An iterative process for a hybrid pair of a Bregman strongly nonexpansive single-valued mapping and a finite family of Bregman relative nonexpansive multi-valued mappings in Banach spaces

Preeyanuch Chuasuk ${ }^{1}$, Ali Farajzadeh ${ }^{2}$, Anchalee Kaewcharoen ${ }^{1}$ and Ravi P. AGARWAL ${ }^{3}$

Abstract

In this paper, we construct an iterative process involving a hybrid pair of a Bregman strongly nonexpansive single-valued mapping and a finite family of Bregman relative nonexpansive multi-valued mappings and prove strong convergence theorems of the proposed iterative process in reflexive Banach spaces under appropriate conditions. Our main results can be viewed as an improvement and extension of the several results in the literature.

1. Introduction

Throughout this paper, we denote the set of real numbers and the set of positive integers by \mathbb{R} and \mathbb{N}, respectively. Let E be a reflexive Banach space, and let C be a nonempty, closed and convex subset of E and $T: C \rightarrow C$ be a mapping. Denote by $F(T)=\{x \in$ $C: x=T x\}$ is the set of fixed points of T. A mapping T is said to be nonexpansive if $\|T x-T y\| \leq\|x-y\|$ for all $x, y \in C$.

In 1967, Bregman [4] has discovered an elegant and effective technique for the use of the Bregman distance function D_{f} in the process of designing and analyzing feasibility and optimization algorithms. This opened a growing area of research in which Bregmans technique is applied in various ways in order to design and analyze iterative algorithms for solving not only feasibility and optimization problems, but also algorithms for solving variational inequality problems, equilibrium problems, fixed point problems for nonlinear mappings, and so on (see, e.g.,[5], [15],[17], and the references therein).

Many researchers used the Bregman distances for approximating fixed points of nonlinear mappings in several iterative methods. In 2012, Suantai et al. [21] used the following Halpern's iterative scheme for a Bregman strongly nonexpansive self mapping T on E. For $u, x_{1} \in E$, let $\left\{x_{n}\right\}$ be a sequence defined by

$$
\begin{equation*}
x_{n+1}=\nabla f^{*}\left(\alpha_{n} \nabla f(u)+\left(1-\alpha_{n}\right) \nabla f\left(T x_{n}\right)\right), \quad \forall n \geq 1, \tag{1.1}
\end{equation*}
$$

where $\left\{\alpha_{n}\right\} \subset(0,1)$ satisfying $\lim _{n \rightarrow \infty} \alpha_{n}=0$ and $\sum_{n=1}^{\infty} \alpha_{n}=\infty$. They proved that the sequence $\left\{x_{n}\right\}$ generated by (1.1) converges strongly to a fixed point of T. Later, Li et al. [9] extended a Bregman strongly nonexpansive self mapping T on E for Halpern's iteration method to Bregman strongly nonexpansive multi-valued mapping $T: C \rightarrow$ $N(C)$ as follows:

$$
\begin{equation*}
x_{n+1}=\nabla f^{*}\left(\alpha_{n} \nabla f(u)+\left(1-\alpha_{n}\right) \nabla f\left(z_{n}\right)\right), \quad z_{n} \in T x_{n} \forall n \geq 1, \tag{1.2}
\end{equation*}
$$

[^0]where $\left\{\alpha_{n}\right\} \subset(0,1)$ satisfying $\lim _{n \rightarrow \infty} \alpha_{n}=0$ and $\sum_{n=1}^{\infty} \alpha_{n}=\infty$ and $N(C)$ is the family of nonempty subsets of C. They proved that the sequence $\left\{x_{n}\right\}$ generated by (1.2) converges strongly to a fixed point of T.

Very recently, Senakka and Cholamjiak [19] studied the strong convergence for a common fixed point of $T, S: C \rightarrow C$ which are Bregman strongly nonexpansive mappings in a reflexive Banach space E. For $u, x_{1} \in C$, let $\left\{x_{n}\right\}$ be a sequence generated by

$$
\left\{\begin{array}{l}
y_{n}=P_{c}^{f}\left[\nabla f^{*}\left(\beta_{n} \nabla f\left(x_{n}\right)+\left(1-\beta_{n}\right) \nabla f\left(T x_{n}\right)\right)\right] \tag{1.3}\\
x_{n+1}=P_{c}^{f}\left[\nabla f^{*}\left(\alpha_{n} \nabla f(u)+\left(1-\alpha_{n}\right) \nabla f\left(S y_{n}\right)\right)\right], \forall n \geq 1,
\end{array}\right.
$$

where $\left\{\alpha_{n}\right\} \subset(0,1)$ satisfy $\lim _{n \rightarrow \infty} \alpha_{n}=0, \sum_{n=1}^{\infty} \alpha_{n}=\infty$ and $0<\liminf _{n \rightarrow \infty} \beta_{n} \leq$ $\limsup \operatorname{sum}_{n \rightarrow \infty} \beta_{n}<1$. They proved that the sequence $\left\{x_{n}\right\}$ generated by (1.3) converges strongly to $P_{\mathcal{F}}^{f}(u)$ where $\mathcal{F}=F(T) \cap F(S)$ and $P_{\mathcal{F}}^{f}(u)$ is a Bregman projection from E onto \mathcal{F}.

In this paper, we construct an iterative process involving a hybrid pair of a Bregman strongly nonexpansive single-valued mapping and a finite family of Bregman relative nonexpansive multi-valued mappings and prove strong convergence theorems of the proposed iterative process in reflexive Banach spaces under appropriate situations. Our main results can be viewed as an improvement and extension of the several results in the literature.

2. Preliminaries

Let E be a real reflexive Banach space with the dual space of E^{*}, and $\langle\cdot, \cdot\rangle$ is the pairing between E and E^{*}. Let $f: E \rightarrow(-\infty,+\infty]$ be a function. The effective domain of f is defined by

$$
\operatorname{domf}:=\{x \in E: f(x)<+\infty\}
$$

We say that f is proper if $\operatorname{dom} f \neq \emptyset$. We denote by $\operatorname{int}(\operatorname{dom} f)$ the interior of the effective domain of f. We denote by ranf the range of f.

Let $x \in \operatorname{int}(\operatorname{dom} f)$. The subdifferential of f at x is the convex set defined by:

$$
\partial f(x)=\left\{x^{*} \in E^{*}: f(x)+\left\langle y-x, x^{*}\right\rangle \leq f(y), \forall y \in E\right\} .
$$

The Fenchel conjugate of f is the function $f^{*}: E^{*} \rightarrow(-\infty,+\infty]$ defined by $f^{*}\left(x^{*}\right)=$ $\sup \left\{\left\langle x, x^{*}\right\rangle-f(x): x \in E\right\}$. We know that $x^{*} \in \partial f(x)$ if and only if $f(x)+f^{*}\left(x^{*}\right)=\left\langle x, x^{*}\right\rangle$ for all $x \in E$. A function f on E is said to be strongly coercive if $\lim _{\|x\| \rightarrow \infty} \frac{f(x)}{\|x\|}=\infty$, for any $x \in \operatorname{int}(\operatorname{domf})$ (see [24]). Let $B_{r}:=\{x \in E:\|z\| \leq r\}$. A function f on E is said to be locally bounded if $f\left(B_{r}\right)$ is bounded for all $r>0$.

Let $f: E \rightarrow(-\infty,+\infty]$ be a convex function and $x \in \operatorname{int}(\operatorname{dom}) f$. The gradient $\nabla f(x)$ is defined to be the linear functional in E^{*} such that

$$
\left\langle y, \nabla f(x):=\lim _{t \rightarrow 0^{+}} \frac{f(x+t y)-f(x)}{t}, \forall y \in E\right.
$$

The function f is said to be Gâteaux differentiable at x if $\nabla f(x)$ is well defined, and f is Gâteaux differentiable if it is Gâteaux differentiable every where on E. The function f is said to be Frèchet differentiable at x if this limit is attained uniformly in $\|y\|=1$. Finally, f is said to be uniformly Frèchet differentiable on a subset C of E if the limit is attained uniformly for $x \in C$ and $\|y\|=1$.

Let $f: E \rightarrow(-\infty,+\infty]$ be a Gâteaux differentiable function. The function $D_{f}: \operatorname{dom} f \times$ $\operatorname{int}(\operatorname{domf}) \rightarrow(-\infty,+\infty]$ defined as follows:

$$
D_{f}(x, y):=f(x)-f(y)-\langle\nabla f(y), x-y\rangle
$$

is called the Bregman distance with respect to f (see [4]).
Remark 2.1. The Bregman distance D_{f} does not satisfy the well-known properties of a metric because D_{f} is not symmetric and does not satisfy the triangle inequality.

A Bregman projection [4] of $x \in \operatorname{int}(\operatorname{domf})$ onto a nonempty, closed and convex set $C \subset \operatorname{int}(\operatorname{dom} f)$ is the unique vector $P_{C}^{f}(x) \in C$ satisfying

$$
D_{f}\left(P_{C}^{f}(x), x\right)=\inf \left\{D_{f}(y, x): y \in C\right\}
$$

Let C be a nonempty, closed and convex subset of $\operatorname{int}(\operatorname{domf})$. A point $p \in C$ is called an asymptotic fixed point of T (see[15]) if C contains a sequence $\left\{x_{n}\right\}$ which converges weakly to p such that $\lim _{n \rightarrow \infty}\left\|x_{n}-T x_{n}\right\|=0$. We denote by $\hat{F}(T)$ the set of asymptotic fixed points of T.

Definition 2.1. ([3]) The function f is called to be
(i) essentially smooth if f is both locally bounded and single-valued on its domain.
(ii) essentially strictly convex if $(\partial f)^{-1}$ is locally bounded on its domain and f is strictly convex on every convex subset of $\operatorname{dom} f$.
(ii) Legendre if it is both essentially smooth and essentially strictly convex.

It is well known that in a reflexive Banach space E, if f is a Legendre function, then satisfies the following conditions:
(L1) f is essentially smooth if and only if f^{*} is essentially strictly convex.
(L2) f is Legendre if and only if f^{*} is Legendre.
(L3) $(\partial f)^{-1}=\partial f^{*}$.
(L4) If f is Legendre, then ∇f is a bijection satisfying:

$$
\nabla f=\left(\nabla f^{*}\right)^{-1}, \operatorname{ran} \nabla f=\operatorname{dom} \nabla f^{*}=\operatorname{int}\left(\operatorname{dom} f^{*}\right) \text { and } \nabla f^{*}=\operatorname{dom} \nabla f=\operatorname{int}(\operatorname{dom} f) .
$$

If E is a smooth and strictly convex Banach space, then an important and interesting Legendre function is $f(x):=\frac{1}{p}\|x\|^{p}(1<p<\infty)$. In this case, the gradient ∇f of f coincides with the generalized duality mapping of E, i.e., $\nabla f=J_{p}(1<p<\infty)$. In particular, $\nabla f=I$ the identity mapping in Hilbert spaces. In this article, we assume that the convex function $f: E \rightarrow(-\infty,+\infty]$ is Legendre.

Definition 2.2. Let C be a nonempty and convex subset of $\operatorname{int}(\operatorname{domf})$. A mapping T : $C \rightarrow \operatorname{int}(\operatorname{domf})$ with $F(T) \neq \emptyset$ is called to be
(i) Bregman quasi-nonexpansive, if

$$
D_{f}(p, T x) \leq D_{f}(p, x), \forall x \in C, p \in F(T)
$$

(ii) Bregman relatively nonexpansive with respect to f, if $F(T)=\hat{F}(T)$,

$$
D_{f}(p, T x) \leq D_{f}(p, x), \forall x \in C, p \in F(T)
$$

(iii) Bregman strongly nonexpansive with respect to f, if $F(T)=\hat{F}(T)$,

$$
D_{f}(p, T x) \leq D_{f}(p, x), \forall x \in C, p \in F(T) .
$$

and if whenever $\left\{x_{n}\right\} \subset C$ is bounded, $p \in \hat{F}(T)$ and

$$
\lim _{n \rightarrow \infty}\left(D_{f}\left(p, x_{n}\right)-D_{f}\left(p, T x_{n}\right)\right)=0
$$

it follows that

$$
\lim _{n \rightarrow \infty} D_{f}\left(x_{n}, T x_{n}\right)=0
$$

It is obvious that any Bregman strongly nonexpansive mapping is a Bregman relatively nonexpansive mapping, but the converse is not true in general. Pang et al. [13] showed that there exists a Bregman relatively nonexpansive mapping which is not a Bregman strongly nonexpansive mapping.

Let $N(C)$ and $C B(C)$ denote the families of nonempty subsets and nonempty closed bounded subsets of C, respectively. The Hausdorff metric on $C B(C)$ is defined by

$$
H(A, B)=\max \left\{\sup _{x \in A} \operatorname{dist}(x, B), \sup _{y \in B} \operatorname{dist}(y, A)\right\} \text { for } A, B \in C B(C)
$$

for all $A, B \in C B(C)$, where $\operatorname{dist}(x, B)=\inf \{\|x-y\|: y \in B\}$ is the distance from a point x to a subset B.
Definition 2.3. A multi-valued mapping $T: C \rightarrow C B(C)$ is said to be
(i) nonexpansive if $H(T x, T y) \leq\|x-y\|$, for all $x, y \in C$.
(ii) quasi-nonexpansive if $F(T) \neq \emptyset$ and $H(T x, T p) \leq\|x-p\|$, for all $x \in C$ and $p \in F(T)$.
Let $T: C \rightarrow C B(C)$. A point $p \in C$ is said to be a fixed point of T, if $p \in F(T)$, where $F(T)=\{p \in T: p \in T p\}$. A point $p \in C$ is said to be an asymptotic fixed point [15] of T if there exists a sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ in C which converges weakly to p and $\lim _{n \rightarrow \infty} d\left(x_{n}, T x_{n}\right)=0$.
Definition 2.4. ([20]) A mapping $T: C \rightarrow C B(C)$ with $F(T) \neq \emptyset$ is called to be
(i) Bregman quasi-nonexpansive, if

$$
D_{f}(p, z) \leq D_{f}(p, x), \forall z \in T x, x \in C \text { and } p \in F(T)
$$

(ii) Bregman relatively nonexpansive, if $F(T)=\hat{F}(T)$,

$$
D_{f}(p, z) \leq D_{f}(p, x), \forall z \in T x, x \in C \text { and } p \in F(T)
$$

The following is an example of multi-valued Bregman relatively nonexpansive mapping given by (see [20]).
Example 2.1. Let $I=[0,1], X=L^{p}(I), 1<p<\infty$ and $C=\{f \in X: f(x) \geq 0, \forall x \in I\}$. Let $T: C \rightarrow C B(C)$ be defined by

$$
\left\{\begin{array}{l}
\left\{h \in C: f(x)-\frac{1}{2} \leq h(x) \leq f(x)-\frac{1}{4}, \forall x \in I\right\} \text { if } f(x)>1, \forall x \in I \tag{2.4}\\
\{0\}, \text { otherwise. }
\end{array}\right.
$$

Then T defined by (2.4) is a multi-valued Bregman relatively nonexpansive mapping (see [20]).

Let $f: E \rightarrow \mathbb{R}$ be a Legendre and Gâteaux differentiable function. Define a function $V_{f}: E \times E^{*} \rightarrow[0,+\infty)$ associated with f by

$$
\begin{equation*}
V_{f}\left(x, x^{*}\right)=f(x)-\left\langle x, x^{*}\right\rangle+f^{*}\left(x^{*}\right), \quad \forall x \in E, x^{*} \in E^{*} . \tag{2.5}
\end{equation*}
$$

Then V_{f} is nonnegative and

$$
\begin{equation*}
V_{f}\left(x, x^{*}\right)=D_{f}\left(x, \nabla f\left(x^{*}\right) \forall x \in E, x^{*} \in E^{*}\right. \tag{2.6}
\end{equation*}
$$

Moreover, by the subdifferential inequality,

$$
\begin{equation*}
V_{f}\left(x, x^{*}\right)+\left\langle y^{*}, \nabla f^{*}\left(x^{*}\right)-x\right\rangle \leq V_{f}\left(x, x^{*}+y^{*}\right) \forall x \in E, x^{*}, y^{*} \in E^{*} \tag{2.7}
\end{equation*}
$$

(for more details see [1] and [8]).
Let $f: E \rightarrow(-\infty,+\infty]$ be a convex and Gâteaux differentiable function. The function f is called totally convex if it is totally convex at any point $x \in \operatorname{int}(\operatorname{domf})$ and is said to be totally convex on bounded if $v_{f}(B, t)>0$ for any nonempty bounded subset B of E and
$t>0$, where the modulus of total convexity of the function f on the set B is the function $v_{f}: \operatorname{int}(\operatorname{domf}) \times[0,+\infty] \rightarrow[0,+\infty]$ defined by

$$
v_{f}(B, t):=\inf \left\{V_{f}(x, t): x \in B \cap \operatorname{dom} f\right\} .
$$

We know that f is totally convex on bounded sets if and only if f is uniformly convex on bounded sets (see [6]).

The now recall the following lemmas that will be used in the sequel.
Lemma 2.1. ([18]) Let C be a nonempty closed and convex subset of $\operatorname{int}(\operatorname{domf})$ and T : $C \rightarrow C$ be a quasi-Bregman nonexpansive mapping with respect to f. Then $F(T)$ is closed and convex.

Lemma 2.2. ([20]) Let E be a real reflexive Banach space, and let $f: E \rightarrow \mathbb{R}$ be a uniformly Fréchet differentiable and totally convex on bounded subsets of E. Let C be a nonempty, closed and convex subset of $\operatorname{int}(\operatorname{domf})$ and $T: C \rightarrow C B(C)$ be a Bregman relatively nonexpansive mapping. Then $F(T)$ is closed and convex.
Lemma 2.3. ([6]) Let C be a nonempty, closed and convex subset of E. Let $f: E \rightarrow \mathbb{R}$ be a Gâteaux differentiable and totally convex function and let $x \in E$. Then

$$
z \in P_{C}^{f}(x) \text { if and only if }\langle\nabla f(x)-\nabla f(z), y-z\rangle \leq 0, \forall y \in C
$$

Lemma 2.4. ([24]) Let $f: E \rightarrow \mathbb{R}$ be a strongly coercive and uniformly convex on bounded subsets of E, then f^{*} is bounded and uniformly Fréchet differentiable on bounded subsets of E^{*}.

Lemma 2.5. ([16]) Let $f: E \rightarrow(-\infty,+\infty]$ be a uniformly Fréchet differentiable and bounded on bounded sets of E, then ∇f is uniformly continuous on bounded subsets of E from the strong topology of E to the strong topology of E^{*}.
Lemma 2.6. ([17]) Let $f: E \rightarrow \mathbb{R}$ be a Gâteaux differentiable on $\operatorname{int}(\operatorname{dom} f)$ such that ∇f^{*} is bounded on bounded subset of $\operatorname{dom} f^{*}$. Let x^{*} and $\left\{x_{n}\right\} \subset \operatorname{int}(E)$. If $\left\{D_{f}\left(x, x_{n}\right)\right\}$ is bounded, so is the sequence $\left\{x_{n}\right\}$.

Lemma 2.7. ([14]) Let $f: E \rightarrow(-\infty,+\infty]$ be a proper, lower semi-continuous and convex function, then $f^{*}: E^{*} \rightarrow(-\infty,+\infty]$ is proper, weak*lower semi-continuous and convex function. Thus, for all $z \in E$, we have:

$$
D_{f}\left(z, \nabla f^{*}\left(\sum_{i=1}^{N} t_{i} \nabla f\left(x_{i}\right)\right)\right) \leq \sum_{i=1}^{N} t_{i} D_{f}\left(z, x_{i}\right)
$$

where $\left\{x_{i}\right\}_{i=1}^{N} \subset E$ and $\left\{t_{i}\right\}_{i=1}^{N}$ with $\sum_{i=1}^{N} t_{i}=1$.
Lemma 2.8. ([12]) Let E be a Banach space, let $r>0$ be a constant, and let $f: E \rightarrow \mathbb{R}$ be a uniformly convex function on bounded subsets of E. Then

$$
f\left(\sum_{k=0}^{n} \alpha_{k} x_{k}\right) \leq \sum_{k=0}^{n} \alpha_{k} f\left(x_{k}\right)-\alpha_{i} \alpha_{j} \rho_{r}\left(\left\|x_{i}-y_{i}\right\|\right)
$$

for all $i, j \in\{0,1,2, \ldots, n\}, x_{k} \in B_{r}, \alpha_{k} \in(0,1)$, and $k=0,1,2, \ldots, n$ with $\sum_{k=0}^{n} \alpha_{k}=1$, where ρ_{r} is the gauge of uniform convexity of f.
Lemma 2.9. ([12]) Let E be a Banach space and $f: E \rightarrow \mathbb{R}$ be a Gâteaux differentiable function which is locally uniformly convex on E. Let $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ and $\left\{y_{n}\right\}_{n \in \mathbb{N}}$ be bounded sequences in E. Then the following assertions are equivalent
(i) $\lim _{n \rightarrow \infty} D_{f}\left(x_{n}, y_{n}\right)=0$;
(ii) $\lim _{n \rightarrow \infty}\left\|x_{n}-y_{n}\right\|=0$.

Lemma 2.10. ([23]) Let $\left\{a_{n}\right\}$ be a sequence of nonnegative real numbers satisfying

$$
a_{n+1} \leq\left(1-\alpha_{n}\right) a_{n}+\alpha_{n} \delta_{n}, \quad n \geq 1
$$

where $\left\{\alpha_{n}\right\} \subset(0,1)$ and $\left\{\delta_{n}\right\} \subset \mathbb{R}$ satisfying $\lim _{n \rightarrow \infty} \alpha_{n}=0, \sum_{n=1}^{\infty} \alpha_{n}=\infty$, and $\lim \sup _{n \rightarrow \infty} \delta_{n} \leq 0$. Then $\lim _{n \rightarrow \infty} a_{n}=0$.

Lemma 2.11. ([10]) Let $\left\{a_{n}\right\}$ be a sequence of real numbers such that there exists a subsequence $\left\{n_{i}\right\}$ of $\{n\}$ such that $a_{n_{i}}<a_{n_{i}+1}$ for all $i \in \mathbb{N}$. Then there exists an increasing sequence $\left\{m_{k}\right\} \subset \mathbb{N}$ such that $m_{k} \rightarrow \infty$ and the following properties are satisfied by all (sufficiently large) number $k \in \mathbb{N}$.

$$
a_{m_{k}} \leq a_{m_{k}+1} \quad a_{k} \leq a_{m_{k}+1}
$$

In fact, m_{k} is the largest number n in the set $\{1,2, \ldots, k\}$ such that the condition $a_{n} \leq a_{n+1}$ holds.

3. Main results

Theorem 3.1. Let $f: E \rightarrow \mathbb{R}$ be a strongly coercive Legendre function which is bounded, uniformly Fréchet differentiable and totally convex on bounded subsets of E. Let C be a nonempty, closed and subset of $\operatorname{int}(\operatorname{domf})$ and $S: C \rightarrow C$ be a Bregman strongly nonexpansive mapping with respect to f. Let $\left\{T_{i}\right\}_{i=1}^{N}$ be a finite family of Bregman relative nonexpansive multi-valued mappings of C into $C B(C)$. Assume that $\mathcal{F}=F(S) \cap \bigcap_{i=1}^{N} F\left(T_{i}\right)$ is nonempty. For $u, x_{1} \in C$, let $\left\{x_{n}\right\}$ be a sequence generated by

$$
\left\{\begin{array}{l}
y_{n}=P_{c}^{f} \nabla f^{*}\left[\beta_{n}^{(0)} \nabla f\left(x_{n}\right)+\sum_{i=1}^{N} \beta_{n}^{(i)} \nabla f\left(u_{n}^{(i)}\right)\right], \quad u_{n}^{(i)} \in T_{i} x_{n} \tag{3.8}\\
x_{n+1}=P_{c}^{f} \nabla f^{*}\left[\alpha_{n} \nabla f(u)+\left(1-\alpha_{n}\right) \nabla f\left(S y_{n}\right)\right], \quad n \in \mathbb{N},
\end{array}\right.
$$

where $\left\{\alpha_{n}\right\} \subset(0,1)$ satisfying $\lim _{n \rightarrow \infty} \alpha_{n}=0, \sum_{n=1}^{\infty} \alpha_{n}=\infty$ and $\left\{\beta_{n}^{(i)}\right\}_{i=1}^{N} \subset[a, b] \subset(0,1)$ and $\sum_{i=1}^{N} \beta_{n}^{(i)}=1$. Then $\left\{x_{n}\right\}$ converges strongly to $p=P_{\mathcal{F}}^{f}(u)$.
Proof. From Lemma 2.1 and Lemma 2.2, we know that $F(S)$ and $F\left(T_{i}\right)$ for all $i=1,2, \ldots, N$ are closed and convex, hence \mathcal{F} is closed and convex. Let $p=P_{\mathcal{F}}^{f}(u)$. Then
$D_{f}\left(p, y_{n}\right)=D_{f}\left(p, P_{C}^{f} \nabla f^{*}\left[\beta_{n}^{(0)} \nabla f\left(x_{n}\right)+\sum_{i=1}^{N} \beta_{n}^{(i)} \nabla f\left(u_{n}^{(i)}\right)\right]\right) \leq D_{f}\left(p, \nabla f^{*}\left(\beta_{n}^{(0)} \nabla f\left(x_{n}\right)\right.\right.$

$$
\begin{align*}
\left.\left.+\sum_{i=1}^{N} \beta_{n}^{(i)} \nabla f\left(u_{n}^{(i)}\right)\right)\right) \leq \beta_{n}^{(0)} D_{f}\left(p, x_{n}\right)+ & \sum_{i=1}^{N} \beta_{n}^{(i)} D_{f}\left(p, u_{n}^{(i)}\right) \leq \beta_{n}^{(0)} D_{f}\left(p, x_{n}\right)+\sum_{i=1}^{N} \beta_{n}^{(i)} D_{f}\left(p, x_{n}\right) \tag{3.9}\\
& =D_{f}\left(p, x_{n}\right)
\end{align*}
$$

Now, using (3.9) and Bregman strongly nonexpansiveness of S, we have

$$
\begin{gathered}
D_{f}\left(p, x_{n+1}\right) \leq D_{f}\left(p, \nabla f^{*}\left[\alpha_{n} \nabla f(u)+\left(1-\alpha_{n}\right) \nabla f\left(S y_{n}\right)\right]\right) \leq \alpha_{n} D_{f}(p, u)+\left(1-\alpha_{n}\right) D_{f}\left(p, S y_{n}\right) \\
\leq \alpha_{n} D_{f}(p, u)+\left(1-\alpha_{n}\right) D_{f}\left(p, y_{n}\right) \leq \alpha_{n} D_{f}(p, u)+\left(1-\alpha_{n}\right) D_{f}\left(p, x_{n}\right) \\
\leq \max \left\{D_{f}(p, u), D_{f}\left(p, x_{n}\right)\right\} .
\end{gathered}
$$

By induction, we obtain that $\left\{D_{f}\left(p, x_{n}\right)\right\}$ is bounded. Using Lemma 2.6, we have the sequence $\left\{x_{n}\right\}$ is bounded. Let $z_{n}=\nabla f^{*}\left(\alpha_{n} \nabla f(u)+\left(1-\alpha_{n}\right) \nabla f\left(S y_{n}\right)\right), n \geq 1$. We obtain that

$$
\begin{gathered}
D_{f}\left(p, x_{n+1}\right)=D_{f}\left(p, P_{C}^{f}\left[\nabla f^{*}\left(\alpha_{n} \nabla f(u)+\left(1-\alpha_{n}\right) \nabla f\left(S y_{n}\right)\right)\right]\right) \\
\leq D_{f}\left(p, \nabla f^{*}\left(\alpha_{n} \nabla f(u)+\left(1-\alpha_{n}\right) \nabla f\left(S y_{n}\right)\right)\right)=V_{f}\left(p, \alpha_{n} \nabla f(u)+\left(1-\alpha_{n}\right) \nabla f\left(S y_{n}\right)\right) \\
\leq V_{f}\left(p, \alpha_{n} \nabla f(u)+\left(1-\alpha_{n}\right) \nabla f\left(S y_{n}\right)-\alpha_{n}(\nabla f(u)-\nabla f(p))\right)+\alpha_{n}\left\langle\nabla f(u)-\nabla f(p), z_{n}-p\right\rangle \\
=V_{f}\left(p, \alpha_{n} \nabla f(p)+\left(1-\alpha_{n}\right) \nabla f\left(S y_{n}\right)\right)+\alpha_{n}\left\langle\nabla f(u)-\nabla f(p), z_{n}-p\right\rangle \leq \alpha_{n} V_{f}(p, \nabla f(p))
\end{gathered}
$$

$+\alpha_{n}\left\langle\nabla f(u)-\nabla f(p), z_{n}-p\right\rangle=\alpha_{n} D_{f}(p, p)+\left(1-\alpha_{n}\right) D_{f}\left(p, S y_{n}\right)+\alpha_{n}\left\langle\nabla f(u)-\nabla f(p), z_{n}-p\right\rangle$

$$
\begin{align*}
& =\left(1-\alpha_{n}\right) D_{f}\left(p, S y_{n}\right)+\alpha_{n}\left\langle\nabla f(u)-\nabla f(p), z_{n}-p\right\rangle \tag{3.10}\\
& \leq\left(1-\alpha_{n}\right) D_{f}\left(p, y_{n}\right)+\alpha_{n}\left\langle\nabla f(u)-\nabla f(p), z_{n}-p\right\rangle \tag{3.11}\\
& \leq\left(1-\alpha_{n}\right) D_{f}\left(p, x_{n}\right)+\alpha_{n}\left\langle\nabla f(u)-\nabla f(p), z_{n}-p\right\rangle . \tag{3.12}
\end{align*}
$$

Moreover, we have
$D_{f}\left(p, y_{n}\right) \leq D_{f}\left(p, \nabla f^{*}\left(\beta_{n}^{(0)} \nabla f\left(x_{n}\right)+\sum_{i=1}^{N} \beta_{n}^{(i)} \nabla f\left(u_{n}^{(i)}\right)\right)\right)=V_{f}\left(p, \beta_{n}^{(0)} \nabla f\left(x_{n}\right)+\sum_{i=1}^{N} \beta_{n}^{(i)} \nabla f\left(u_{n}^{(i)}\right)\right)$
(3.13) $=f(p)-\left\langle p, \beta_{n}^{(0)} \nabla f\left(x_{n}\right)+\sum_{i=1}^{N} \beta_{n}^{(i)} \nabla f\left(u_{n}^{(i)}\right)\right\rangle+f^{*}\left(\beta_{n}^{(0)} \nabla f\left(x_{n}\right)+\sum_{i=1}^{N} \beta_{n}^{(i)} \nabla f\left(u_{n}^{(i)}\right)\right)$.

Since f is a uniformly Fréchet differentiable function, we obtain that f is uniformly smooth. Hence by Theorem 3.5.5 of [24], we get that f^{*} is uniformly convex. This, with Lemma 2.8 , and (3.13) yields

$$
\begin{aligned}
& D_{f}\left(p, y_{n}\right) \leq f(p)-\left\langle p, \beta_{n}^{(0)} \nabla f\left(x_{n}\right)+\sum_{i=1}^{N} \beta_{n}^{(i)} \nabla f\left(u_{n}^{(i)}\right)+f^{*}\left(\beta_{n}^{(0)} \nabla f\left(x_{n}\right)+\sum_{i=1}^{N} \beta_{n}^{(i)} \nabla f\left(u_{n}^{(i)}\right)\right)\right. \\
& \leq f(p)-\beta_{n}^{(0)}\left\langle p, \nabla f\left(x_{n}\right)\right\rangle+\sum_{i=1}^{N} \beta_{n}^{(i)}\left\langle p, \nabla f\left(u_{n}^{(i)}\right)+\beta_{n}^{(0)} f^{*}\left(\nabla f\left(x_{n}\right)\right)+\sum_{i=1}^{N} \beta_{n}^{(i)} f^{*}\left(\nabla f\left(u_{n}^{(i)}\right)\right)\right. \\
& \quad-\beta_{n}^{(0)} \beta_{n}^{(i)} \rho_{r}^{*}\left(\left\|\nabla f\left(x_{n}\right)-\nabla f\left(u_{n}^{(i)}\right)\right\|\right)=\beta_{n}^{(0)} V_{f}\left(p, \nabla f\left(x_{n}\right)\right)+\sum_{i=1}^{N} \beta_{n}^{(i)} V_{f}\left(p, \nabla f\left(u_{n}^{(i)}\right)\right) \\
& \quad-\beta_{n}^{(0)} \beta_{n}^{(i)} \rho_{r}^{*}\left(\left\|\nabla f\left(x_{n}\right)-\nabla f\left(u_{n}^{(i)}\right)\right\|\right)=\beta_{n}^{(0)} D_{f}\left(p, x_{n}\right)+\sum_{i=1}^{N} \beta_{n}^{(i)} D_{f}\left(p, u_{n}^{(i)}\right) \\
& \quad-\beta_{n}^{(0)} \beta_{n}^{(i)} \rho_{r}^{*}\left(\left\|\nabla f\left(x_{n}\right)-\nabla f\left(u_{n}^{(i)}\right)\right\|\right)=\beta_{n}^{(0)} D_{f}\left(p, x_{n}\right)+\sum_{i=1}^{N} \beta_{n}^{(i)} D_{f}\left(p, x_{n}\right) \\
& -\beta_{n}^{(0)} \beta_{n}^{(i)} \rho_{r}^{*}\left(\left\|\nabla f\left(x_{n}\right)-\nabla f\left(u_{n}^{(i)}\right)\right\|\right)=D_{f}\left(p, x_{n}\right)-\beta_{n}^{(0)} \beta_{n}^{(i)} \rho_{r}^{*}\left(\left\|\nabla f\left(x_{n}\right)-\nabla f\left(u_{n}^{(i)}\right)\right\|\right),
\end{aligned}
$$

which implies that

$$
\beta_{n}^{(0)} \beta_{n}^{(i)} \rho_{r}^{*}\left(\left\|\nabla f\left(x_{n}\right)-\nabla f\left(u_{n}^{(i)}\right)\right\|\right) \leq D_{f}\left(p, x_{n}\right)-D_{f}\left(p, y_{n}\right)
$$

By (3.11), we obtain that

$$
\begin{aligned}
\beta_{n}^{(0)} \beta_{n}^{(i)} \rho_{r}^{*}\left(\left\|\nabla f\left(x_{n}\right)-\nabla f\left(u_{n}^{(i)}\right)\right\|\right) & \leq D_{f}\left(p, x_{n}\right)-D_{f}\left(p, x_{n+1}\right) \\
& -\alpha_{n} D_{f}\left(p, y_{n}\right)+\alpha_{n}\left\langle\nabla f(u)-\nabla f(p), z_{n}-p\right\rangle .
\end{aligned}
$$

Now, we consider two cases.
Case I Suppose that there exists $n_{0} \in \mathbb{N}$, such that $\left\{D_{f}\left(p, x_{n}\right)\right\}$ is nonincreasing for all $n \geq n_{0}$. Then $\left\{D_{f}\left(p, x_{n}\right)\right\}$ is convergent and hence $\left\{D_{f}\left(p, x_{n}\right)\right\}-\left\{D_{f}\left(p, x_{n+1}\right)\right\} \rightarrow 0$ as $n \rightarrow \infty$. From (3.14), we have

$$
\lim _{n \rightarrow \infty} \beta_{n}^{(0)} \beta_{n}^{(i)} \rho_{r}^{*}\left(\left\|\nabla f\left(x_{n}\right)-\nabla f\left(u_{n}^{(i)}\right)\right\|\right)=0
$$

which implies, by the property of ρ_{r}^{*} that

$$
\begin{equation*}
\left.\nabla f\left(x_{n}\right)-\nabla f\left(u_{n}^{(i)}\right)\right) \rightarrow 0 \text { as } n \rightarrow \infty \tag{3.15}
\end{equation*}
$$

Since f is strongly coercive and uniformly convex on bounded subsets of E and by Lemma 2.4, we have f^{*} is uniformly Fréchet differentiable on bounded subsets of E^{*}. Since f is Legendre by Lemma 2.5, we obtain that ∇f^{*} is uniformly continuous on bounded subsets of E^{*}. From (3.15) we get that

$$
x_{n}-u_{n}^{(i)} \rightarrow 0 \text { as } n \rightarrow \infty .
$$

Since $d\left(x_{n}, T_{i} x_{n}\right) \leq\left\|x_{n}-u_{n}^{(i)}\right\|$, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(x_{n}, T_{i} x_{n}\right)=0 \tag{3.16}
\end{equation*}
$$

for each $i \in\{1,2, \ldots, N\}$.
Since $\left\{x_{n}\right\}$ is bounded and E is reflexive, we choose a subsequence $\left\{x_{n_{j}}\right\}$ of $\left\{x_{n}\right\}$ that converges weakly to z. Thus from (3.16) and the fact that each T_{i} is Bregman relatively nonexpansive, we obtain $z \in F\left(T_{i}\right)$, for each $i \in\{1,2, \ldots, N\}$. This implies that $z \in$ $\bigcap_{i=1}^{N} F\left(T_{i}\right)$.

We now show that $z \in F(S)$. By (3.10), we obtain that

$$
\begin{gather*}
D_{f}\left(p, x_{n+1}\right) \leq\left(1-\alpha_{n}\right) D_{f}\left(p, S y_{n}\right)+\alpha_{n}\left\langle\nabla f(u)-\nabla f(p), z_{n}-p\right\rangle=D_{f}\left(p, S y_{n}\right) \tag{3.17}\\
-\alpha_{n} D_{f}\left(p, S y_{n}\right)+\alpha_{n}\left\langle\nabla f(u)-\nabla f(p), z_{n}-p\right\rangle=D_{f}\left(p, S y_{n}\right)-\alpha_{n} D_{f}\left(p, S y_{n}\right) \\
+\alpha_{n}\left\langle\nabla f(u)-\nabla f(p), z_{n}-p\right\rangle-D_{f}\left(p, y_{n}\right)+D_{f}\left(p, y_{n}\right) .
\end{gather*}
$$

By (3.9), we have

$$
\begin{gather*}
D_{f}\left(p, y_{n}\right)-D_{f}\left(p, S y_{n}\right) \leq D_{f}\left(p, y_{n}\right)-D_{f}\left(p, x_{n+1}\right)-\alpha_{n} D_{f}\left(p, S y_{n}\right) \tag{3.18}\\
+\alpha_{n}\left\langle\nabla f(u)-\nabla f(p), z_{n}-p \leq D_{f}\left(p, x_{n}\right)-D_{f}\left(p, x_{n+1}\right)-\alpha_{n} D_{f}\left(p, S y_{n}\right)\right. \\
+\alpha_{n}\left\langle\nabla f(u)-\nabla f(p), z_{n}-p\right\rangle .
\end{gather*}
$$

Thus $D_{f}\left(p, y_{n}\right)-D_{f}\left(p, S y_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. Since S is a Bregman strongly nonexpansive mapping, we have $\lim _{n \rightarrow \infty} D_{f}\left(y_{n}, S y_{n}\right)=0$. This implies that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|S y_{n}-y_{n}\right\|=0 \tag{3.19}
\end{equation*}
$$

We see that

$$
\begin{align*}
D_{f}\left(x_{n}, y_{n}\right) & \leq D_{f}\left(x_{n}, \nabla f^{*}\left(\beta_{n}^{(0)} \nabla f\left(x_{n}\right)+\sum_{i=1}^{N} \beta_{n}^{(i)} \nabla f\left(u_{n}^{(i)}\right)\right)\right. \\
& \leq \beta_{n}^{(0)} D_{f}\left(x_{n}, x_{n}\right)+\sum_{i=1}^{N} \beta_{n}^{(i)} D_{f}\left(x_{n}, u_{n}^{(i)}\right) \tag{3.20}
\end{align*}
$$

Since $\left\|x_{n}-u_{n}^{(i)}\right\| \rightarrow 0, n \rightarrow \infty$ and $\left\{u_{n}^{i}\right\}$ is a bounded sequence, by Lemma 2.9, we obtain that $\lim _{n \rightarrow \infty} \Delta_{p}\left(x_{n}, u_{n}^{(i)}\right)=0$. From (3.20), it follows that $\lim _{n \rightarrow \infty} D_{f}\left(x_{n}, y_{n}\right)=0$.
So that

$$
\lim _{n \rightarrow \infty}\left\|x_{n}-y_{n}\right\|=0
$$

Since E is reflexive, $\left\{y_{n}\right\}$ is bounded and $\lim _{n \rightarrow \infty}\left\|x_{n}-y_{n}\right\|=0$, we obtain that $y_{n_{k}} \rightharpoonup z$. Since $F(S)=\hat{F}(S)$ and (3.19), we have $z \in F(S)$. Thus $z \in F(S) \cap \bigcap_{i=1}^{N} F\left(T_{i}\right)=\mathcal{F}$.

Furthermore, we have that
$D_{f}\left(y_{n}, z_{n}\right) \leq D_{f}\left(y_{n}, \nabla f^{*}\left(\alpha_{n} \nabla f(u)+\left(1-\alpha_{n}\right) \nabla f\left(S y_{n}\right)\right)\right) \leq \alpha_{n} D_{f}\left(y_{n}, u\right)+\left(1-\alpha_{n}\right) D_{f}\left(y_{n}, S y_{n}\right)$.
Therefore $\lim _{n \rightarrow \infty} D_{f}\left(y_{n}, z_{n}\right)=0$. It follows that $\lim _{n \rightarrow \infty}\left\|y_{n}-z_{n}\right\|=0$.
Let $p=P_{\mathcal{F}}^{f}(u)$. We next show that $\lim \sup _{n \rightarrow \infty}\left\langle\nabla f(u)-\nabla f(p), z_{n}-p\right\rangle \leq 0$. Since $\lim _{n \rightarrow \infty}\left\|y_{n}-z_{n}\right\|=0$, so we obtain that $z_{n_{k}} \rightharpoonup z$, it follows that

$$
\limsup _{n \rightarrow \infty}\left\langle\nabla f(u)-\nabla f(p), z_{n}-p\right\rangle=\lim _{n \rightarrow \infty}\left\langle\nabla f(u)-\nabla f(p), z_{n_{k}}-p\right\rangle
$$

Moreover, by Lemma 2.3, we have

$$
\limsup _{n \rightarrow \infty}\left\langle\nabla f(u)-\nabla f(p), z_{n}-p\right\rangle=\langle f(u)-\nabla f(p), z-p\rangle \leq 0
$$

Now using the above inequality and (3.12), we obtain $D\left(p, x_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. Hence $x_{n} \rightarrow p$ as $n \rightarrow \infty$.
Case II Suppose that there exists a subsequence $\left\{n_{i}\right\}$ of $\{n\}$ such that

$$
D_{f}\left(p, x_{n_{i}}\right) \leq D_{f}\left(p, x_{n_{i}+1}\right), \text { for all } i \in \mathbb{N} .
$$

Then, by Lemma 2.11, there exists a non-decreasing sequence $m_{k} \subset \mathbb{N}$ such that $m_{k} \rightarrow \infty$, and $D_{f}\left(p, x_{m_{k}}\right) \leq D_{f}\left(p, x_{m_{k}+1}\right)$ and $D_{f}\left(p, x_{k}\right) \leq D_{f}\left(p, x_{m_{k}+1}\right)$ for all $k \in \mathbb{N}$. Thus, we have

$$
\begin{aligned}
0 & \leq \lim _{n \rightarrow \infty}\left(D_{f}\left(p, x_{m_{k}+1}\right)-D_{f}\left(p, x_{m_{k}}\right)\right) \\
& \leq \limsup _{n \rightarrow \infty}\left(D_{f}\left(p, x_{n+1}\right)-D_{f}\left(p, x_{n}\right)\right) \\
& \leq \limsup _{n \rightarrow \infty}\left(\alpha_{n} D_{f}(p, u)+\left(1-\alpha_{n}\right) D_{f}\left(p, S y_{n}\right)-D_{f}\left(p, x_{n}\right)\right) \\
& \leq \limsup _{n \rightarrow \infty}\left(\alpha_{n} D_{f}(p, u)+\left(1-\alpha_{n}\right) D_{f}\left(p, y_{n}\right)-D_{f}\left(p, x_{n}\right)\right) \\
& \leq \limsup _{n \rightarrow \infty}\left(\alpha_{n} D_{f}(p, u)+\left(1-\alpha_{n}\right) D_{f}\left(p, x_{n}\right)-D_{f}\left(p, x_{n}\right)\right) \\
& =\limsup _{n \rightarrow \infty} \alpha_{n}\left(D_{f}(p, u)-D_{f}\left(p, x_{n}\right)\right) \\
& =0
\end{aligned}
$$

This implies that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(D_{f}\left(p, x_{m_{k}+1}\right)-D_{f}\left(p, x_{m_{k}}\right)\right)=0 . \tag{3.21}
\end{equation*}
$$

By (3.14), and $\alpha_{n} \rightarrow 0$, we obtain that

$$
\rho_{r}^{*}\left(\left\|\nabla f\left(x_{m_{k}}\right)-\nabla f\left(u_{m_{k}}^{(i)}\right)\right\|\right) \rightarrow 0 \text { as } k \rightarrow \infty
$$

for each $i \in\{1,2, \ldots, N\}$. By following the method of proof of case I, we obtain that $d\left(x_{m_{k}}, T_{i} x_{m_{k}}\right) \rightarrow 0$ as $k \rightarrow \infty$. As the proof in case I and (3.18), we obtain that $\lim _{n \rightarrow \infty} \| S y_{m_{k}}-$ $y_{m_{k}} \|=0$ and

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\langle\nabla f(u)-\nabla f(p), z_{m_{k}}-p\right\rangle \leq 0 \tag{3.22}
\end{equation*}
$$

Then, from (3.12), we get that

$$
D_{f}\left(p, x_{m_{k}+1}\right) \leq\left(1-\alpha_{m_{k}}\right) D_{f}\left(p, x_{m_{k}}\right)+\alpha_{m_{k}}\left\langle\nabla f(u)-\nabla f(p), z_{m_{k}}-p\right\rangle .
$$

Since $D_{f}\left(p, x_{m_{k}}\right) \leq D_{f}\left(p, x_{m_{k}+1}\right)$, the above inequality implies that

$$
\begin{aligned}
\alpha_{m_{k}} D_{f}\left(p, x_{m_{k}}\right) & \leq D_{f}\left(p, x_{m_{k}}\right)-D_{f}\left(p, x_{m_{k}+1}\right)+\alpha_{m_{k}}\left\langle\nabla f(u)-\nabla f(p), z_{m_{k}}-p\right\rangle \\
& \leq \alpha_{m_{k}}\left\langle\nabla f(u)-\nabla f(p), z_{m_{k}}-p\right\rangle .
\end{aligned}
$$

In particular, since $\alpha_{m_{k}}>0$, we have

$$
D_{f}\left(p, x_{m_{k}}\right) \leq\left\langle\nabla f(u)-\nabla f(p), z_{m_{k}}-p\right\rangle .
$$

Hence, by the above inequality, we have $\lim _{k \rightarrow \infty} D_{f}\left(p, x_{m_{k}}\right)=0$.
This together with (3.21), gives $\lim _{k \rightarrow \infty} D_{f}\left(p, x_{m_{k}+1}\right)=0$. By $D_{f}\left(p, x_{k}\right) \leq D_{f}\left(p, x_{m_{k}+1}\right)$ for all $k \in \mathbb{N}$, we conclude that $\lim _{k \rightarrow \infty} D_{f}\left(p, x_{k}\right)=0$. Hence $x_{k} \rightarrow p$ as $k \rightarrow \infty$.

Therefore, from the above two cases, we can conclude that $\left\{x_{n}\right\}$ converges strongly to $p=P_{c}^{f}(u)$ and the proof is complete.

If we assume that $T_{i}(i=1,2, \ldots, N)$ to be a Bregman relative quasi-nonexpansive multivalued mapping in Theorem 3.1, then we get the following corollary:
Corollary 3.1. Let $f: E \rightarrow \mathbb{R}$ be a strongly coercive Legendre function which is bounded, uniformly Fréchet differentiable and totally convex on bounded subsets of E. Let C be a nonempty, closed and subset of $\operatorname{int}(\operatorname{domf})$ and $S: C \rightarrow C$ be Bregman strongly nonexpansive mapping with respect to f. Let $\left\{T_{i}\right\}_{i=1}^{N}$ be a finite family of Bregman relative quasi-nonexpansive multi-valued mappings of C into $C B(C)$. Assume that $\mathcal{F}=F(S) \cap \bigcap_{i=1}^{N} F\left(T_{i}\right)$ is nonempty. For $u, x_{1} \in C$, let $\left\{x_{n}\right\}$ be a sequence generated by

$$
\left\{\begin{array}{l}
y_{n}=P_{c}^{f} \nabla f^{*}\left[\beta_{n}^{(0)} \nabla f\left(x_{n}\right)+\sum_{i=1}^{N} \beta_{n}^{(i)} \nabla f\left(u_{n}^{(i)}\right)\right], \quad u_{n}^{(i)} \in T_{i} x_{n}, \tag{3.23}\\
x_{n+1}=P_{c}^{f} \nabla f^{*}\left[\alpha_{n} \nabla f(u)+\left(1-\alpha_{n}\right) \nabla f\left(S y_{n}\right)\right], \quad n \in \mathbb{N},
\end{array}\right.
$$

where $\left\{\alpha_{n}\right\} \subset(0,1)$ satisfy $\lim _{n \rightarrow \infty} \alpha_{n}=0, \sum_{n=1}^{\infty} \alpha_{n}=\infty$ and $\left\{\beta_{n}^{(i)}\right\}_{i=1}^{N} \subset[a, b] \subset(0,1)$ and $\sum_{i=1}^{N} \beta_{n}^{(i)}=1$. Then $\left\{x_{n}\right\}$ converges strongly to $p=P_{\mathcal{F}}^{f}(u)$.

If we assume that $T_{i}=T$ for each $i=1,2, \ldots N$ in Theorem 3.1, then we get the following corollary:
Corollary 3.2. Let $f: E \rightarrow \mathbb{R}$ be a strongly coercive Legendre function which is bounded, uniformly Fréchet differentiable and totally convex on bounded subsets of E. Let C be a nonempty, closed and subset of $\operatorname{int}(\operatorname{dom} f)$ and $S: C \rightarrow C$ be Bregman strongly nonexpansive mapping with respect to f. Let T be a Bregman relative nonexpansive multi-valued mappings of C into $C B(C)$. Assume that $\mathcal{F}=F(S) \cap F(T)$ is nonempty. For $u, x_{1} \in C$, let $\left\{x_{n}\right\}$ be a sequence generated by

$$
\left\{\begin{array}{l}
y_{n}=P_{c}^{f} \nabla f^{*}\left[\beta \nabla f\left(x_{n}\right)+(1-\beta) \nabla f\left(u_{n}\right)\right], \quad u_{n} \in T x_{n}, \tag{3.24}\\
x_{n+1}=P_{c}^{f} \nabla f^{*}\left[\alpha_{n} \nabla f(u)+\left(1-\alpha_{n}\right) \nabla f\left(S y_{n}\right)\right], \quad n \in \mathbb{N},
\end{array}\right.
$$

where $\left\{\alpha_{n}\right\} \subset(0,1)$ satisfying $\lim _{n \rightarrow \infty} \alpha_{n}=0, \sum_{n=1}^{\infty} \alpha_{n}=\infty$ and $\beta \subset(0,1)$. Then $\left\{x_{n}\right\}$ converges strongly to $p=P_{\mathcal{F}}^{f}(u)$.

If we assume that each $T_{i}(i=1,2, \ldots, N)$ is a Bregman relative nonexpansive singlevalued mapping and S is an identity mapping on C, we get the following corollary:

Corollary 3.3. Let $f: E \rightarrow \mathbb{R}$ be a strongly coercive Legendre function which is bounded, uniformly Fréchet differentiable and totally convex on bounded subsets of E. Let C be a nonempty, closed and subset of $\operatorname{int}(\operatorname{domf})$. Let $\left\{T_{i}\right\}_{i=1}^{N}$ be a finite family of Bregman relative nonexpansive mappings of C into C. Assume that $\mathcal{F}=\bigcap_{i=1}^{N} F\left(T_{i}\right)$ is nonempty. For $u, x_{1} \in C$, let $\left\{x_{n}\right\}$ be a sequence generated by

$$
\left\{\begin{array}{l}
y_{n}=P_{c}^{f} \nabla f^{*}\left[\beta_{n}^{(0)} \nabla f\left(x_{n}\right)+\sum_{i=1}^{N} \beta_{n}^{(i)} \nabla f\left(T_{i} x_{n}\right)\right], \tag{3.25}\\
x_{n+1}=P_{c}^{f} \nabla f^{*}\left[\alpha_{n} \nabla f(u)+\left(1-\alpha_{n}\right) \nabla f\left(y_{n}\right)\right], \quad n \in \mathbb{N},
\end{array}\right.
$$

where $\left\{\alpha_{n}\right\} \subset(0,1)$ satisfying $\lim _{n \rightarrow \infty} \alpha_{n}=0, \sum_{n=1}^{\infty} \alpha_{n}=\infty$ and $\left\{\beta_{n}^{(i)}\right\}_{i=1}^{N} \subset[a, b] \subset(0,1)$ and $\sum_{i=1}^{N} \beta_{n}^{(i)}=1$. Then $\left\{x_{n}\right\}$ converges strongly to $p=P_{\mathcal{F}}^{f}(u)$.

4. Application

In this section, we give an application of Theorem 3.1, which is the variational inequality problems and the zeros of maximal monotone operator in the framework of reflexive Banach spaces.

4.1 Variational Inequality Problems

Definition 4.5. ([17]) Let $f: E \rightarrow(-\infty,+\infty]$ be a Gâteaux differentiable function. A mapping $A: E \rightarrow 2^{E^{*}}$ satisfying the range condition, i.e., $\operatorname{ran}(\nabla f-A) \subset \operatorname{ran}(\nabla f)$ is
called Bregman inverse strongly monotone if $\operatorname{dom} A \cap \operatorname{int}(\operatorname{domf}) \neq \emptyset$ and for any $x, y \in$ $\operatorname{int}(\operatorname{domf})$ and each $u \in A x, v \in A y$,

$$
\left\langle u-v, \nabla f^{*}(\nabla f(x)-u)-\nabla f^{*}(\nabla f(y)-v)\right\rangle \geq 0
$$

Let $A: C \rightarrow E^{*}$ be a Bregman inverse strongly monotone operator, and let C be a nonempty, closed and convex subset of $\operatorname{dom} A$. The variational inequality problem corresponding to A is to find $x^{*} \in C$, such that

$$
\begin{equation*}
\left\langle A x^{*}, y-x^{*}\right\rangle \geq 0, \quad \forall y \in C . \tag{4.26}
\end{equation*}
$$

The set of solutions of equation (4.26) is denoted by $V I(C, A)$.
Definition 4.6. ([17]) Let $A: E \rightarrow 2^{E^{*}}$ be an any operator; the anti-resolvent $A^{f}: E \rightarrow E^{f}$ of A is defined by:

$$
A^{f}=\nabla f^{*} \circ(\nabla f-A)
$$

We see that $\operatorname{dom} A^{f} \subset \operatorname{dom} A \cap \operatorname{int}(\operatorname{domf})$ and $\operatorname{ran} A^{f} \subset \operatorname{int}(\operatorname{domf})$. Moreover, an operator A is Bregman inverse strongly monotone if and only if anti-resolvent A^{f} is a single-valued Bregman firmly nonexpansive mapping (see Lemma 3.4(c) and (d) in [7]).

Lemma 4.12. ([16]) Let $A: E \rightarrow E^{*}$ be a Bregman inverse strongly monotone mapping and $f: E \rightarrow(-\infty,+\infty]$ be a Legendre and totally convex function that satisfies the range condition. If C is a nonempty, closed and convex subset of $\operatorname{dom} A \cap \operatorname{int}(\operatorname{domf})$, then:
(i) $P_{C}^{f} \circ A^{f}$ is Bregman relatively nonexpansive mapping, where $A^{f}=\nabla f^{*} \circ(\nabla f-A)$;
(ii) $F\left(P_{C}^{f} \circ A^{f}\right)=V I(C, A)$.

Theorem 4.2. Let E be a real reflexive Banach space $E, f: E \rightarrow \mathbb{R}$ be a strongly coercive Legendre function which is bounded, uniformly Fréchet differentiable and totally convex on bounded subsets of E, which satisfies the range condition, C be a nonempty, closed and subset of dom $A \cap \operatorname{int}(\operatorname{dom} f)$ and $A_{i}: C \rightarrow E^{*}(i=1, \ldots, N)$ be a Bregman inverse strongly monotone function and $S: C \rightarrow$ C be Bregman strongly nonexpansive mapping with respect to f. Assume that $\mathcal{F}=F(S) \cap$ $\bigcap_{i=1}^{N} V I\left(C, A_{i}\right)$ is nonempty. For $u, x_{1} \in C$, let $\left\{x_{n}\right\}$ be a sequence generated by

$$
\left\{\begin{array}{l}
y_{n}=P_{c}^{f} \nabla f^{*}\left[\beta_{n}^{(0)} \nabla f\left(x_{n}\right)+\sum_{i=1}^{N} \beta_{n}^{(i)} \nabla f\left(P_{C}^{f} \circ A_{i}^{f}\left(x_{n}\right)\right)\right], \tag{4.27}\\
x_{n+1}=P_{c}^{f} \nabla f^{*}\left[\alpha_{n} \nabla f(u)+\left(1-\alpha_{n}\right) \nabla f\left(S y_{n}\right)\right], n \in \mathbb{N},
\end{array}\right.
$$

where $A_{i}^{f}=\nabla f^{*} \circ\left(\nabla f-A_{i}\right)$ for $i=1,2, \ldots, N$. Suppose that $\left\{\alpha_{n}\right\}$ and $\left\{\beta_{n}^{(i)}\right\}_{i=1}^{N}$ are as in Theorem 3.1. Then $\left\{x_{n}\right\}$ converges strongly to $p=P_{\mathcal{F}}^{f}(u)$.

4.2 Zeros of Maximal Monotone Operator

Let $A: E \rightarrow 2^{E^{*}}$ be a set-valued mapping. We denoted by $G(A)$ as the graph of A, i.e., $G(A)=\left\{\left(x, x^{*}\right) \in E \times E^{*}: x^{*} \in A x\right\}$. An operator A is called to be monotone if $\left\langle x^{*}-y^{*}, x-y\right\rangle>0$ for each $\left(x, x^{*}\right),\left(y, y^{*}\right) \in G(A)$. We call monotone operator A a maximal if its graph is not contained in the graph of any other monotone operators on E. It is known that if A is maximal monotone, then the set $A^{-1}\left(0^{*}\right)=\left\{x \in E: 0^{*} \in A x\right\}$ is closed and convex. The resolvent of A, denoted by $\operatorname{Res}_{\lambda A}^{f}: E \rightarrow 2^{E}$, is defined as follows:

$$
\operatorname{Res}_{\lambda A}^{f}(x)=(\nabla f+\lambda A)^{-1} \circ \nabla f(x)
$$

where $\lambda>0$.It is known that $F\left(\operatorname{Res}_{\lambda A}^{f}\right)=A^{-1}\left(0^{*}\right)$ and $\operatorname{Res}_{\lambda A}^{f}$ is single-valued and Bregman firmly nonexpansive (see [2]).

In addition, Reich and Sabach [18] proved that if f is a Legendre function, which is bounded, uniformly Fréchet differentiable on bounded subsets of E , then $\hat{F}\left(\operatorname{Res}_{\lambda A}^{f}\right)=$
$F\left(\operatorname{Res}_{\lambda A}^{f}\right)$. And so that if $\hat{F}\left(\operatorname{Res}_{\lambda A}^{f}\right)=F\left(\operatorname{Res}_{\lambda A}^{f}\right)$, then a Bregman that is firmly nonexpansive is a Bregman relatively nonexpansive mapping.

The Yosida approximation $A_{\lambda}(x): E \rightarrow E, \lambda>0$, is defined by:

$$
A_{\lambda}(x)=\frac{1}{\lambda}\left(\nabla f(x)-\nabla f\left(\operatorname{Res}_{\lambda A}^{f}\right)\right) \text { for all } x \in E \text { and } \lambda>0 .
$$

Proposition 4.1. ([17]) For any $\lambda>0$ and for any $x \in X$, we have
(i) $\left(\operatorname{Res}_{\lambda A}^{f}(x), A_{\lambda}(x)\right) \in G(A)$;
(ii) $0^{*} \in A x$ if and only if $0^{*} \in A_{\lambda}(x)$.

We take $C=E$ and $T_{i}=\operatorname{Res}_{\lambda A_{i}}^{f}>0$ for all $i=1, \ldots, N$ in Theorem 3.1, then we obtain that the following Theorem
Theorem 4.3. Let E be a real reflexive Banach space $E, f: E \rightarrow \mathbb{R}$ be a strongly coercive Legendre function which is bounded, uniformly Fréchet differentiable and totally convex on bounded subsets of E, which satisfies the range condition, C be a nonempty, closed and subset of $\operatorname{dom} A \cap i n t(\operatorname{dom} f)$ and $A_{i}: E \rightarrow E^{*}(i=1,2, \ldots, N)$ be a finite collection of maximal monotone operators and $S: C \rightarrow C$ be Bregman strongly nonexpansive mapping with respect to f. Assume that $\mathcal{F}=$ $F(S) \cap \bigcap_{i=1}^{N} A_{i}^{-1}(0)$ is nonempty. For $u, x_{1} \in C$, let $\left\{x_{n}\right\}$ be a sequence generated by

$$
\left\{\begin{array}{l}
y_{n}=P_{c}^{f} \nabla f^{*}\left[\beta_{n}^{(0)} \nabla f\left(x_{n}\right)+\sum_{i=1}^{N} \beta_{n}^{(i)} \nabla f\left(\operatorname{Res}_{\lambda A}^{f}\left(x_{n}\right)\right)\right], \tag{4.28}\\
x_{n+1}=P_{c}^{f} \nabla f^{*}\left[\alpha_{n} \nabla f(u)+\left(1-\alpha_{n}\right) \nabla f\left(S y_{n}\right)\right], n \in \mathbb{N},
\end{array}\right.
$$

where $\lambda>0$. Suppose that $\left\{\alpha_{n}\right\}$ and $\left\{\beta_{n}^{(i)}\right\}_{i=1}^{N}$ are as in Theorem 3.1. Then $\left\{x_{n}\right\}$ converges strongly to $p=P_{\mathcal{F}}^{f}(u)$.

5. Numerical example

In this section, we present some numerical example for supporting Theorem 3.1 on a real line. Let $E=\mathbb{R}, C=[-1,1]$, and $f(x)=\frac{2}{3} x^{2}$ (f is a strongly coercive Legendre function which is bounded, uniformly Fréchet differentiable and totally convex on bounded subsets of E appeared in the numerical example of [22])

Furthermore, let $S=P_{C}$ (which is an example of a Bregman strongly nonexpansive mapping, see [11]), and

$$
T_{i} x= \begin{cases}{\left[\left(\frac{\phi_{i}}{2}-1\right) x,\left(\phi_{i}-1\right) x\right]} & x<0 \\ \{0\} & x=0 \\ {\left[\left(1-\phi_{i}\right) x,\left(1-\frac{\phi_{i}}{2}\right) x\right]} & x>0\end{cases}
$$

where $\phi_{i}=\frac{i}{i+1}$ for all $i=1,2$. Next, we show that T_{i} is a Bregman relative nonexpansive multi-valued mapping of C into $C B(C)$ for all $i=1,2$. Clearly $F\left(T_{i}\right)=0=\hat{F}\left(T_{i}\right)$ for all $i=1,2$. Consider

$$
\begin{aligned}
D_{f}(0, x) & =f(0)-f(x)-\langle\nabla f(x), 0-x\rangle \\
& =0-\frac{2}{3} x^{2}-\left\langle\frac{4}{3} x,-x\right\rangle \\
& =0-\frac{2}{3} x^{2}+\frac{4}{3} x^{2} \\
& =\frac{2}{3} x^{2} .
\end{aligned}
$$

Since $u_{i} \in T_{i} x$, we have $u_{i} \in T_{i} x \leq x$ for all $i=1,2$. Thus $f\left(u_{i}\right) \leq f(x)$ for all $i=1,2$. Consider, for all $i=1,2$,

$$
\begin{aligned}
D_{f}\left(0, u_{i}\right) & =f(0)-f\left(u_{i}\right)-\left\langle\nabla f\left(u_{i}\right), 0-u_{i}\right\rangle \\
& =0-\frac{2}{3} u_{i}^{2}-\left\langle\frac{4}{3} u_{i},-u_{i}\right\rangle \\
& =0-\frac{2}{3} u_{i}^{2}+\frac{4}{3} u_{i}^{2} \\
& =\frac{2}{3} u_{i}^{2} \\
& =f\left(u_{i}\right) \leq f(x)=\frac{2}{3} x^{2}=D_{f}(0, x) .
\end{aligned}
$$

Thus T_{i} is a Bregman relative nonexpansive multi-valued mapping of C into $C B(C)$ for all $i=1,2$. Set $u=0$ and $x_{1}=1$. Now take $u_{n}^{(1)}=\frac{1}{2} x_{n}$ and $u_{n}^{(2)}=\frac{2}{3} x_{n}$.

Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be generated by

$$
\left\{\begin{array}{l}
y_{n}=P_{c}^{f} \nabla f^{*}\left[\beta_{n}^{(0)} \nabla f\left(x_{n}\right)+\sum_{i=1}^{N} \beta_{n}^{(i)} \nabla f\left(u_{n}^{(i)}\right)\right], \quad u_{n}^{(i)} \in T_{i} x_{n}, \tag{5.29}\\
x_{n+1}=P_{c}^{f} \nabla f^{*}\left[\alpha_{n} \nabla f(u)+\left(1-\alpha_{n}\right) \nabla f\left(S y_{n}\right)\right], \quad n \in \mathbb{N},
\end{array}\right.
$$

where $\alpha_{n}=\frac{1}{n+1}$ and $\beta_{n}^{(0)}=\frac{1}{12 n}, \beta_{n}^{(1)}=\frac{12 n-1}{36 n}, \beta_{n}^{(2)}=\frac{12 n-1}{18 n}$. Then the sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ converge strongly to 0 , where $0=P_{\mathcal{F}}^{f}(u)$.

Figure of the value of the sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$

Acknowledgement. This research is supported by Naresuan University. The first and the third authors would like to express their deep thanks to Naresuan University.

References

[1] Alber, Y. I., Metric and generalized projection operators in Banach spaces: properties and applications, Lect. Notes Pure Appl. Math., (1996), 15-50
[2] Bauschke, H. H. and Borwein, J. M. and Combettes, P. L., Bregman monotone optimization algorithms, SIAM J. Control Optim., 42 (2003), 596-636
[3] Bauschke, H. H. Borwein, J. M. and Combettes, P. L., Essential smoothness, essential strict convexity, and Legendre functions in Banach spaces, Commun. Contemp. Math., 3 (2001), 615-647
[4] Bregman, L. M., The relaxation method for finding the common point of convex sets and its application to the solution of problems in convex programming, USSR Comput. Math. Math. Phys., 7 (1967), 200-217
[5] Bruck, R. E. and Reich, S., Nonexpansive projections and resolvents of accretive operators in Banach spaces, Houst. J. Math., 3 (1977), 459-470
[6] Butnariu, D. and Resmerita, E., Bregman distances, totally convex functions and a method for solving operator equations in Banach spaces, Abstr. Appl. Anal., 2006 (2006), Art ID (2006) 84919
[7] Butnariu, D. and Kassay, G., A proximal-projection method for finding zeroes of set-valued operators, SIAM J. Control Optim., 47 (2008), 2096-2136
[8] Censor, Y. and Lent, A., An iterative row-action method for interval convex programming, J. Optim. Theory Appl., 34 (1981), 321-353
[9] Li, Y., Liu, H. and Zheng, K., Halpernns iteration for Bregman strongly nonexpansive multi-valued mappings in reflexive Banach spaces with application, Fixed Point Theory Appl., 2013, doi:10.1186/1687-1812-2013-197
[10] Mainge, P. E., Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization, Set-Valued Anal., 16 (2008), 899-912
[11] Martín-Márquez, V., Reich, S. and Sabach, S., Bregman strongly nonexpansive operators in reflexive Banach spaces, J. Math. Anal. Appl., 400 (2013), 597-614
[12] Naraghirad, E. and Yao, J. C.,Bregman weak relatively nonexpansive mappings in Banach spaces, Fixed Point Theory Appl., 2013, doi:10.1186/1687-1812-2013-141
[13] Pang, C. T., Naraghirad. E. and Wen, C. F., Weak Convergence Theorems for Bregman Relatively Nonexpansive Mappings in Banach Spaces, J. Appl. Math., 2014 (2014), Article ID 573075, 9 pages
[14] Phelps, R. P., Convex Functions, Monotone Operators, and Differentiability, Springer-Verlag: Berlin, Germany, 1993
[15] Reich, S., A weak convergence theorem for the alternating method with Bergman distance, In: Kartsatos, AG (ed.) Theory and Applications of Nonlinear Operators of Accretive and Monotone Type. Lect. Notes Pure Appl. Math., vol. 178, pp. 313-318. Dekker, New York (1996)
[16] Reich. S. and Sabach, S., A strong convergence theorem for a proximal-type algorithm in reflexive Banach spaces, J. Nonlinear Convex Anal., 10 (2009), 471-485
[17] Reich, S. and Sabach, S., Two strong convergence theorems for Bregman strongly nonexpansive operators in reflexive Banach spaces, Nonlinear Anal., 73 (2010), 122-135
[18] Reich, S. and Sabach, S., Existence and Approximation of Fixed Points of Bregman Firmly Nonexpansive Mappings in Reflexive Banach Spaces, Springer: New York, NY, USA, 2011, 301-316
[19] Senakka, P. and Cholamjiak, P. Approximation method for solving fixed point problem of Bregman strongly nonexpansive mappings in reflexive Banach spaces, Ricerche mat. DOI 10.1007/s11587-016-0262-3
[20] Shahzad, N. and Zegeye, H., Convergence theorem for common fixed points of a finite family of multi-valued Bregman relatively nonexpansive mappings, Fixed Point Theory Appl., 2014, 2014:152
[21] Suantai, S. Cho, Y. J. and Cholamjiak, P., Halperns iteration for Bregman strongly nonexpansivemappings in reflexive Banach spaces, Comput. Math. Appl., 64 (2012), 489-499
[22] Ugwunnadi, G. C., Ali, B., Idris, I. and Minjibir, M. S, Strong convergence theorem for quasi-Bregman strictly pseudocontractive mappings and equilibrium problems in Banach spaces, Ugwunnadi et al. Fixed Point Theory Appl., 2014, 2014:231
[23] Xu, H. K., Another control condition in an iterative method for nonexpansive mappings, Bull. Aust. Math. Soc.,65 (2002), 109-113
[24] Zalinescu, C.,Convex Analysis in General Vector Spaces, World Scientific Publishing Co., Inc.: River Edge, NJ, USA, 2002
[25] Zhu, J. and Chang, S., Halpern-Manns iterations forBregman strongly nonexpansivemappings in reflexive Banach spaces with applications, J. Ineq. Appl., 2013, 146 (2013)
${ }^{1}$ Department of Mathematics
Naresuan University
Faculty of Science
Phitsanulok 65000, Thailand
E-mail address: preeyanuchc56@nu.ac.th
E-mail address: anchaleeka@nu.ac.th
${ }^{2}$ Department of Mathematics
Razi University
Faculty of Science
Kermanshah, 67149, Iran
E-mail address: farajzadehali@gmail.com
${ }^{3}$ Department of Mathematics
Kingsville University
Kingsville, Texas, 78363-8202, USA
E-mail address: agarwal@tamuk.edu

[^0]: Received: 02.09.2016. In revised form: 31.03.2017. Accepted: 28.04.2017
 2010 Mathematics Subject Classification. 47H10, 54H25.
 Key words and phrases. Bregman strongly nonexpansive single-valued mappings, Bregman relative nonexpansive multi-valued mappings, strongly coercive Legendre functions, uniformly Fréchet differentiable functions.

 Corresponding author: Anchalee Kaewcharoen; anchaleeka@nu.ac.th

