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An iterative process for a hybrid pair of a Bregman strongly
nonexpansive single-valued mapping and a finite family of
Bregman relative nonexpansive multi-valued mappings in
Banach spaces

PREEYANUCH CHUASUK1, ALI FARAJZADEH2, ANCHALEE KAEWCHAROEN1 and RAVI
P. AGARWAL3

ABSTRACT. In this paper, we construct an iterative process involving a hybrid pair of a Bregman strongly
nonexpansive single-valued mapping and a finite family of Bregman relative nonexpansive multi-valued map-
pings and prove strong convergence theorems of the proposed iterative process in reflexive Banach spaces under
appropriate conditions. Our main results can be viewed as an improvement and extension of the several results
in the literature.

1. INTRODUCTION

Throughout this paper, we denote the set of real numbers and the set of positive inte-
gers by R and N, respectively. Let E be a reflexive Banach space, and let C be a nonempty,
closed and convex subset of E and T : C → C be a mapping. Denote by F (T ) = {x ∈
C : x = Tx} is the set of fixed points of T . A mapping T is said to be nonexpansive if
‖Tx− Ty‖ ≤ ‖x− y‖ for all x, y ∈ C.

In 1967, Bregman [4] has discovered an elegant and effective technique for the use of
the Bregman distance function Df in the process of designing and analyzing feasibility
and optimization algorithms. This opened a growing area of research in which Bregmans
technique is applied in various ways in order to design and analyze iterative algorithms
for solving not only feasibility and optimization problems, but also algorithms for solving
variational inequality problems, equilibrium problems, fixed point problems for nonlin-
ear mappings, and so on (see, e.g.,[5], [15],[17], and the references therein).

Many researchers used the Bregman distances for approximating fixed points of non-
linear mappings in several iterative methods. In 2012, Suantai et al. [21] used the follow-
ing Halpern’s iterative scheme for a Bregman strongly nonexpansive self mapping T on
E. For u, x1 ∈ E, let {xn} be a sequence defined by

(1.1) xn+1 = ∇f∗(αn∇f(u) + (1− αn)∇f(Txn)), ∀n ≥ 1,

where {αn} ⊂ (0, 1) satisfying limn→∞ αn = 0 and
∑∞
n=1 αn = ∞. They proved that

the sequence {xn} generated by (1.1) converges strongly to a fixed point of T . Later, Li
et al. [9] extended a Bregman strongly nonexpansive self mapping T on E for Halpern’s
iteration method to Bregman strongly nonexpansive multi-valued mapping T : C →
N(C) as follows:

(1.2) xn+1 = ∇f∗(αn∇f(u) + (1− αn)∇f(zn)), zn ∈ Txn ∀n ≥ 1,
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where {αn} ⊂ (0, 1) satisfying limn→∞ αn = 0 and
∑∞
n=1 αn =∞ and N(C) is the family

of nonempty subsets of C. They proved that the sequence {xn} generated by (1.2) con-
verges strongly to a fixed point of T .

Very recently, Senakka and Cholamjiak [19] studied the strong convergence for a com-
mon fixed point of T, S : C → C which are Bregman strongly nonexpansive mappings in
a reflexive Banach space E. For u, x1 ∈ C, let {xn} be a sequence generated by

(1.3)
{
yn = P fc [∇f∗(βn∇f(xn) + (1− βn)∇f(Txn))]
xn+1 = P fc [∇f∗(αn∇f(u) + (1− αn)∇f(Syn))],∀n ≥ 1,

where {αn} ⊂ (0, 1) satisfy limn→∞ αn = 0,
∑∞
n=1 αn = ∞ and 0 < lim infn→∞ βn ≤

lim supn→∞ βn < 1. They proved that the sequence {xn} generated by (1.3) converges
strongly to P fF (u) where F = F (T ) ∩ F (S) and P fF (u) is a Bregman projection from E
onto F .

In this paper, we construct an iterative process involving a hybrid pair of a Bregman
strongly nonexpansive single-valued mapping and a finite family of Bregman relative
nonexpansive multi-valued mappings and prove strong convergence theorems of the pro-
posed iterative process in reflexive Banach spaces under appropriate situations. Our main
results can be viewed as an improvement and extension of the several results in the liter-
ature.

2. PRELIMINARIES

Let E be a real reflexive Banach space with the dual space of E∗, and 〈·, ·〉 is the pairing
between E and E∗. Let f : E → (−∞,+∞] be a function. The effective domain of f is
defined by

domf := {x ∈ E : f(x) < +∞}.
We say that f is proper if domf 6= ∅. We denote by int(domf) the interior of the effective
domain of f . We denote by ranf the range of f .

Let x ∈ int(domf). The subdifferential of f at x is the convex set defined by:

∂f(x) = {x∗ ∈ E∗ : f(x) + 〈y − x, x∗〉 ≤ f(y), ∀y ∈ E}.

The Fenchel conjugate of f is the function f∗ : E∗ → (−∞,+∞] defined by f∗(x∗) =
sup{〈x, x∗〉−f(x) : x ∈ E}.We know that x∗ ∈ ∂f(x) if and only if f(x)+f∗(x∗) = 〈x, x∗〉
for all x ∈ E. A function f on E is said to be strongly coercive if lim‖x‖→∞

f(x)
‖x‖ = ∞, for

any x ∈ int(domf) (see [24]). Let Br := {x ∈ E : ‖z‖ ≤ r}. A function f on E is said to be
locally bounded if f(Br) is bounded for all r > 0.

Let f : E → (−∞,+∞] be a convex function and x ∈ int(dom)f . The gradient ∇f(x)
is defined to be the linear functional in E∗ such that

〈y,∇f(x) := lim
t→0+

f(x+ ty)− f(x)

t
, ∀y ∈ E.

The function f is said to be Gâteaux differentiable at x if ∇f(x) is well defined, and f is
Gâteaux differentiable if it is Gâteaux differentiable every where on E. The function f is
said to be Frèchet differentiable at x if this limit is attained uniformly in ‖y‖ = 1. Finally,
f is said to be uniformly Frèchet differentiable on a subset C of E if the limit is attained
uniformly for x ∈ C and ‖y‖ = 1.

Let f : E → (−∞,+∞] be a Gâteaux differentiable function. The function Df : domf ×
int(domf)→ (−∞,+∞] defined as follows:

Df (x, y) := f(x)− f(y)− 〈∇f(y), x− y〉
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is called the Bregman distance with respect to f (see [4]).

Remark 2.1. The Bregman distance Df does not satisfy the well-known properties of a
metric because Df is not symmetric and does not satisfy the triangle inequality.

A Bregman projection [4] of x ∈ int(domf) onto a nonempty, closed and convex set
C ⊂ int(domf) is the unique vector P fC(x) ∈ C satisfying

Df

(
P fC(x), x

)
= inf{Df (y, x) : y ∈ C}.

Let C be a nonempty, closed and convex subset of int(domf). A point p ∈ C is called
an asymptotic fixed point of T (see[15]) if C contains a sequence {xn} which converges
weakly to p such that limn→∞ ‖xn − Txn‖ = 0. We denote by F̂ (T ) the set of asymptotic
fixed points of T .

Definition 2.1. ([3]) The function f is called to be
(i) essentially smooth if f is both locally bounded and single-valued on its domain.

(ii) essentially strictly convex if (∂f)−1 is locally bounded on its domain and f is
strictly convex on every convex subset of domf .

(ii) Legendre if it is both essentially smooth and essentially strictly convex.

It is well known that in a reflexive Banach space E, if f is a Legendre function, then
satisfies the following conditions:

(L1) f is essentially smooth if and only if f∗ is essentially strictly convex.
(L2) f is Legendre if and only if f∗ is Legendre.
(L3) (∂f)−1 = ∂f∗.
(L4) If f is Legendre, then ∇f is a bijection satisfying:

∇f = (∇f∗)−1, ran∇f = dom∇f∗ = int(domf∗) and ∇f∗ = dom∇f = int(domf).

If E is a smooth and strictly convex Banach space, then an important and interesting
Legendre function is f(x) := 1

p‖x‖
p (1 < p < ∞). In this case, the gradient ∇f of f

coincides with the generalized duality mapping of E, i.e., ∇f = Jp (1 < p < ∞). In
particular, ∇f = I the identity mapping in Hilbert spaces. In this article, we assume that
the convex function f : E → (−∞,+∞] is Legendre.

Definition 2.2. Let C be a nonempty and convex subset of int(domf). A mapping T :
C → int(domf) with F (T ) 6= ∅ is called to be

(i) Bregman quasi-nonexpansive, if

Df (p, Tx) ≤ Df (p, x), ∀x ∈ C, p ∈ F (T ).

(ii) Bregman relatively nonexpansive with respect to f , if F (T ) = F̂ (T ),

Df (p, Tx) ≤ Df (p, x), ∀x ∈ C, p ∈ F (T ).

(iii) Bregman strongly nonexpansive with respect to f , if F (T ) = F̂ (T ),

Df (p, Tx) ≤ Df (p, x), ∀x ∈ C, p ∈ F (T ).

and if whenever {xn} ⊂ C is bounded, p ∈ F̂ (T ) and

lim
n→∞

(Df (p, xn)−Df (p, Txn)) = 0,

it follows that
lim
n→∞

Df (xn, Txn) = 0.
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It is obvious that any Bregman strongly nonexpansive mapping is a Bregman relatively
nonexpansive mapping, but the converse is not true in general. Pang et al. [13] showed
that there exists a Bregman relatively nonexpansive mapping which is not a Bregman
strongly nonexpansive mapping.

Let N(C) and CB(C) denote the families of nonempty subsets and nonempty closed
bounded subsets of C, respectively. The Hausdorff metric on CB(C) is defined by

H(A,B) = max{sup
x∈A

dist(x,B), sup
y∈B

dist(y,A)} forA,B ∈ CB(C),

for all A,B ∈ CB(C), where dist(x,B) = inf{‖x − y‖ : y ∈ B} is the distance from a
point x to a subset B.

Definition 2.3. A multi-valued mapping T : C → CB(C) is said to be
(i) nonexpansive if H(Tx, Ty) ≤ ‖x− y‖, for all x, y ∈ C.

(ii) quasi-nonexpansive if F (T ) 6= ∅ and H(Tx, Tp) ≤ ‖x − p‖, for all x ∈ C and
p ∈ F (T ).

Let T : C → CB(C). A point p ∈ C is said to be a fixed point of T , if p ∈ F (T ),
where F (T ) = {p ∈ T : p ∈ Tp}. A point p ∈ C is said to be an asymptotic fixed
point [15] of T if there exists a sequence {xn}n∈N in C which converges weakly to p and
limn→∞ d(xn, Txn) = 0.

Definition 2.4. ([20]) A mapping T : C → CB(C) with F (T ) 6= ∅ is called to be
(i) Bregman quasi-nonexpansive, if

Df (p, z) ≤ Df (p, x), ∀z ∈ Tx, x ∈ C and p ∈ F (T ).

(ii) Bregman relatively nonexpansive, if F (T ) = F̂ (T ),

Df (p, z) ≤ Df (p, x), ∀z ∈ Tx, x ∈ C and p ∈ F (T ).

The following is an example of multi-valued Bregman relatively nonexpansive map-
ping given by (see [20]).

Example 2.1. Let I = [0, 1], X = Lp(I), 1 < p < ∞ and C = {f ∈ X : f(x) ≥ 0,∀x ∈ I}.
Let T : C → CB(C) be defined by

(2.4)
{
{h ∈ C : f(x)− 1

2 ≤ h(x) ≤ f(x)− 1
4 ,∀x ∈ I} if f(x) > 1,∀x ∈ I

{0}, otherwise.

Then T defined by (2.4) is a multi-valued Bregman relatively nonexpansive mapping (see
[20]).

Let f : E → R be a Legendre and Gâteaux differentiable function. Define a function
Vf : E × E∗ → [0,+∞) associated with f by

(2.5) Vf (x, x∗) = f(x)− 〈x, x∗〉+ f∗(x∗), ∀x ∈ E, x∗ ∈ E∗.
Then Vf is nonnegative and

(2.6) Vf (x, x∗) = Df (x,∇f(x∗) ∀x ∈ E, x∗ ∈ E∗.
Moreover, by the subdifferential inequality,

(2.7) Vf (x, x∗) + 〈y∗,∇f∗(x∗)− x〉 ≤ Vf (x, x∗ + y∗) ∀x ∈ E, x∗, y∗ ∈ E∗,
(for more details see [1] and [8]).

Let f : E → (−∞,+∞] be a convex and Gâteaux differentiable function. The function
f is called totally convex if it is totally convex at any point x ∈ int(domf) and is said to be
totally convex on bounded if vf (B, t) > 0 for any nonempty bounded subset B of E and



An iterative process for a hybrid pair of a Bregman strongly nonexpansive single-valued mapping.... 291

t > 0, where the modulus of total convexity of the function f on the set B is the function
vf : int(domf)× [0,+∞]→ [0,+∞] defined by

vf (B, t) := inf{Vf (x, t) : x ∈ B ∩ domf}.
We know that f is totally convex on bounded sets if and only if f is uniformly convex on
bounded sets (see [6]).

The now recall the following lemmas that will be used in the sequel.

Lemma 2.1. ([18]) Let C be a nonempty closed and convex subset of int(domf) and T :
C → C be a quasi-Bregman nonexpansive mapping with respect to f . Then F (T ) is closed
and convex.

Lemma 2.2. ([20]) LetE be a real reflexive Banach space, and let f : E → R be a uniformly
Fréchet differentiable and totally convex on bounded subsets of E. Let C be a nonempty,
closed and convex subset of int(domf) and T : C → CB(C) be a Bregman relatively
nonexpansive mapping. Then F (T ) is closed and convex.

Lemma 2.3. ([6]) Let C be a nonempty, closed and convex subset of E. Let f : E → R be
a Gâteaux differentiable and totally convex function and let x ∈ E. Then

z ∈ P fC(x) if and only if 〈∇f(x)−∇f(z), y − z〉 ≤ 0, ∀y ∈ C.

Lemma 2.4. ([24]) Let f : E → R be a strongly coercive and uniformly convex on bounded
subsets ofE, then f∗ is bounded and uniformly Fréchet differentiable on bounded subsets
of E∗.

Lemma 2.5. ([16]) Let f : E → (−∞,+∞] be a uniformly Fréchet differentiable and
bounded on bounded sets of E, then ∇f is uniformly continuous on bounded subsets
of E from the strong topology of E to the strong topology of E∗.

Lemma 2.6. ([17]) Letf : E → R be a Gâteaux differentiable on int(domf) such that ∇f∗
is bounded on bounded subset of domf∗. Let x∗ and {xn} ⊂ int(E). If {Df (x, xn)} is
bounded, so is the sequence {xn}.

Lemma 2.7. ([14]) Let f : E → (−∞,+∞] be a proper, lower semi-continuous and convex
function, then f∗ : E∗ → (−∞,+∞] is proper, weak∗lower semi-continuous and convex
function. Thus, for all z ∈ E, we have:

Df

(
z,∇f∗

( N∑
i=1

ti∇f(xi)
))
≤

N∑
i=1

tiDf (z, xi),

where {xi}Ni=1 ⊂ E and {ti}Ni=1 with
∑N
i=1 ti = 1.

Lemma 2.8. ([12]) Let E be a Banach space, let r > 0 be a constant, and let f : E → R be a
uniformly convex function on bounded subsets of E. Then

f
( n∑
k=0

αkxk

)
≤

n∑
k=0

αkf(xk)− αiαjρr(‖xi − yi‖),

for all i, j ∈ {0, 1, 2, ..., n}, xk ∈ Br, αk ∈ (0, 1), and k = 0, 1, 2, ..., n with
∑n
k=0 αk = 1,

where ρr is the gauge of uniform convexity of f .

Lemma 2.9. ([12]) Let E be a Banach space and f : E → R be a Gâteaux differentiable
function which is locally uniformly convex on E. Let {xn}n∈N and {yn}n∈N be bounded
sequences in E. Then the following assertions are equivalent

(i) limn→∞Df (xn, yn) = 0;
(ii) limn→∞ ‖xn − yn‖ = 0.
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Lemma 2.10. ([23]) Let {an} be a sequence of nonnegative real numbers satisfying

an+1 ≤ (1− αn)an + αnδn, n ≥ 1,

where {αn} ⊂ (0, 1) and {δn} ⊂ R satisfying limn→∞ αn = 0,
∑∞
n=1 αn = ∞, and

lim supn→∞ δn ≤ 0. Then limn→∞ an = 0.

Lemma 2.11. ([10]) Let {an} be a sequence of real numbers such that there exists a sub-
sequence {ni} of {n} such that ani < ani+1 for all i ∈ N. Then there exists an increasing
sequence {mk} ⊂ N such that mk → ∞ and the following properties are satisfied by all
(sufficiently large) number k ∈ N.

amk
≤ amk+1 ak ≤ amk+1.

In fact, mk is the largest number n in the set {1, 2, ..., k} such that the condition an ≤ an+1

holds.

3. MAIN RESULTS

Theorem 3.1. Let f : E → R be a strongly coercive Legendre function which is bounded, uni-
formly Fréchet differentiable and totally convex on bounded subsets of E. Let C be a nonempty,
closed and subset of int(domf) and S : C → C be a Bregman strongly nonexpansive mapping
with respect to f . Let {Ti}Ni=1 be a finite family of Bregman relative nonexpansive multi-valued
mappings of C into CB(C). Assume that F = F (S) ∩

⋂N
i=1 F (Ti) is nonempty. For u, x1 ∈ C,

let {xn} be a sequence generated by

(3.8)
{
yn = P fc ∇f∗[β

(0)
n ∇f(xn) +

∑N
i=1 β

(i)
n ∇f(u

(i)
n )], u

(i)
n ∈ Tixn,

xn+1 = P fc ∇f∗[αn∇f(u) + (1− αn)∇f(Syn)], n ∈ N,

where {αn} ⊂ (0, 1) satisfying limn→∞ αn = 0,
∑∞
n=1 αn =∞ and {β(i)

n }Ni=1 ⊂ [a, b] ⊂ (0, 1)

and
∑N
i=1 β

(i)
n = 1. Then {xn} converges strongly to p = P fF (u).

Proof. From Lemma 2.1 and Lemma 2.2, we know that F (S) and F (Ti) for all i = 1, 2, ..., N

are closed and convex, hence F is closed and convex. Let p = P fF (u). Then

(3.9) Df (p, yn) = Df (p, P fC∇f
∗[β(0)

n ∇f(xn)+

N∑
i=1

β(i)
n ∇f(u(i)n )]) ≤ Df (p,∇f∗(β(0)

n ∇f(xn)

+

N∑
i=1

β(i)
n ∇f(u(i)n ))) ≤ β(0)

n Df (p, xn)+

N∑
i=1

β(i)
n Df (p, u(i)n ) ≤ β(0)

n Df (p, xn)+

N∑
i=1

β(i)
n Df (p, xn)

= Df (p, xn).

Now, using (3.9) and Bregman strongly nonexpansiveness of S, we have

Df (p, xn+1) ≤ Df (p,∇f∗[αn∇f(u)+(1−αn)∇f(Syn)]) ≤ αnDf (p, u)+(1−αn)Df (p, Syn)

≤ αnDf (p, u) + (1− αn)Df (p, yn) ≤ αnDf (p, u) + (1− αn)Df (p, xn)

≤ max{Df (p, u), Df (p, xn)}.
By induction, we obtain that {Df (p, xn)} is bounded. Using Lemma 2.6, we have the

sequence {xn} is bounded. Let zn = ∇f∗(αn∇f(u) + (1−αn)∇f(Syn)), n ≥ 1. We obtain
that

Df (p, xn+1) = Df (p, P fC [∇f∗(αn∇f(u) + (1− αn)∇f(Syn))])

≤ Df (p,∇f∗(αn∇f(u) + (1− αn)∇f(Syn))) = Vf (p, αn∇f(u) + (1− αn)∇f(Syn))

≤ Vf (p, αn∇f(u) + (1− αn)∇f(Syn)− αn(∇f(u)−∇f(p))) + αn〈∇f(u)−∇f(p), zn − p〉
= Vf (p, αn∇f(p) + (1− αn)∇f(Syn)) + αn〈∇f(u)−∇f(p), zn − p〉 ≤ αnVf (p,∇f(p))
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+αn〈∇f(u)−∇f(p), zn−p〉 = αnDf (p, p)+(1−αn)Df (p, Syn)+αn〈∇f(u)−∇f(p), zn−p〉

(3.10) = (1− αn)Df (p, Syn) + αn〈∇f(u)−∇f(p), zn − p〉

(3.11) ≤ (1− αn)Df (p, yn) + αn〈∇f(u)−∇f(p), zn − p〉

(3.12) ≤ (1− αn)Df (p, xn) + αn〈∇f(u)−∇f(p), zn − p〉.
Moreover, we have

Df (p, yn) ≤ Df (p,∇f∗(β(0)
n ∇f(xn)+

N∑
i=1

β(i)
n ∇f(u(i)n ))) = Vf (p, β(0)

n ∇f(xn)+

N∑
i=1

β(i)
n ∇f(u(i)n ))

(3.13) = f(p)− 〈p, β(0)
n ∇f(xn) +

N∑
i=1

β(i)
n ∇f(u(i)n )〉+ f∗(β(0)

n ∇f(xn) +

N∑
i=1

β(i)
n ∇f(u(i)n )).

Since f is a uniformly Fréchet differentiable function, we obtain that f is uniformly smooth.
Hence by Theorem 3.5.5 of [24], we get that f∗ is uniformly convex. This, with Lemma
2.8, and (3.13) yields

Df (p, yn) ≤ f(p)− 〈p, β(0)
n ∇f(xn) +

N∑
i=1

β(i)
n ∇f(u(i)n ) + f∗(β(0)

n ∇f(xn) +

N∑
i=1

β(i)
n ∇f(u(i)n ))

≤ f(p)− β(0)
n 〈p,∇f(xn)〉+

N∑
i=1

β(i)
n 〈p,∇f(u(i)n ) + β(0)

n f∗(∇f(xn)) +

N∑
i=1

β(i)
n f∗(∇f(u(i)n ))

−β(0)
n β(i)

n ρ∗r(‖∇f(xn)−∇f(u(i)n )‖) = β(0)
n Vf (p,∇f(xn)) +

N∑
i=1

β(i)
n Vf (p,∇f(u(i)n ))

−β(0)
n β(i)

n ρ∗r(‖∇f(xn)−∇f(u(i)n )‖) = β(0)
n Df (p, xn) +

N∑
i=1

β(i)
n Df (p, u(i)n )

−β(0)
n β(i)

n ρ∗r(‖∇f(xn)−∇f(u(i)n )‖) = β(0)
n Df (p, xn) +

N∑
i=1

β(i)
n Df (p, xn)

−β(0)
n β(i)

n ρ∗r(‖∇f(xn)−∇f(u(i)n )‖) = Df (p, xn)− β(0)
n β(i)

n ρ∗r(‖∇f(xn)−∇f(u(i)n )‖),
which implies that

β(0)
n β(i)

n ρ∗r(‖∇f(xn)−∇f(u(i)n )‖) ≤ Df (p, xn)−Df (p, yn).

By (3.11), we obtain that

β(0)
n β(i)

n ρ∗r(‖∇f(xn)−∇f(u(i)n )‖) ≤ Df (p, xn)−Df (p, xn+1)

− αnDf (p, yn) + αn〈∇f(u)−∇f(p), zn − p〉.(3.14)

Now, we consider two cases.
Case I Suppose that there exists n0 ∈ N, such that {Df (p, xn)} is nonincreasing for all
n ≥ n0. Then {Df (p, xn)} is convergent and hence {Df (p, xn)} − {Df (p, xn+1)} → 0 as
n→∞. From (3.14), we have

lim
n→∞

β(0)
n β(i)

n ρ∗r(‖∇f(xn)−∇f(u(i)n )‖) = 0,

which implies, by the property of ρ∗r that

(3.15) ∇f(xn)−∇f(u(i)n ))→ 0 as n→∞.
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Since f is strongly coercive and uniformly convex on bounded subsets ofE and by Lemma
2.4, we have f∗is uniformly Fréchet differentiable on bounded subsets of E∗. Since f is
Legendre by Lemma 2.5, we obtain that∇f∗ is uniformly continuous on bounded subsets
of E∗. From (3.15) we get that

xn − u(i)n → 0 as n→∞.

Since d(xn, Tixn) ≤ ‖xn − u(i)n ‖, we have

(3.16) lim
n→∞

d(xn, Tixn) = 0,

for each i ∈ {1, 2, ..., N}.
Since {xn} is bounded and E is reflexive, we choose a subsequence {xnj} of {xn} that
converges weakly to z. Thus from (3.16) and the fact that each Ti is Bregman relatively
nonexpansive, we obtain z ∈ F (Ti), for each i ∈ {1, 2, ..., N}. This implies that z ∈⋂N
i=1 F (Ti).
We now show that z ∈ F (S). By (3.10), we obtain that

(3.17) Df (p, xn+1) ≤ (1− αn)Df (p, Syn) + αn〈∇f(u)−∇f(p), zn − p〉 = Df (p, Syn)

−αnDf (p, Syn) + αn〈∇f(u)−∇f(p), zn − p〉 = Df (p, Syn)− αnDf (p, Syn)

+αn〈∇f(u)−∇f(p), zn − p〉 −Df (p, yn) +Df (p, yn).

By (3.9), we have

(3.18) Df (p, yn)−Df (p, Syn) ≤ Df (p, yn)−Df (p, xn+1)− αnDf (p, Syn)

+αn〈∇f(u)−∇f(p), zn − p ≤ Df (p, xn)−Df (p, xn+1)− αnDf (p, Syn)

+αn〈∇f(u)−∇f(p), zn − p〉.
Thus Df (p, yn)−Df (p, Syn)→ 0 as n→∞. Since S is a Bregman strongly nonexpan-

sive mapping, we have limn→∞Df (yn, Syn) = 0. This implies that

(3.19) lim
n→∞

‖Syn − yn‖ = 0.

We see that

Df (xn, yn) ≤ Df (xn,∇f∗(β(0)
n ∇f(xn) +

N∑
i=1

β(i)
n ∇f(u(i)n ))

≤ β(0)
n Df (xn, xn) +

N∑
i=1

β(i)
n Df (xn, u

(i)
n ).(3.20)

Since ‖xn − u(i)n ‖ → 0, n→∞ and {uin} is a bounded sequence, by Lemma 2.9, we obtain
that limn→∞∆p(xn, u

(i)
n ) = 0. From (3.20), it follows that limn→∞Df (xn, yn) = 0.

So that
lim
n→∞

‖xn − yn‖ = 0.

Since E is reflexive, {yn} is bounded and limn→∞ ‖xn − yn‖ = 0, we obtain that ynk
⇀ z.

Since F (S) = F̂ (S) and (3.19), we have z ∈ F (S). Thus z ∈ F (S) ∩
⋂N
i=1 F (Ti) = F .

Furthermore, we have that

Df (yn, zn) ≤ Df (yn,∇f∗(αn∇f(u)+(1−αn)∇f(Syn))) ≤ αnDf (yn, u)+(1−αn)Df (yn, Syn).

Therefore limn→∞Df (yn, zn) = 0. It follows that limn→∞ ‖yn − zn‖ = 0.
Let p = P fF (u). We next show that lim supn→∞〈∇f(u) − ∇f(p), zn − p〉 ≤ 0. Since

limn→∞ ‖yn − zn‖ = 0, so we obtain that znk
⇀ z, it follows that

lim sup
n→∞

〈∇f(u)−∇f(p), zn − p〉 = lim
n→∞

〈∇f(u)−∇f(p), znk
− p〉.
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Moreover, by Lemma 2.3, we have

lim sup
n→∞

〈∇f(u)−∇f(p), zn − p〉 = 〈f(u)−∇f(p), z − p〉 ≤ 0.

Now using the above inequality and (3.12), we obtain D(p, xn) → 0 as n → ∞. Hence
xn → p as n→∞.
Case II Suppose that there exists a subsequence {ni} of {n} such that

Df (p, xni
) ≤ Df (p, xni+1), for all i ∈ N.

Then, by Lemma 2.11, there exists a non-decreasing sequence mk ⊂ N such that mk →∞,
and Df (p, xmk

) ≤ Df (p, xmk+1) and Df (p, xk) ≤ Df (p, xmk+1) for all k ∈ N. Thus, we
have

0 ≤ lim
n→∞

(Df (p, xmk+1)−Df (p, xmk
))

≤ lim sup
n→∞

(Df (p, xn+1)−Df (p, xn))

≤ lim sup
n→∞

(αnDf (p, u) + (1− αn)Df (p, Syn)−Df (p, xn))

≤ lim sup
n→∞

(αnDf (p, u) + (1− αn)Df (p, yn)−Df (p, xn))

≤ lim sup
n→∞

(αnDf (p, u) + (1− αn)Df (p, xn)−Df (p, xn))

= lim sup
n→∞

αn(Df (p, u)−Df (p, xn))

= 0.

This implies that

(3.21) lim
n→∞

(Df (p, xmk+1)−Df (p, xmk
)) = 0.

By (3.14), and αn → 0, we obtain that

ρ∗r(‖∇f(xmk
)−∇f(u(i)mk

)‖)→ 0 as k →∞

for each i ∈ {1, 2, ..., N}. By following the method of proof of case I, we obtain that
d(xmk

, Tixmk
)→ 0 as k →∞. As the proof in case I and (3.18), we obtain that limn→∞ ‖Symk

−
ymk
‖ = 0 and

(3.22) lim sup
n→∞

〈∇f(u)−∇f(p), zmk
− p〉 ≤ 0.

Then, from (3.12), we get that

Df (p, xmk+1) ≤ (1− αmk
)Df (p, xmk

) + αmk
〈∇f(u)−∇f(p), zmk

− p〉.

Since Df (p, xmk
) ≤ Df (p, xmk+1), the above inequality implies that

αmk
Df (p, xmk

) ≤ Df (p, xmk
)−Df (p, xmk+1) + αmk

〈∇f(u)−∇f(p), zmk
− p〉

≤ αmk
〈∇f(u)−∇f(p), zmk

− p〉.

In particular, since αmk
> 0, we have

Df (p, xmk
) ≤ 〈∇f(u)−∇f(p), zmk

− p〉.

Hence, by the above inequality, we have limk→∞Df (p, xmk
) = 0.

This together with (3.21), gives limk→∞Df (p, xmk+1) = 0. ByDf (p, xk) ≤ Df (p, xmk+1)
for all k ∈ N, we conclude that limk→∞Df (p, xk) = 0. Hence xk → p as k →∞.

Therefore, from the above two cases, we can conclude that {xn} converges strongly to
p = P fc (u) and the proof is complete. �
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If we assume that Ti (i = 1, 2, ..., N) to be a Bregman relative quasi-nonexpansive multi-
valued mapping in Theorem 3.1, then we get the following corollary:

Corollary 3.1. Let f : E → R be a strongly coercive Legendre function which is bounded,
uniformly Fréchet differentiable and totally convex on bounded subsets ofE. Let C be a nonempty,
closed and subset of int(domf) and S : C → C be Bregman strongly nonexpansive mapping with
respect to f . Let {Ti}Ni=1 be a finite family of Bregman relative quasi-nonexpansive multi-valued
mappings of C into CB(C). Assume that F = F (S) ∩

⋂N
i=1 F (Ti) is nonempty. For u, x1 ∈ C,

let {xn} be a sequence generated by

(3.23)
{
yn = P fc ∇f∗[β

(0)
n ∇f(xn) +

∑N
i=1 β

(i)
n ∇f(u

(i)
n )], u

(i)
n ∈ Tixn,

xn+1 = P fc ∇f∗[αn∇f(u) + (1− αn)∇f(Syn)], n ∈ N,

where {αn} ⊂ (0, 1) satisfy limn→∞ αn = 0,
∑∞
n=1 αn = ∞ and {β(i)

n }Ni=1 ⊂ [a, b] ⊂ (0, 1)

and
∑N
i=1 β

(i)
n = 1. Then {xn} converges strongly to p = P fF (u).

If we assume that Ti = T for each i = 1, 2, ...N in Theorem 3.1, then we get the follow-
ing corollary:

Corollary 3.2. Let f : E → R be a strongly coercive Legendre function which is bounded,
uniformly Fréchet differentiable and totally convex on bounded subsets ofE. Let C be a nonempty,
closed and subset of int(domf) and S : C → C be Bregman strongly nonexpansive mapping with
respect to f . Let T be a Bregman relative nonexpansive multi-valued mappings of C into CB(C).
Assume that F = F (S) ∩ F (T ) is nonempty. For u, x1 ∈ C, let {xn} be a sequence generated by

(3.24)
{
yn = P fc ∇f∗[β∇f(xn) + (1− β)∇f(un)], un ∈ Txn,
xn+1 = P fc ∇f∗[αn∇f(u) + (1− αn)∇f(Syn)], n ∈ N,

where {αn} ⊂ (0, 1) satisfying limn→∞ αn = 0,
∑∞
n=1 αn = ∞ and β ⊂ (0, 1). Then {xn}

converges strongly to p = P fF (u).

If we assume that each Ti (i = 1, 2, ..., N ) is a Bregman relative nonexpansive single-
valued mapping and S is an identity mapping on C, we get the following corollary:

Corollary 3.3. Let f : E → R be a strongly coercive Legendre function which is bounded,
uniformly Fréchet differentiable and totally convex on bounded subsets ofE. Let C be a nonempty,
closed and subset of int(domf). Let {Ti}Ni=1 be a finite family of Bregman relative nonexpansive
mappings of C into C. Assume that F =

⋂N
i=1 F (Ti) is nonempty. For u, x1 ∈ C, let {xn} be a

sequence generated by

(3.25)
{
yn = P fc ∇f∗[β

(0)
n ∇f(xn) +

∑N
i=1 β

(i)
n ∇f(Tixn)],

xn+1 = P fc ∇f∗[αn∇f(u) + (1− αn)∇f(yn)], n ∈ N,

where {αn} ⊂ (0, 1) satisfying limn→∞ αn = 0,
∑∞
n=1 αn =∞ and {β(i)

n }Ni=1 ⊂ [a, b] ⊂ (0, 1)

and
∑N
i=1 β

(i)
n = 1. Then {xn} converges strongly to p = P fF (u).

4. APPLICATION

In this section, we give an application of Theorem 3.1, which is the variational inequal-
ity problems and the zeros of maximal monotone operator in the framework of reflexive
Banach spaces.

4.1 Variational Inequality Problems

Definition 4.5. ([17]) Let f : E → (−∞,+∞] be a Gâteaux differentiable function. A
mapping A : E → 2E

∗
satisfying the range condition, i.e., ran(∇f − A) ⊂ ran(∇f) is
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called Bregman inverse strongly monotone if domA ∩ int(domf) 6= ∅ and for any x, y ∈
int(domf) and each u ∈ Ax, v ∈ Ay,

〈u− v,∇f∗(∇f(x)− u)−∇f∗(∇f(y)− v)〉 ≥ 0.

Let A : C → E∗ be a Bregman inverse strongly monotone operator, and let C be a
nonempty, closed and convex subset of domA. The variational inequality problem corre-
sponding to A is to find x∗ ∈ C, such that

(4.26) 〈Ax∗, y − x∗〉 ≥ 0, ∀y ∈ C.

The set of solutions of equation (4.26) is denoted by V I(C,A).

Definition 4.6. ([17]) Let A : E → 2E
∗

be an any operator; the anti-resolvent Af : E → Ef

of A is defined by:
Af = ∇f∗ ◦ (∇f −A).

We see that domAf ⊂ domA ∩ int(domf) and ranAf ⊂ int(domf). Moreover, an
operator A is Bregman inverse strongly monotone if and only if anti-resolvent Af is a
single-valued Bregman firmly nonexpansive mapping (see Lemma 3.4(c) and (d) in [7]).

Lemma 4.12. ([16]) Let A : E → E∗ be a Bregman inverse strongly monotone mapping
and f : E → (−∞,+∞] be a Legendre and totally convex function that satisfies the range
condition. If C is a nonempty, closed and convex subset of domA ∩ int(domf), then:

(i) P fC ◦Af is Bregman relatively nonexpansive mapping, whereAf = ∇f∗◦(∇f−A);
(ii) F (P fC ◦Af ) = V I(C,A).

Theorem 4.2. LetE be a real reflexive Banach spaceE, f : E → R be a strongly coercive Legendre
function which is bounded, uniformly Fréchet differentiable and totally convex on bounded subsets
ofE, which satisfies the range condition,C be a nonempty, closed and subset of domA∩int(domf)
and Ai : C → E∗ (i = 1, ..., N) be a Bregman inverse strongly monotone function and S : C →
C be Bregman strongly nonexpansive mapping with respect to f . Assume that F = F (S) ∩⋂N
i=1 V I(C,Ai) is nonempty. For u, x1 ∈ C, let {xn} be a sequence generated by

(4.27)
{
yn = P fc ∇f∗[β

(0)
n ∇f(xn) +

∑N
i=1 β

(i)
n ∇f(P fC ◦A

f
i (xn))],

xn+1 = P fc ∇f∗[αn∇f(u) + (1− αn)∇f(Syn)], n ∈ N,

where Afi = ∇f∗ ◦ (∇f − Ai) for i = 1, 2, ..., N . Suppose that {αn} and {β(i)
n }Ni=1 are as in

Theorem 3.1. Then {xn} converges strongly to p = P fF (u).

4.2 Zeros of Maximal Monotone Operator
Let A : E → 2E

∗
be a set-valued mapping. We denoted by G(A) as the graph of A,

i.e., G(A) = {(x, x∗) ∈ E × E∗ : x∗ ∈ Ax}. An operator A is called to be monotone
if 〈x∗ − y∗, x − y〉 > 0 for each (x, x∗), (y, y∗) ∈ G(A). We call monotone operator A a
maximal if its graph is not contained in the graph of any other monotone operators on E.
It is known that if A is maximal monotone, then the set A−1(0∗) = {x ∈ E : 0∗ ∈ Ax} is
closed and convex. The resolvent of A, denoted by ResfλA : E → 2E , is defined as follows:

ResfλA(x) = (∇f + λA)−1 ◦ ∇f(x)

where λ > 0.It is known that F (ResfλA) = A−1(0∗) and ResfλA is single-valued and Breg-
man firmly nonexpansive (see [2]).

In addition, Reich and Sabach [18] proved that if f is a Legendre function, which is
bounded, uniformly Fréchet differentiable on bounded subsets of E, then F̂ (ResfλA) =
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F (ResfλA). And so that if F̂ (ResfλA) = F (ResfλA), then a Bregman that is firmly nonex-
pansive is a Bregman relatively nonexpansive mapping.

The Yosida approximation Aλ(x) : E → E, λ > 0, is defined by:

Aλ(x) =
1

λ
(∇f(x)−∇f(ResfλA)) for all x ∈ E and λ > 0.

Proposition 4.1. ([17]) For any λ > 0 and for any x ∈ X , we have

(i)
(
ResfλA(x), Aλ(x)

)
∈ G(A);

(ii) 0∗ ∈ Ax if and only if 0∗ ∈ Aλ(x).

We take C = E and Ti = ResfλAi
> 0 for all i = 1, ..., N in Theorem 3.1, then we obtain

that the following Theorem

Theorem 4.3. LetE be a real reflexive Banach spaceE, f : E → R be a strongly coercive Legendre
function which is bounded, uniformly Fréchet differentiable and totally convex on bounded subsets
ofE, which satisfies the range condition,C be a nonempty, closed and subset of domA∩int(domf)
and Ai : E → E∗(i = 1, 2, ..., N) be a finite collection of maximal monotone operators and
S : C → C be Bregman strongly nonexpansive mapping with respect to f . Assume that F =

F (S) ∩
⋂N
i=1A

−1
i (0) is nonempty. For u, x1 ∈ C, let {xn} be a sequence generated by

(4.28)
{
yn = P fc ∇f∗[β

(0)
n ∇f(xn) +

∑N
i=1 β

(i)
n ∇f(ResfλA(xn))],

xn+1 = P fc ∇f∗[αn∇f(u) + (1− αn)∇f(Syn)], n ∈ N,

where λ > 0. Suppose that {αn} and {β(i)
n }Ni=1 are as in Theorem 3.1. Then {xn} converges

strongly to p = P fF (u).

5. NUMERICAL EXAMPLE

In this section, we present some numerical example for supporting Theorem 3.1 on a
real line. Let E = R, C = [−1, 1], and f(x) = 2

3x
2 (f is a strongly coercive Legendre func-

tion which is bounded, uniformly Fréchet differentiable and totally convex on bounded
subsets of E appeared in the numerical example of [22])

Furthermore, let S = PC (which is an example of a Bregman strongly nonexpansive
mapping, see [11]), and

Tix =

 [(φi

2 − 1)x, (φi − 1)x] x < 0,
{0} x = 0,

[(1− φi)x, (1− φi

2 )x] x > 0,

where φi = i
i+1 for all i = 1, 2. Next, we show that Ti is a Bregman relative nonexpansive

multi-valued mapping of C into CB(C) for all i = 1, 2. Clearly F (Ti) = 0 = F̂ (Ti) for all
i = 1, 2. Consider

Df (0, x) = f(0)− f(x)− 〈∇f(x), 0− x〉

= 0− 2

3
x2 − 〈4

3
x,−x〉

= 0− 2

3
x2 +

4

3
x2

=
2

3
x2.

Since ui ∈ Tix, we have ui ∈ Tix ≤ x for all i = 1, 2. Thus f(ui) ≤ f(x) for all i = 1, 2.
Consider, for all i = 1, 2,
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Df (0, ui) = f(0)− f(ui)− 〈∇f(ui), 0− ui〉

= 0− 2

3
u2i − 〈

4

3
ui,−ui〉

= 0− 2

3
u2i +

4

3
u2i

=
2

3
u2i

= f(ui) ≤ f(x) =
2

3
x2 = Df (0, x).

Thus Ti is a Bregman relative nonexpansive multi-valued mapping of C into CB(C) for
all i = 1, 2. Set u = 0 and x1 = 1. Now take u(1)n = 1

2xn and u(2)n = 2
3xn.

Let {xn} and {yn} be generated by

(5.29)
{
yn = P fc ∇f∗[β

(0)
n ∇f(xn) +

∑N
i=1 β

(i)
n ∇f(u

(i)
n )], u

(i)
n ∈ Tixn,

xn+1 = P fc ∇f∗[αn∇f(u) + (1− αn)∇f(Syn)], n ∈ N,

where αn = 1
n+1 and β

(0)
n = 1

12n , β(1)
n = 12n−1

36n , β(2)
n = 12n−1

18n . Then the sequences {xn}
and {yn} converge strongly to 0, where 0 = P fF (u).

Figure of the value of the sequences {xn} and {yn}
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