ΠCx) + φ(ΠCx, x) ≤ φ(y, x) for each y ∈ C.

It is well known that the normalized duality mapping J of a Hilbert space is the identity
mapping. In the setting of Hilbert spaces, PC = ΠC .

Lemma 2.6. [16] Let B be a smooth and uniformly convex Banach space and {xn} and {yn} be
sequences in B such that either {xn} or {yn} is bounded. If φ(xn, yn) = 0, then ‖xn − yn‖ = 0.
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Lemma 2.7. [16] Let r > 0 and B be a uniformly convex and smooth Banach space. Then
g(‖y − z‖) ≤ φ(y, z) for all y, z ∈ Br = {w ∈ B : ‖w‖ ≤ r}, where g : [0,∞) → [0,∞) is a
continuous, strictly increasing, and convex function with g(0) = 0.

Definition 2.1. Let C be a nonempty closed convex subset of a smooth Banach space B
and T : C → C be an operator. A point a ∈ C is called an asymptotic fixed point [22] of T
if there exists a sequence {xn} such that xn ⇀ a and limn→∞ ‖xn − Txn‖ = 0. The set of
asymptotic fixed points of T is denoted by F̂ix(T ).

The operator T : C → C is said to be:

(a) nonexpansive if ‖Tx− Ty‖ ≤ ‖x− y‖ for all x, y ∈ C;
(b) firmly nonexpansive type [18] if φ(Tx, Ty) + φ(Ty, Tx) + φ(Tx, x) + φ(Ty, y) ≤

φ(Tx, y) + φ(Ty, x) for all x, y ∈ C;
(c) relatively nonexpansive (see [18]) if the following properties are satisfied:

(i) Fix(T ) 6= ∅;
(ii) φ(p, Tx) ≤ φ(p, x) for all p ∈ Fix(T), x ∈ C;

(iii) F̂ix(T ) = Fix(T ).
(d) strongly relatively nonexpansive (see [18, 22]) if the following properties are sat-

isfied:
(i) T is relative nonexpansive;

(ii) lim
n→∞

φ(Txn, xn)=0 whenever {xn} is bounded sequence inC and lim
n→∞

(φ(p, xn)

−φ(p, Txn)) = 0 for some p ∈ Fix(T ).
(e) nonspreading [19] if φ(Tx, Ty) + φ(Ty, Tx) ≤ φ(Tx, y) + φ(Ty, x) for all x, y ∈ C;
(f) generalized nonspreading [15, 20] if there are α, β, γ, δ ∈ R such that

(2.10) αφ(Tx, Ty) + (1− α)φ(x, Ty) + γ{φ(Ty, Tx)− φ(Ty, x)}
≤ βφ(Tx, y) + (1− β)φ(x, y) + δ{φ(y, Tx)− φ(y, x)}, for all x, y ∈ C.

Remark 2.1. A generalized nonspreading mapping is nonspreading if α = 1, γ = 1, β = 1
and δ = 0.

Remark 2.2. If B is a real Hilbert space, then φ(x, y) = ‖x − y‖, and therefore we obtain
the following inequality from (2.10)

(2.11) α‖Tx− Ty‖2 + (1− α)‖x− Ty‖2 + γ{‖Tx− Ty‖2 − ‖x− Ty‖2}
≤ β‖Tx− y‖2 + (1− β)‖x− y‖2 + δ{‖Tx− y‖2 − ‖x− y‖2}, for all x, y ∈ C.

This implies that

(2.12) (α+ γ)‖Tx− Ty‖2 + {1− (α+ γ)}‖x− Ty‖2

≤ (β + δ)‖Tx− y‖2 + {1− (β + δ)}‖x− y‖2, for all x, y ∈ C.

So, from (2.12), T is a generalized hybrid mapping on a Hilbert space (see, [15, 20]). Ob-
serve that if Fix(T) 6= ∅, then φ(p, Ty) ≤ φ(p, y) for all p ∈ Fix(T) and y ∈ C. Indeed,
putting x = p ∈ Fix(T) in (2.10), we obtain

(2.13) αφ(p, Ty) + (1− α)φ(p, Ty) + γ{φ(Ty, p)− φ(Ty, p)}
≤ βφ(p, y) + (1− β)φ(p, y) + δ{φ(y, p)− φ(y, p)}.

So, we have

(2.14) φ(p, Ty) ≤ φ(p, y).
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Lemma 2.8. [15, 20] Let B be a strictly convex Banach space with a uniformly Gâteaux differ-
entiable norm and C be a nonempty closed convex subset of B. Let T : C → C be a generalized
nonspreading mapping such that Fix(T) 6= ∅. Then F̂ix(T) = Fix(T) and Fix(T) is closed and
convex.

Remark 2.3. In view of Lemma 2.8 and inequality (2.14), we can say that every general-
ized nonspreading mapping is relative nonexpansive provided Fix(T) 6= ∅ (see [20]).

Let K : B ⇒ B∗ be a set-valued mapping. The domain, range, graph and inverse of K
are denoted by

D(K) = {x ∈ B : K(x) 6= ∅}, R(K) = {x∗ ∈ B∗ : x∗ ∈ Kx},
G(K) = {(x, x∗) : x∗ ∈ Kx} and K−10 = {x ∈ D(K) : 0 ∈ Kx},

respectively.

Definition 2.2. [18] A set-valued mapping K : B ⇒ B∗ is said to be
(a) monotone if 〈x− y, x∗ − y∗〉 ≥ 0 whenever (x, x∗), (y, y∗) ∈ G(K).
(b) maximal monotone if its graph is not properly contained in the graph of any other

monotone operator.

Remark 2.4. If K is maximal monotone, then the solution set K−10 is closed and convex.

Lemma 2.9. [21] Let B be a smooth, strictly convex and reflexive Banach space and K :
B ⇒ B∗ be a monotone operator. ThenK is maximal monotone if and only ifR(J+λK) =
B∗ for all λ > 0.

Let B be a smooth, strictly convex and reflexive Banach space and K : B ⇒ B∗ be a
maximal monotone operator. Then for λ > 0 and x ∈ B, consider

JKλ x := {z ∈ B : Jx ∈ Jz + λK(z)}.
In other words, JKλ = (J + λK)−1J . Also, JKλ is known as relative resolvent of K for
λ > 0. Following [18], we know the following properties:

(i) JKλ : B → D(K) is a single-valued mapping;
(ii) K−10 = Fix(JK

λ ) for each λ > 0;
(iii) JKλ is strongly relative nonexpansive.
We close this section by mentioning the closedness principle in the setting of uniformly

convex Banach spaces.

Lemma 2.10. [6] Let C be a nonempty closed convex subset of a uniformly convex Banach space
B and T : C → B be a nonexpansive mapping. If {xn} is a sequence of C such that xn ⇀ x
and ‖(I − T )xn‖ → 0, then (I − T )x = 0, that is, x is a fixed point of T , where I is the identity
mapping on B.

3. ALGORITHMS AND CONVERGENCE RESULTS

Throughout this section, unless otherwise specified, we assume thatB1 andB2 are uni-
formly convex and 2-uniformly smooth real Banach spaces having smoothness constant
κ satisfying 0 < κ ≤ 1√

2
. Let K : B1 ⇒ B∗1 be a maximal monotone set-valued mapping

such that K−10 6= ∅, S : B2 → B2 be a nonexpansive mapping such that Fix(S) 6= ∅
and A : B1 → B2 be a bounded linear operator whose adjoint is denoted by A∗. Let JKλ
be a relative resolvent operator of K for λ > 0 and V : C → C be a mapping such that
Fix(V ) 6= ∅. We denote by JB1

and JB2
the normalized duality mappings on B1 and B2,

respectively.
We propose the following algorithm to solve the problem (1.2).
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Algorithm 3.1. Choose arbitrary x1 ∈ C and βn ∈ (0, 1), compute
(3.15)
xn+1 = J−1

B1

(
βnJB1

(xn) + (1− βn)JB1
V JKλ

(
J−1
B1

(JB1
(xn)− γA∗JB2

(I − S)Axn)
))
,

for all n ∈ N, 0 < c ≤ βn ≤ d < 1, γ ∈
(

0, 1
‖A‖2

)
and λ > 0.

We also propose the following algorithm to solve the problem (1.3).

Algorithm 3.2. Choose arbitrary x1 ∈ B1 and compute

(3.16) xn+1 = JKλ
(
J−1
B1

(JB1
(xn)− γA∗JB2

(I − S)Axn)
)
, for all n ∈ N,

where γ ∈
(

0, 1
‖A‖2

)
and λ > 0.

We first establish weak convergence of the sequence generated by Algorithm 3.2 to a
solution of problem (1.3).

Theorem 3.1. If JB1
is weakly sequentially continuous, then the sequence {xn} generated by

Algorithm 3.2 converges weakly to an element z ∈ Γ.

Proof. Let p ∈ Γ. Then JKλ p = p and S(Ap) = Ap. Let

yn = J−1
B1

(JB1
(xn)− γA∗JB2

(I − S)Axn).

In view of equation (2.5) and Lemma 2.3, we have

φ(p, yn) = φ(p, J−1
B1

(JB1(xn)− γA∗JB2(I − S)Axn))

= ‖p‖2 − 2〈p, JB1
(xn)− γA∗JB2

(I − S)Axn〉+ ‖JB1
(xn)− γA∗JB2

(I − S)Axn‖2

= ‖p‖2 − 2〈p, JB1
(xn)− γA∗JB2

(I − S)Axn〉+ ‖xn − γJ−1
B1
A∗JB2

(I − S)Axn‖2

≤ ‖p‖2 − 2〈p, JB1(xn)〉+ 2γ〈Ap, JB2(I − S)Axn〉(3.17)

+ ‖γJ−1
B1
A∗JB2(I − S)Axn‖2 − 2〈xn, γA∗JB2(I − S)Axn〉+ 2‖κxn‖2

≤ ‖p‖2 − 2〈p, JB1
(xn)〉+ 2γ〈Ap, JB2

(I − S)Axn〉
+ γ2‖A‖2‖(I − S)Axn‖2 − 2γ〈Axn, JB2(I − S)Axn〉+ ‖xn‖2

≤ φ(p, xn) + γ2‖A‖2‖(I − S)Axn‖2 + 2γ〈Ap−Axn, JB2
(I − S)Axn〉.

From nonexpansiveness of S and Lemma 2.3, we have

〈Ap−Axn, JB2
(I − S)Axn〉

= 〈Ap− S(Axn), JB2(I − S)Axn〉 − ‖(I − S)Axn‖2

≤ 1

2
‖(I − S)Axn‖2 +

1

2
‖Ap− S(Axn)‖2 − 1

2
‖Axn −Ap‖2 − ‖(I − S)Axn‖2

= −1

2
‖(I − S)Axn‖2 +

1

2
‖S(Axn)−Ap‖2 − 1

2
‖Axn −Ap‖2

= −1

2
‖(I − S)Axn‖2,(3.18)

that is,

(3.19) 2γ〈Ap−Axn, JB2
(I − S)Axn〉 ≤ −γ‖(I − S)Axn‖2.

Notice that γ ∈
(
0, 1/‖A‖2

)
and making use of inequality (3.19) in (3.17), we have

φ(p, yn) ≤ φ(p, xn) + γ2‖A‖2‖(I − S)Axn‖2 − γ‖(I − S)Axn‖2

= φ(p, xn)− γ(1− γ‖A‖2)‖(I − S)Axn‖2.(3.20)
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In view of relative nonexpansiveness of JKλ and (3.20), we have

φ(p, xn+1) = φ(p, JKλ yn) ≤ φ(p, yn)

≤ φ(p, xn)− γ(1− γ‖A‖2)‖(I − S)Axn‖2(3.21)

≤ φ(p, xn).(3.22)

Hence, from (3.22), the sequence φ(p, xn) is a decreasing sequence and from (2.6), it is
bounded below by 0. Consequently, it converges to some finite limit, so lim

n→∞
φ(p, xn)

exists and, in particular, φ(p, xn) is bounded. Then by (2.6), {xn} is also bounded. Again
by the fact that γ ∈

(
0, 1
‖A‖2

)
and by passing to the limit in (3.21), we obtain

γ(1− γ‖A‖2) lim
n→∞

(
‖(I − S)Axn‖2

)
≤ lim
n→∞

(φ(p, xn)− φ(p, xn+1)) ,

so, we have

(3.23) lim
n→∞

‖(I − S)Axn‖ = 0.

Now, consider

φ(xn, yn) = φ(xn, J
−1
B1

(JB1(xn)− γA∗JB2(I − S)Axn)

= ‖xn‖2 − 2〈xn, JB1
(xn)− γA∗JB2

(I − S)Axn〉
+ ‖JB1(xn)− γA∗JB2(I − S)Axn‖2

≤ ‖xn‖2 − 2〈xn, JB1
(xn)〉+ 2γ〈Axn, JB2

(I − S)Axn〉
+ ‖xn‖2 − 2γ〈Axn, JB2(I − S)Axn〉+ γ2‖A‖2‖(I − S)Axn‖2

≤ φ(xn, xn) + γ2‖A‖2‖(I − S)Axn‖2.(3.24)

In view of (2.7), (3.23) and (3.24), we have

(3.25) lim
n→∞

φ(xn, yn) = 0.

By Lemma 2.6, we have

(3.26) lim
n→∞

‖xn − yn‖ = 0.

In view of relative nonexpansiveness of JKλ and (3.22), we have

0 ≤ φ(p, yn)− φ(p, JKλ yn)

≤ φ(p, xn)− φ(p, xn+1)→ 0 as n→∞.(3.27)

From (3.20), we obtain the boundedness of φ(p, yn). Again in view of (2.6), we have the
boundedness of {yn}. Thus by strongly relative nonexpansiveness of JKλ , and from (3.27),
we have

(3.28) lim
n→∞

φ(JKλ yn, yn) = 0,

so by Lemma 2.6, we have

(3.29) lim
n→∞

‖JKλ yn − yn‖ = 0.

Since B1 is uniformly convex, it is reflexive [13, Milman-Pettis’theorem, Theorem 1.17].
Therefore, B1 is reflexive and by the boundedness of {xn}, there exists a subsequence
{xni} of {xn} such that xni ⇀ z ∈ B1 (see [14, property 1.8]).

Now we show that xn ⇀ z. In order to show this, we have to show that every sub-
sequence of xn converges weakly to z. Assume to the contrary that there exists another
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subsequence {xnj
} of {xn} such that xnj

⇀ y ∈ B1 where z 6= y. Since JB1
is weakly

sequentially continuous, so JB1
xni

∗
⇀ JB1

z and JB1
xnj

∗
⇀ JB1

y ,

〈y − z, JB1
z〉 = lim

i→∞
〈y − z, JB1

xni
〉 = lim

n→∞
〈y − z, JB1

xn〉

= lim
j→∞
〈y − z, JB1xnj 〉 = 〈y − z, JB1y〉.

Thus we obtain 〈z − y, JB1
z − JB1

y〉 = 0. Since B1 is uniformly convex, by [2, Theorem
2.14] it is strictly convex. Then by Lemma 2.2, we have z = y. Thus we have shown
that every subsequence of {xn} converges weakly to z. This implies that xn ⇀ z. Since
A is bounded linear operator, so Axn ⇀ Az. Thus by (3.23) and using the fact that S is
demiclosed at 0, we have S(Az) = Az. From (3.26), we have yn ⇀ z as follow: For all
f ∈ B∗1 ,

‖f(yn)− f(z)‖ = ‖f(yn)− f(xn) + f(xn)− f(z)‖
≤ ‖f(yn)− f(xn)‖+ ‖f(xn)− f(z)‖
≤ ‖f‖‖yn − xn‖+ ‖f(xn)− f(z)‖ → 0 as n→ ∞.(3.30)

Thus yn ⇀ z. By (3.29) and by the relative nonexpansiveness of JKλ , we have JKλ z = z.
Thus we have shown that xn ⇀ z such that z ∈ K−10 and Az ∈ Fix(S). This completes
the proof. �

Theorem 3.2. Let C be a closed convex subset of B1, K : B1 ⇒ B∗1 be a maximal monotone
operator such that D(K) ⊆ C and K−10 6= ∅. Let V : C → C be a generalized nonspreading
mapping such that Fix(V) 6= ∅. If JB1

is weakly sequentially continuous, then the sequence {xn}
generated by Algorithm 3.1 converges weakly to an element z ∈ Λ, which is identified as the strong
limit of the orthogonal projection of {xn} onto Λ, that is, z = limn→∞ΠΛxn.

Proof. Let yn = J−1
B1

(JB1
(xn)− γA∗JB2

(I −S)Axn)) and zn = JKλ yn. Then (3.15) takes the
following form

xn+1 = J−1
B1

(βnJB1(xn) + (1− βn)JB1V zn).

Let p ∈ Λ. Then JKλ p = p, V p = p and S(Ap) = Ap. It follows that

φ(p, xn+1) = φ(p, J−1
B1

(βnJB1(xn) + (1− βn)JB1(V zn)))

= ‖p‖2 − 2〈p, βnJB1
xn + (1− βn)JB1

(V zn)〉
+ ‖βnJB1(xn) + (1− βn)JB1(V (zn))‖2

≤ ‖p‖2 − 2βn〈p, JB1
xn〉 − 2(1− βn)〈p, JB1

(V zn)〉
+ βn‖xn‖2 + (1− βn)‖V zn‖2

≤ βn(‖p‖2 − 2〈p, JB1
xn〉+ ‖xn‖2) + (1− βn)(‖p‖2 − 2〈p, JB1

V zn〉+ ‖V zn‖2)

= βnφ(p, xn) + (1− βn)φ(p, V zn)

≤ βnφ(p, xn) + (1− βn)φ(p, zn)

= βnφ(p, xn) + (1− βn)φ(p, JKλ yn)

≤ βnφ(p, xn) + (1− βn)φ(p, yn)

≤ βnφ(p, xn) + (1− βn)φ(p, xn)− (1− βn)2γ(1− γ‖A‖2)‖(I − S)Axn‖2

= φ(p, xn)− (1− βn)2γ(1− γ‖A‖2)‖(I − S)Axn‖2(3.31)

≤ φ(p, xn).(3.32)

Hence, from (3.32), the sequence φ(p, xn) is decreasing, and from (2.6) it is bounded be-
low by 0. Consequently, it converges to some finite limit, so lim

n→∞
φ(p, xn) exists and, in
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particular φ(p, xn) is bounded. Then by (2.6), {xn} is also bounded. Again by the fact that
γ ∈

(
0, 1
‖A‖2

)
, 0 < c ≤ βn ≤ d < 1, and by passing to the limit in (3.31), we obtain

(1− βn)2γ(1− γ‖A‖2) lim
n→∞

(
‖(I − S)Axn‖2

)
≤ lim

n→∞
(φ(p, xn)− φ(p, xn+1)) ,

so, we have

(3.33) lim
n→∞

‖(I − S)Axn‖ = 0.

Since JKλ and V are relative nonexpansive, from (3.20), we have

φ(p, V zn) ≤ φ(p, zn) = φ(p, JKλ yn) ≤ φ(p, yn) ≤ φ(p, xn).

Hence boundedness of φ(p, xn) implies the boundedness of φ(p, JKλ yn) and φ(p, V zn).
Thus from (2.6), {JKλ yn} and {V zn} are bounded. Put

r = sup
n∈N∪{0}

{‖JB1(xn)‖, ‖JB1(JKλ (yn))‖, ‖JB1(V zn)‖}.

Since B1 is uniformly smooth Banach space, B∗1 is a uniformly convex Banach space [13].
So by Lemma 2.1, we have

φ(p, xn+1)

= φ(p, J−1
B1

(βnJB1(xn) + (1− βn)JB1(V zn)))

= ‖p‖2 − 2〈p, βnJB1
xn + (1− βn)JB1

(V zn)〉+ ‖βnJB1
(xn) + (1− βn)JB1

(V (zn))‖2

≤ ‖p‖2 − 2βn〈p, JB1xn〉 − 2(1− βn)〈p, JB1(V zn)〉+ βn‖xn‖2

+ (1− βn)‖V zn‖2 − βn(1− βn)g(‖JB1
(xn)− JB1

V zn‖)
≤ βn(‖p‖2 − 2〈p, JB1xn〉+ ‖xn‖2) + (1− βn)(‖p‖2 − 2〈p, JB1V zn〉+ ‖V zn‖2)

− βn(1− βn)g(‖JB1(xn)− JB1V zn‖)
= βnφ(p, xn) + (1− βn)φ(p, V zn)− βn(1− βn)g(‖JB1

(xn)− JB1
(V zn)‖)

≤ βnφ(p, xn) + (1− βn)φ(p, zn)− βn(1− βn)g(‖JB1
(xn)− JB1

V zn‖)
= βnφ(p, xn) + (1− βn)φ(p, JKλ yn)− βn(1− βn)g(‖JB1(xn)− JB1V zn‖)
≤ βnφ(p, xn) + (1− βn)φ(p, yn)− βn(1− βn)g(‖JB1(xn)− JB1V zn‖)
≤ βnφ(p, xn) + (1− βn)φ(p, xn)− (1− βn)2γ(1− γ‖A‖2)‖(I − S)Axn‖2

− βn(1− βn)g(‖JB1
(xn)− JB1

V zn‖)
= φ(p, xn)− (1− βn)2γ(1− γ‖A‖2)‖(I − S)Axn‖2 − βn(1− βn)g(‖JB1

(xn)− JB1
V zn‖),

and

(3.34) (1− βn)2γ(1− γ‖A‖2)‖(I − S)Axn‖2 + βn(1− βn)g(‖JB1
(xn)− JB1

(V zn)‖)
≤ φ(p, xn)− φ(p, xn+1),

using the fact 0 < c ≤ βn ≤ d < 1, γ ∈
(

0, 1
‖A‖2

)
and by (3.33). Passing to the limit in

(3.34), we have

(3.35) lim
n→∞

g(‖JB1(xn)− JB1(V zn)‖) = 0.

Since g : [0,∞) → [0,∞) is a continuous, strictly increasing, and convex function with
g(0) = 0, therefore

(3.36) lim
n→∞

‖JB1
(xn)− JB1

(V zn)‖ = 0.
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Since B1 is uniformly convex and uniformly smooth, it is a smooth, strictly convex and
reflexive Banach space. Then JB1

is a single-valued bijection. In this case, the duality
mapping JB∗

1
from B∗1 onto B∗∗1 = B1 coincides with the inverse of the duality mapping

JB1
from B1 onto B∗1 , that is, JB∗

1
= J−1

B1
. Since B1 is uniformly convex, B∗1 is uniformly

smooth (see [13]). Therefore, by uniformly smoothness of B∗1 , J−1
B1

is uniformly norm-to-
norm continuous on bounded sets (see [13, 23]). Thus, we obtain

(3.37) lim
n→∞

‖xn − V zn‖ = lim
n→∞

∥∥J−1
B1

(JB1(xn))− J−1
B1

(JB1(V zn))
∥∥ = 0.

Also, as yn = J−1
B1

(JB1(xn)− γA∗JB2(I − S)Axn)), we have

φ(xn, yn) = φ(xn, J
−1
B1

(JB1
(xn)− γA∗JB2

(I − S)Axn)

= ‖xn‖2 − 2〈xn, JB1(xn)− γA∗JB2(I − S)Axn〉
+ ‖JB1

(xn)− γA∗JB2
(I − S)Axn‖2

≤ ‖xn‖2 − 2〈xn, JB1(xn)〉+ 2γ〈Axn, JB2(I − S)Axn〉
+ ‖xn‖2 − 2γ〈Axn, JB2

(I − S)Axn〉+ γ2‖A‖2‖(I − S)Axn‖2

≤ φ(xn, xn) + γ2‖A‖2‖(I − S)Axn‖2.(3.38)

In view of (2.7), (3.33) and (3.38), we have

(3.39) lim
n→∞

φ(xn, yn) = 0.

Thus in view of (3.39), boundedness of {xn} and Lemma 2.6, we have

(3.40) lim
n→∞

‖xn − yn‖ = 0.

Consequently, we have

(3.41) lim
n→∞

‖yn − V zn‖ = 0,

that is,

(3.42) lim
n→∞

‖yn − V JKλ yn‖ = 0.

Since B1 is uniformly convex, it is reflexive. By the boundedness of {xn}, there exists a
subsequence {xni

} of {xn} such that xni
⇀ z ∈ B1. Since JB1

is weakly sequentially
continuous, as in the proof of Theorem 3.1, xn ⇀ z, and so Axn ⇀ Az. Thus from
(3.33) and knowing the fact that S is demiclosed at 0, we have S(Az) = Az. In view of
(3.40), we have yn ⇀ z. Further note that V : C → C is relative nonexpansive mapping
and JKλ : B1 → D(K) is strongly relative nonexpansive such that D(K) ⊆ C. Hence
in view of [5, Lemma 3.2 and 3.3], we have V JKλ : B1 → C is relative nonexpansive
mapping such that Fix(V JKλ ) = Fix(V ) ∩ Fix(JKλ ). Since yn ⇀ z, from (3.42) and by
relative nonexpansiveness of V JKλ , we have z ∈ Fix(V JKλ ). Thus we have JKλ z = z and
V z = z. Thus we have shown that z ∈ Λ := Fix(V ) ∩ K−10 ∩ A−1Fix(S). In view of
Lemma 2.8, Fix(V ) is closed and convex. Since K is maximal monotone set-valued map,
so K−10 is closed and convex (see Remark 2.4). Since S is nonexpansive, so Fix(S) is
closed and convex. By the continuity and linearity of A, we have that A−1(Fix(S)) is
closed and convex. Thus Λ is closed convex subspace of B1. Now we have to show that
z = lim

n→∞
ΠΛxn. Let un = ΠΛxn, for each n ∈ N ∪ {0}. Then un ∈ Λ and un+1 = ΠΛxn+1.

Since inequality (3.32) holds for each p ∈ Λ, we have

(3.43) φ(un, xn+1) ≤ φ(un, xn).
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From Lemma 2.5 (ii), we have

φ(un,ΠΛxn+1) + φ(ΠΛxn+1, xn+1) ≤ φ(un, xn+1),

which implies that

(3.44) φ(ΠΛxn+1, xn+1) ≤ φ(un, xn+1)− φ(un,ΠΛxn+1).

Since φ(un,ΠΛxn+1) ≥ 0, we have

φ(un+1, xn+1) ≤ φ(un, xn+1)

and hence from (3.43), we have

φ(un+1, xn+1) ≤ φ(un, xn).

So, φ(un, xn) is a decreasing sequence. Since φ(un, xn) is bounded below by 0, it is con-
vergent. Also, in view of (3.43) and (3.44), we have

φ(un, un+1) ≤ φ(un, xn+1)− φ(un+1, xn+1) ≤ φ(un, xn)− φ(un+1, xn+1).

By induction, we have

φ(un, un+m) ≤ φ(un, xn)− φ(un+m, xn+m), for each m ∈ N.
Using Lemma 2.7, we have, for m, n with n > m,

g(‖um − un‖) ≤ φ(um, un) ≤ φ(um, xm)− φ(un, xn),

and hence
lim
n→∞

g(‖un − um‖) = 0.

Then the properties of g yield that

lim
n→∞

‖un − um‖ = 0.

This implies that {un} is a Cauchy sequence in Λ. Since B1 is complete and Λ is closed,
therefore Λ is complete. Hence {un} converges strongly to some point u ∈ Λ. Now we
will show that u = z. Since un = ΠΛxn, so by Lemma 2.5 (i), we have

(3.45) 〈un − z, JB1xn − JB1un〉 ≥ 0, for each z ∈ Λ.

Also, we know that {un} converges strongly to some u ∈ Λ and JB1 is weakly sequentially
continuous. Letting n→∞ in (3.45), we have

〈u− z, JB1
z − JB1

u〉 ≥ 0, that is, 〈u− z, JB1
u− JB1

z〉 ≤ 0.

Also, the monotonicity of JB1
implies that 〈u− z, JB1

u− JB1
z〉 ≥ 0. Thus, 〈u− z, JB1

u−
JB1

z〉 = 0. By using the strict convexity of B1 and Lemma 2.3, we obtain that u = z.
Therefore, {xn} converges weakly to z = lim

n→∞
ΠΛxn. This completes the proof. �

When V ≡ I the identity operator in Theorem 3.2, we have the following Corollary.

Corollary 3.1. If JB1
is weakly sequentially continuous, then the sequence {xn} generated by the

following algorithm, for any x1 ∈ B1

(3.46)
xn+1 = J−1

B1

(
βnJB1

(xn) + (1− βn)JB1
JKλ

(
J−1
B1

(JB1
(xn)− γA∗JB2

(I − S)Axn)
))
,

for all n ∈ N, where 0 < c ≤ βn ≤ d < 1 and γ ∈
(

0, 1
‖A‖2

)
converges weakly to an element

z ∈ Γ, which is identified as the strong limit of the orthogonal projection of {xn} onto Γ, that is,
z = limn→∞ΠΓxn.

Remark 3.5. Theorems 3.1 and 3.2, and Corollary 3.1 are the extension of Theorems 4.2,
4.4 and 4.3 in [27] from Hilbert space setting to Banach space setting.
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4. APPLICATION

Let C be a nonempty closed convex subset of a smooth strictly convex and reflexive
Banach space B. Let iC be the indicator function for C ⊆ B, that is, iC(x) = 0 if x ∈ C and
∞ otherwise. Then iC : B → (−∞,∞] is a proper lower semicontinuous convex function.
Rockafellar’s maximal monotonicity theorem [21] ensures that the subdifferential ∂iC ⊂
B × B∗ of iC is maximal monotone. In this case, it is known that ∂iC is reduced to the
normality operator NC for C, that is,

NC(x) = {x∗ ∈ B∗ : 〈y − x, x∗〉 ≤ 0 for all y ∈ C} .

Indeed, for any x ∈ C,

∂iC(x) = {x∗ ∈ B∗ : iC(x) + 〈y − x, x∗〉 ≤ iC(y) for all y ∈ B}
= {x∗ ∈ B∗ : 〈y − x, x∗〉 ≤ 0 for all y ∈ C} = NC(x).

We also know that ΠC is the resolvent of NC . In fact, ΠC = (J + 2−1NC)−1J (see [18]).

Remark 4.6. If PC is a metric projection of B onto C, then (see [5, 24, 25]), we have

〈PCx− PCy, J(x− PCx)− J(y − PCy)〉 ≥ 0, for all x, y ∈ C.

We also have that if xn is a sequence in B such that xn ⇀ p and ‖xn − PCxn‖ → 0, then
p = PCp, that is, p ∈ C.

Indeed, assume that xn ⇀ p and ‖xn − PCxn‖ → 0. It is clear that PCxn ⇀ p and
‖J(xn − PCxn)‖ = ‖xn − PCxn‖ → 0. Since PC is the metric projection of B onto C, we
have

〈PCxn − PCp, J(xn − PCxn)− J(p− PCp)〉 ≥ 0, for all x, y ∈ C.
Then,

−‖p− PCp‖2 = 〈p− PCp,−J(p− PCp)〉 ≥ 0, for all x, y ∈ C,
and hence, p = PCp.

4.1. Split Feasibility Problem. Let C be a nonempty closed convex subset of B1. Con-
sider K = ∂iC and S = PQ, where PQ is the metric projection onto a nonempty closed
convex subset Q of B2. Then, we have JKλ = ΠC and Fix(S) = Q. Now we recover the
split feasibility problem in the setting of Banach spaces as follow:

(4.47) Find x∗ ∈ C such that Ax∗ ∈ Q,

and the algorithm (3.16) reduces to the following algorithm: For any x1 = x ∈ B1,

(4.48) xn+1 = ΠC

(
J−1
B1

(JB1
(xn)− γA∗JB2

(I − PQ)Axn)
)
, for all n ∈ N.

Let Ω denote the solution set of (4.47), that is, Ω = {x ∈ C : Ax ∈ Q}.
The iterative scheme (4.48) is studied by Xu [31] in the setting of Hilbert spaces.

Theorem 4.3. Let B1 and B2 be uniformly convex and 2-uniformly smooth real Banach spaces
having smoothness constant κ satisfying 0 < κ ≤ 1√

2
. Let C and Q be nonempty closed convex

subsets ofB1 andB2, respectively,A : B1 → B2 be a bounded linear operator, and γ ∈
(

0, 2
‖A‖2

)
.

If Ω 6= ∅ and JB1
is weakly sequentially continuous, then the sequence {xn} generated by (4.48)

converges weakly to an element z ∈ Ω.

Proof. Let p ∈ Ω. This implies that xn ⇀ p, ΠCp = p and PQ(Ap) = Ap. Let

yn = J−1
B1

(JB1(xn)− γA∗JB2(I − PQ)Axn).
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In view of equation (2.5) and Lemma 2.3, we have

φ(p, yn) = φ(p, J−1
B1

(JB1
(xn)− γA∗JB2

(I − PQ)Axn))

= ‖p‖2 − 2〈p, JB1(xn)− γA∗JB2(I − PQ)Axn〉
+ ‖JB1

(xn)− γA∗JB2
(I − PQ)Axn‖2

= ‖p‖2 − 2〈p, JB1
(xn) + γA∗JB2

(I − PQ)Axn〉
+ ‖xn − γJ−1

B1
A∗JB2(I − PQ)Axn‖2

≤ ‖p‖2 − 2〈p, JB1
(xn)〉+ 2γ〈Ap, JB2

(I − PQ)Axn〉(4.49)

+ ‖γJ−1
B1
A∗JB2

(I − PQ)Axn‖2 − 2〈xn, γA∗JB2
(I − PQ)Axn〉+ 2‖κxn‖2

≤ ‖p‖2 − 2〈p, JB1(xn)〉+ 2γ〈Ap, JB2(I − PQ)Axn〉
+ γ2‖A‖2‖(I − PQ)Axn‖2 − 2γ〈Axn, JB2

(I − PQ)Axn〉+ ‖xn‖2

≤ φ(p, xn) + γ2‖A‖2‖(I − PQ)Axn‖2 + 2γ〈Ap−Axn, JB2(I − PQ)Axn〉.

From Remark 4.6, we have

〈Ap−Axn, JB2
(I − PQ)Axn〉

= 〈Ap− PQ(Axn), JB2
(I − PQ)Axn〉 − ‖(I − PQ)Axn‖2

≤ −‖(I − PQ)Axn‖2,(4.50)

that is,

(4.51) 2γ〈Ap−Axn, JB2
(I − PQ)Axn〉 ≤ −2γ‖(I − PQ)Axn‖2.

Notice that γ ∈
(
0, 2/‖A‖2

)
and making use of inequality (4.51) in (4.49), we have

φ(p, yn) ≤ φ(p, xn) + γ2‖A‖2‖(I − PQ)Axn‖2 − 2γ‖(I − PQ)Axn‖2

= φ(p, xn)− γ(2− γ‖A‖2)‖(I − PQ)Axn‖2.(4.52)

In view of relative nonexpansiveness of ΠC and (4.52), we have

φ(p, xn+1) = φ(p,ΠCyn) ≤ φ(p, yn)

≤ φ(p, xn)− γ(2− γ‖A‖2)‖(I − PQ)Axn‖2(4.53)

≤ φ(p, xn).(4.54)

Hence, from (4.54), the sequence φ(p, xn) is a decreasing sequence and from (2.6), it is
bounded below by 0. Consequently, it converges to some finite limit, so lim

n→∞
φ(p, xn)

exists and, in particular φ(p, xn) is bounded. Then by (2.6), {xn} is also bounded. Again
by the fact that γ ∈

(
0, 2
‖A‖2

)
and by passing to the limit in (4.53), we obtain

γ(2− γ‖A‖2) lim
n→∞

(
‖(I − PQ)Axn‖2

)
≤ lim
n→∞

(φ(p, xn)− φ(p, xn+1)) ,

so, we have

(4.55) lim
n→∞

‖(I − PQ)Axn‖ = 0.
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Now, consider

φ(xn, yn) = φ(xn, J
−1
B1

(JB1
(xn)− γA∗JB2

(I − PQ)Axn)

= ‖xn‖2 − 2〈xn, JB1
(xn)− γA∗JB2

(I − PQ)Axn〉
+ ‖JB1

(xn)− γA∗JB2
(I − PQ)Axn‖2

≤ ‖xn‖2 − 2〈xn, JB1
(xn)〉+ 2γ〈Axn, JB2

(I − PQ)Axn〉
+ ‖xn‖2 − 2γ〈Axn, JB2(I − PQ)Axn〉+ γ2‖A‖2‖(I − PQ)Axn‖2

≤ φ(xn, xn) + γ2‖A‖2‖(I − PQ)Axn‖2.(4.56)

In view of (2.7), (4.55) and (4.56), we have

(4.57) lim
n→∞

φ(xn, yn) = 0.

By Lemma 2.6, we have

(4.58) lim
n→∞

‖xn − yn‖ = 0.

In view of relative nonexpansiveness of ΠC and (4.54), we have

0 ≤ φ(p, yn)− φ(p,ΠCyn)

≤ φ(p, xn)− φ(p, xn+1)→ 0 as n→∞.(4.59)

From (4.52), we obtain the boundedness of φ(p, yn). Again in view of (2.6), we have the
boundedness of {yn}. Thus by strongly relative nonexpansiveness of ΠC , and from (4.59),
we have

(4.60) lim
n→∞

φ(ΠCyn, yn) = 0,

so by Lemma 2.6, we have

(4.61) lim
n→∞

‖ΠCyn − yn‖ = 0.

Since B1 is uniformly convex, it is reflexive [13, Milman-Pettis’theorem, Theorem 1.17].
Therefore, B1 is reflexive and by the boundedness of {xn}, there exists a subsequence
{xni
} of {xn} such that xni

⇀ z ∈ B1 (see [14, property 1.8]).
Now we show that xn ⇀ z. In order to show this, we have to show that every sub-

sequence of xn converges weakly to z. Assume to the contrary that there exists another
subsequence {xnj} of {xn} such that xnj ⇀ y ∈ B1 where z 6= y. Since JB1 is weakly
sequentially continuous, so JB1xni

∗
⇀ JB1z and JB1xnj

∗
⇀ JB1y ,

〈y − z, JB1
z〉 = lim

i→∞
〈y − z, JB1

xni
〉 = lim

n→∞
〈y − z, JB1

xn〉

= lim
j→∞
〈y − z, JB1

xnj
〉 = 〈y − z, JB1

y〉.

Thus we obtain 〈z − y, JB1
z − JB1

y〉 = 0. Since B1 is uniformly convex, by [2, Theorem
2.14] it is strictly convex. Then by Lemma 2.2, we have z = y. Thus we have shown that
every subsequence of {xn} converges weakly to z. This implies that xn ⇀ z. Since A is
bounded linear operator, so Axn ⇀ Az. Thus by (4.55) and using Remark 4.6, we have
PQ(Az) = Az. From (4.58), we have yn ⇀ z as follow: For all f ∈ B∗1

‖f(yn)− f(z)‖ = ‖f(yn)− f(xn) + f(xn)− f(z)‖
≤ ‖f(yn)− f(xn)‖+ ‖f(xn)− f(z)‖
≤ ‖f‖‖yn − xn‖+ ‖f(xn)− f(z)‖ → 0 as n→ ∞.(4.62)
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Thus yn ⇀ z. Notice (4.61) and by the relative nonexpansiveness of ΠC , we have ΠCz = z.
Thus we have shown that xn ⇀ z such that z ∈ C and Az ∈ Q. This completes the
proof. �

As a consequence of Theorem 3.2, we have the following result.

Theorem 4.4. Let B1 and B2 be uniformly convex and 2-uniformly smooth real Banach spaces
having smoothness constant κ satisfying 0 < κ ≤ 1√

2
. Let C be a nonempty closed convex subset

of B1, A : B1 → B2 be a bounded linear operator, and S : B2 → B2 be a given nonexpansive
mapping such that Fix(S) 6= ∅. Let V : C → C be a nonspreading mapping such that Fix(V) 6= ∅.
For any x1 = x ∈ C, define
(4.63)

xn+1 = J−1
B1

(
βnJB1(xn) + (1− βn)JB1VΠC

(
J−1
B1

(JB1(xn)− γA∗JB2(I − S)Axn)
))

for all n ∈ N, where βn ∈ (0, 1) such that 0 < c ≤ βn ≤ d < 1 and γ ∈
(

0, 1
‖A‖2

)
. If JB1

is
weakly sequentially continuous, then the sequence {xn} generated by (4.63) converges weakly to
an element z ∈ Φ, where Φ = {z ∈ Fix(V) : Az ∈ Fix(S)}.

Proof. A generalized nonspreading mapping V : C → C is nonspreading by Remark
2.1. Also, the set of fixed points of nonspreading mapping T is closed and convex [19].
Furthermore, putting K = ∂iC in Theorem 3.2, we have that JKλ = ΠC for all λ > 0.
Since ΠC is strongly relative nonexpansive [18, Lemma 2.4 and Theorem 5.2], therefore
the desired result follows from the arguments given in the proof of Theorem 3.2. �

Now, we apply our results to the equilibrium problems.
Let C be a nonempty closed convex subset of a uniformly smooth, strictly convex and

reflexive Banach space B, and f : C ×C → R be a bifunction. The equilibrium problem is
to find x ∈ C such that

(4.64) f(x, y) ≥ 0, for all y ∈ C.

The set of solutions of (4.64) is denoted by EP(f). For solving the equilibrium problem,
let us assume that the bifunction f satisfies the following conditions

(A1) f(x, x) = 0 for all x ∈ C;
(A2) f is monotone, i.e., f(x, y) + f(y, x) ≤ 0 for all x, y ∈ C;
(A3) limt↓0 f(tz + (1− t)x, y) ≤ f(x, y) for all x, y, z ∈ C;
(A4) for each x ∈ B, y 7→ f(x, y) is convex and lower semicontinuous.

Takahashi and Zembayashi [29] obtained the following result.

Lemma 4.11. Let f : C × C → R be a bifunction satisfying (A1)–(A4). For r > 0, define a
resolvent operator of f by Tr : B → C by

Trx =

{
z ∈ C : f(z, y) +

1

r
〈y − z, Jz − Jx〉 ≥ 0 for all y ∈ C

}
,

for all x ∈ B. Then the following assertions hold:

(a) Tr is single-valued;
(b) Tr is a firmly nonexpansive-type mapping;
(c) Fix(Tr) = EP(f );
(d) EP(f ) is closed and convex.

The following result is a special case of a result by Aoyama et al. [4, Theorem 3.5].
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Lemma 4.12. Let f : C × C → R be a bifunction satisfying (A1)–(A4). Let Af : B ⇒ B∗ be a
set-valued mapping defined by

(4.65) Af (x) =

{
x∗ ∈ B∗ : f(x, y) ≥ 〈y − x, x∗〉 for all y ∈ C, if x ∈ C,
∅, if x /∈ C.

Then, Af is a maximal monotone operator with D(Af ) ⊆ C and EP(f) = A−1
f 0. Furthermore,

for r > 0, the resolvent Tr of f coincides with the resolvent (J + rAf )−1J of Af , that is,

(4.66) Tr(x) = (J + rAf )−1J(x)

As a consequence of Theorem 3.2, we have the following results.

Theorem 4.5. Let B1 and B2 be uniformly convex and 2-uniformly smooth real Banach spaces
having smoothness constant κ satisfying 0 < κ ≤ 1√

2
. Let C be a nonempty closed convex subset

of B1, f : C × C → R satisfy the conditions (A1)–(A4), and Tλ denote the resolvent of Af (as
defined in (4.66)) of index λ > 0. LetA : B1 → B2 be a bounded linear operator and S : B2 → B2

be a given nonexpansive mapping such that Fix(S) 6= ∅. For any x1 = x ∈ B1, define

(4.67) xn+1 = J−1
B1

(
βnJB1

(xn) + (1− βn)JB1
Tλ
(
J−1
B1

(JB1
(xn)− γA∗JB2

(I − S)Axn)
))

for all n ∈ N, where βn ∈ (0, 1) such that 0 < c ≤ βn ≤ d < 1 and γ ∈
(

0, 1
‖A‖2

)
. If JB1 is

weakly sequentially continuous, then the sequence {xn} generated by (4.67) converges weakly to
an element z ∈ Ξ, where Ξ = {z ∈ EP(f) : Az ∈ Fix(S)}.

Proof. Putting V ≡ I and K ≡ Af in Theorem 3.2, we have that JKλ ≡ Tλ for all λ >
0. Since Tλ is firmly nonexpansive type, so by [18, Theorem 5.2], it is strongly relative
nonexpansive. Thus the result follows from the arguments given in the proof of Theorem
3.2. �

Theorem 4.6. Let B1 and B2 be uniformly convex and 2-uniformly smooth real Banach spaces
having smoothness constant κ satisfying 0 < κ ≤ 1√

2
. Let C be a nonempty closed convex subset

of B1. Let f : C ×C → R satisfy the conditions (A1)–(A4), and Tλ denote the resolvent of Af (as
defined in (4.66)) of index λ > 0. Let A : B1 → B2 be a bounded linear operator, S : B2 → B2

be a given nonexpansive mapping such that Fix(S) 6= ∅, and V : C → C be a generalized
nonspreading mapping such that Fix(V) 6= ∅. For any x1 = x ∈ C, define
(4.68)

xn+1 = J−1
B1

(
βnJB1

(xn) + (1− βn)JB1
V Tλ

(
J−1
B1

(JB1
(xn)− γA∗JB2

(I − S)Axn)
))

for all n ∈ N, where βn ∈ (0, 1) such that 0 < c ≤ βn ≤ d < 1 and γ ∈
(

0, 1
‖A‖2

)
. If JB1 is

weakly sequentially continuous, then the sequence {xn} generated by (4.68) converges weakly to
an element z ∈ {z ∈ EP(f) ∩ Fix(V) : Az ∈ Fix(S)}.

Proof. Putting K ≡ Af in Theorem 3.2, we have that JKλ ≡ Tλ for all λ > 0. Hence the
conclusion follows from Theorem 3.2. �
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