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Fixed point theorems for a pair of single-valued operators
in a metric space endowed with a reflexive relation

MELÁNIA-IULIA DOBRICAN

ABSTRACT. In this paper we provide some existence and uniqueness theorems for coupled fixed points for
a pair of contractive operators satisfying a mixed monotone property, in a metric space endowed with a reflex-
ive relation. An application to a first-order differential system equation with PBV conditions is also given to
illustrate the utility of our results.

1. INTRODUCTION

Coupled fixed points were first introduced by Opoitsev [9], [10], then studied and im-
proved by Guo and Lakshmikantham in [7] in the context of partially ordered subsets of
a metric space. Bhaskar and Lakshmikantham also obtained important, inspiring results
in [6] regarding the existence and uniqueness of coupled fixed points of a mapping in
metric spaces endowed with partial order using a weak contractivity type of assumption.
In the next decade, the partial order was replaced by many other relations (reflexive [1],
transitive[17], [3]) and the tendency is to replace not only this, but also the initial con-
tractive condition with more general, symmetrical ones(see [4], [13], [5], etc.).

Decades after first being mentioned, Petruşel et. al. come with a fresh approach on
coupled fixed points, using two operators, instead of one (see [11], [18], [19]), obtaining
exciting results regarding a couple of mixed monotone operators in partially ordered me-
tric spaces. Thus, they obtain a generalization of the classical concept of coupled fixed
point which comes to widen the class of problems solvable by fixed point results.

The aim of this paper is to present some existence and uniqueness results for the cou-
pled fixed point problem associated to a pair of mixed-monotone singlevalued operators
in a metric space endowed with a reflexive relation, based on the approach of Urs and
Petruşel in [11] and Asgari and Mousavi in [1]. In order to prove the effectiveness of the
results presented, in the last part of our paper we provide an application to a first-order
differential system with PVB conditions.

2. PRELIMINARIES

The purpose of this section is to summarize some of the result that lead to the ones
presented in section 3.

The following definition presents the coupled fixed point of a pair of mappings, as
considered in [11], [18], [19].
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Definition 2.1. [11] Let X be a nonempty set and T : X × X → X × X be an operator
defined by

T (x, y) :=

(
T1(x, y)
T2(x, y)

)
,

where T1, T2 : X ×X → X .

• By definition, a solution (x, y) for the system{
T1(x, y) = x

T2(x, y) = y

is called a coupled fixed point for the operator T , respectively, for the pair (T1, T2).
• The cartesian product of T and T is denoted by T × T and it is defined in the

following way: T × T : Z × Z → Z × Z, (T × T )(z, w) := (T (z), t(w)), where
Z := X ×X and z := (x, y), w := (u, v) are two arbitrary elements in Z.

Remark 2.1. In the definition above, if T1 = T2, we obtain the classical definition of cou-
pled fixed point of an operator.

The following results is one of the main results in [11] and establishes the existence of
a unique coupled fixed point for the pair of mappings considered.

Theorem 2.1. [11] Let (X, d,≤) be an ordered complete metric space and let T1, T2 : X ×
X → X be two operators. We suppose:

(1) for each z = (x, y), w = (u, v) ∈ X ×X which are not comparable with respect to
the partial ordering ≤ on X × X , there exists t := (t1, t2) ∈ X × X such that t is
comparable with both z and w, i.e.,

((x ≥ t1 and y ≤ t2) or (x ≤ t1 and y ≥ t2)) and

((u ≥ t1 and v ≤ t2) or (u ≤ t1 and v ≥ t2));
(2) for all ((x ≥ u and y ≤ v) or (u ≥ x and v ≤ y) we have{

T1(x, y) ≥ T1(u, v)
T2(x, y) ≤ T2(u, v)

or {
T1(u, v) ≥ T1(x, y)
T2(u, v) ≤ T2(x, y)

(3) T1, T2 : X ×X → X are continuous;
(4) there exists z0 := (z10 , z

2
0) ∈ X ×X such that{

z10 ≥ T1(z10 , z20)
z20 ≤ T2(z10 , z20)

or {
T1(z

1
0 , z

2
0) ≥ z10

T2(z
1
0 , z

2
0) ≤ z20

(5) there exists a matrix A =

(
k1 k2
k3 k4

)
∈M2(R+) convergent toward zero such that

d(T1(x, y), T1(u, v)) ≤ k1d(x, u) + k2d(y, v)

d(T2(x, y), T2(u, v)) ≤ k3d(x, u) + k4d(y, v)
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for all (x ≥ u and y ≤ v) or (u ≥ x and v ≤ y).
Then there exists a unique element (x∗, y∗) ∈ X ×X such that

x∗ = T1(x
∗, y∗) and y∗ = T2(x

∗, y∗)

and the sequence of the successive approximations (Tn1 (w1
0, w

2
0), T

n
2 (w

1
0, w

2
0)) con-

verges to (x∗, y∗) as n→∞, for all w0 = (w1
0, w

2
0) ∈ X ×X

Next, we will recall some of the definitions from [1], for coupled fixed points, mixed
monotony in the case of metric spaces endowed with a reflexive relation.

Definition 2.2. ([1]) The mapping f is called orbitally continuous if (x, y), (a, b) ∈ X ×X
and fnk(x, y) → a and fnk(y, x) → b, when k → ∞, implies fnk+1(x, y) → f(a, b) and
fnk+1(y, x)→ f(b, a), when k →∞.

Definition 2.3. ([1]) LetX be a nonempty set and letR be a reflexive relation onX , f : X×
X → X . The mapping f has the mixed R−monotone property on X if f × f(XR(x, y)) ⊆
XR(f × f(x, y)), for all (x, y) ∈ X ×X , where XR(x, y) = {(z, t) ∈ X ×X : zRx ∧ yRt},
∀(x, y) ∈ X ×X .

Definition 2.4. [1] Let X be a topological space and let F : X2 → X be a mapping.
• Then an element (x, y) ∈ X2 is called a coupled attractor basin element of F with

respect to (x, y) ∈ X2 if Fn(x, y) → x and Fn(y, x) → y, as n → ∞ and an
element x ∈ X is called an attractor basin element of F with respect to x ∈ X ,
if Fn(x, x) → x, as n → ∞. The set of all coupled attractor basin elements of F
with respect to (x, y) will be denoted by Af (x, y) and the set of all attractor basin
elements of F with respect to x ∈ X , by Af (x).

• The mapping F is called a Picard operator, if there exists x ∈ X such that Ff = {x}
and Af (x) = X .

The next theorem is the main uniqueness result in [1].An error estimate for the descri-
bed method is also provided.

Theorem 2.2. ([1]) Let (X, d) be a metric space and R a reflexive relation on X . If f :
X ×X → X is a mapping such that:

• f has the mixed R−monotone property on X .
• (X, d) is a complete metric space.
• f has an R−coupled fixed point, i.e. there exists (x0, y0) ∈ X × X such that f ×
f(x0, y0) ∈ XR(x0, y0).

• there exists a constant k ∈ [0, 1) such that:

d(f(x, y), f(z, t)) ≤
k

2
[d(x, z) + d(y, t)],∀(x, y) ∈ XR(z, t).

• f is orbitally continuous.
Then:

• There exists x∗, y∗ ∈ X such that f(x∗, y∗) = x∗ and f(y∗, x∗) = y∗.
• The sequences {xn}n∈N and {yn}n∈N defined by xn+1 = f(xn, yn) and yn+1 =
f(yn, xn) converge respectively to x∗ and y∗.

• The error estimation is given by :

maxn∈N{d(xn, x∗), d(yn, y∗)} ≤
kn

2(1− k)
[d(f(x0, y0), x0) + d(f(y0, x0), y0)].

In [12] Rus and Petruşel note that, when working with a relation and a metric we have
to include in the hypothesis a condition of compatibility between the two structures. Thus,
in this case, the reflexive relation R and the metric d are compatible if xnRyn implies
limn→∞ xnR limn→∞ yn,∀n ∈ N.
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3. MAIN RESULTS

The next theorem extends the results of Urs [19] in the case of metric space endowed
with a reflexive relation.

Theorem 3.3. Let (X, d) be a metric space and R a reflexive relation on X such that R and
d are compatible. If f1, f2 : X ×X → X two mappings such that:

• f1, f2 have the mixed R−monotone property on X .
• (X, d) is a complete metric space.
• there exists (x0, y0) ∈ X ×X such that f1 × f2(x0, y0) ∈ XR(x0, y0).
• there exists a constant k ∈ [0, 1) such that:
d(f1(x, y), f1(z, t)) + d(f2(x, y), f2(z, t)) ≤ k · [d(x, z) + d(y, t)],∀(x, y) ∈ XR(z, t).

• for (x, y), (a, b) ∈ X × X such that fnk
1 (x, y) → a and fnk

2 (x, y) → b, we have
fnk+1
1 (x, y)→ f1(a, b) and fnk+1

2 (x, y)→ f2(a, b), when k →∞.
Then:

• There exists x∗, y∗ ∈ X such that f1(x∗, y∗) = x∗ and f2(x∗, y∗) = y∗.
• The sequences {xn}n∈N and {yn}n∈N defined by xn+1 = f1(xn, yn) and yn+1 =
f2(xn, yn) converge respectively to x∗ and y∗.

• The error estimation is given by :

maxn∈N{d(xn, x∗), d(yn, y∗)} ≤
kn

2(1− k)
[d(f1(x0, y0), x0) + d(f2(x0, y0), y0)].

Proof. From the third assumption in the hypothesis , we have that the pair (f1, f2) admits
an R-coupled fixed point; let (x0, y0) ∈ X ×X be it, we have f1 × f2(x0, y0) ∈ XR(x0, y0).
Further, using the mixedR-monotone property of f1, f2, we have f1×f2(x0, y0)∈ XR(F (x0, y0),
F (y0, x0)). Using the induction, we can easily prove that:

(3.1) (fn1 (x0, y0), f2(x0, y0)) ∈ XR(f
n−1
1 (x0, y0), f

n−1
2 (x0, y0)).

We define d2 : X2 ×X2 → R+ d2(Y,Z) =
1

2
[d(x, z) + d(y, t)],∀Y = (x, y), Z = (z, t) ∈ X2.

d2 is a metric on X2 because:
• d2(Y, Z) = 0⇔ Y = Z is a simple task to check , using the definition of d2 and the

fact that d is a metric.
• d2(Y, Z) = d2(Z, Y ),∀Y,Z ∈ X2 holds, because d is a metric, and the sum in d2’s

definition is commutative.
• d2(Y, Z) ≤ d2(Y, T ) + d2(T,Z),∀Y, T, Z ∈ X2 can also be easily checked.

Therefore (X2, d2) is a complete metric space.
We consider the operator:
T : X2 → X2 defined by T (Y ) = (f1(x, y), f2(x, y)),∀Y = (x, y) ∈ X2.
For Y = (x, y), Z = (z, t) ∈ X2, considering the definition for d2, we have:

d2(T (Y ), T (Z)) =
d(f1(x, y), f1(z, t)) + d(f2(x, y), f2(z, t))

2
and

d2(Y,Z) =
d(x, z) + d(y, t)

2
.

By the contractivity condition (3.3) we have

(3.2) d2(T (Y ), T (Z)) ≤ k · d2(Y,Z),∀Y,Z ∈ X2, Y ≥ Z.
From (3.1), we have the monotony of t and that {Zn}n≥0− is nondecreasing, we denote

Zn = (fn−11 (x0, y0), f
n−1
2 (x0, y0)).
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We denote Y = Zn ≥ Zn−1 = V .
We replace this in (3.2), obtaining:

d2(T (Zn), T (Zn−1)) ≤ k · d2(Zn, Zn−1), n ≥ 1⇔

⇔ d2(Zn+1, Zn) ≤ k · d2(Zn, Zn−1), n ≥ 1.

Using the induction, we have:

d2(Zn+1, Zn) ≤ kn · d2(Z1, Z0), n ≥ 1.

Let i < j. We get:

d2(Zi, Zj) ≤
j∑

l=i+1

d2(Zl, Zl−1) ≤ (ki + ki+1 + ...+ kj−i−1) · d2(Z1, Z0) ≤

(3.3) ≤ ki
1− kj−i−1

1− k
· d2(Z1, Z0)

⇒ {Zn}n≥0 is a Cauchy sequence in the complete metric space (X2, d2)⇒

⇒ lim
n→∞

Zn = Z∗.

We now use (3.1): t(Z∗) = Z∗ ⇔ (f1(x
∗, y∗), f2(y

∗, x∗)) = (x∗, y∗) ⇔ f1(x
∗, y∗) =

x∗, f2(x
∗, y∗) = y∗ ⇔ (x∗, y∗) is the coupled fixed point for the pair (f1, f2).

Since (X, d) is a complete metric space, ∃ x∗, y∗ ∈ X such that fn1 (x0, y0)→ x∗, fn2 (x0, y0)→
y∗, n→∞. Using the last assumption in the hypothesis, we have:

{xn}n∈N → x∗, xn+1 = f1(xn, yn)

{yn}n∈N → y∗, yn+1 = f2(xn, yn)

So, by (3.3) we have:

d2((xn, yn), (x
∗, y∗)) ≤

kn

1− k
· d2((x1, y1), (x0, y0)), n ≥ 0.

We return to the original metric d:

d(xn, x
∗) + d(yn, y

∗)

2
≤

kn

1− k
·
d(x1, x0) + d(y1, y0)

2
⇔

⇔ d(xn, x
∗) + d(yn, y

∗) ≤ max
n∈N
{d(xn, x∗), d(yn, y∗)} ≤

kn

1− k
· [d(x1, x0) + d(y1, y0)].

But xn+1 = f1(xn, yn) and yn+1 = f2(xn, yn). We get:

max
n∈N
{d(xn, x∗), d(yn, y∗)} ≤

kn

1− k
· [d(f1(x0, y0), x0) + d(f2(x0, y0), y0)].

�

Theorem 3.4. In addition to the hypothesis of Theorem 3.3, we suppose that there exists
(r, s) ∈ X2 such that (x, y), (x0, y0) ∈ XR(r, s),∀(x, y), (x0, y0) ∈ X2. Then, the pair (f1, f2)
admits a unique fixed point.

Proof. From Theorem 3.3 it follows that there exists x∗, y∗ ∈ X such that f1(x∗, y∗) =
x∗, f2(x

∗, y∗) = y∗.
The next step is to show that Af (x∗, y∗) = X ×X .
Let (x, y) ∈ X2. Since f1, f2 have the mixedR−monotone property onX , then there exists
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(r, s) ∈ X2 such that (x, y), (x0, y0) ∈ XR(r, s). From (x0, y0) ∈ XR(r, s) and the fact that
(X, d) is a complete metric space, it follows that for n ∈ N

(fn1 (x0, y0), f
n
2 (x0, y0)) ∈ XR(f

n
1 (r, s), f

n
2 (r, s)).

From the sixth assumption of 3.3 (i.e. for (x, y), (a, b) ∈ X×X such that fnk
1 (x, y)→ a and

fnk
2 (x, y) → b, we have fnk+1

1 (x, y) → f1(a, b) and fnk+1
2 (x, y) → f2(a, b), when k → ∞)

we have:
d(fn1 (x0, y0), F

n(r, s)) ≤ kn · [d(x0, r) + d(y0, s)],

and

d(fn2 (x0, y0), F
n(r, s)) ≤ kn · [d(x0, r) + d(y0, s)].

Now, using the fact that (x0, y0) ∈ Af (x
∗, y∗), it follows that (r, s) ∈ Af (x

∗, y∗). Thus,
Af (x

∗, y∗) = X2.
Therefore the pair(f1, f2) admits a unique fixed point.

�

It is important to note that the results presented are extensions of important results in
the field.

Corollary 3.1. (1) If, in Theorems 3.3 and 3.4, we have f1 = f2 , we get the results of
Dobrican presented in [8].

(2) If, in Theorems 3.3 and 3.4, we have f1 = f2 and we replace the contractive con-

dition with d(f(x, y), f(z, t)) ≤
k

2
[d(x, z) + d(y, t)],∀(x, y) ∈ XR(z, t), we get the

results of Dobrican presented in [1].
(3) If, in Theorems 3.3 and 3.4, we endow the metric space with a relation of par-

tial order (instead of the reflexive relation), we obtain similar results to the ones
obtained by Urs, Petruşel and Petruşel in [11], [18] and [19].

(4) If, in Theorems 3.3 and 3.4, we have f1 = f2 and we replace the relation R with
”≤” we obtain the results of Berinde [4]. In addition to this, if we replace the

contractive condition involved with d(f(x, y), f(u, v)) ≤
k

2
[d(x, u) + d(y, v)],∀x ≥

u, y ≤ v, we obtain the results of Bhaskar and Lakshmikantham [6].

4. AN APPLICATION

In this section we will study the existence and uniqueness of the solution of a first-order
periodic boundary value system, as an application to the results presented in the previous
section.
In a similar context, Berinde in [4], Bhaskar and Lakshmikantham [6], Urs [19] also stu-
died the existence and uniqueness of solutions for a periodic boundary value problem, in
the framework of a partially ordered metric space. In this case, we will endow the metric
space with a reflexive relation.
Let’s denote the reflexive relation by ”R” on C(I) × C(I) and let there be z := (x, y) and
w := (u, v) two arbitrary elements ofC(I)×C(I). Then, by definition, z ∈ XR(w)⇔ x ≤ u
and y ≥ v.
It can easily be checked that (x, x) ∈ XR(x, x) and if (x, y) ∈ XR(u, v)(i.e.z ∈ XR(w)) and
(u, v) ∈ XR(x, y)(i.e.w ∈ XR(z)), we have z = w, but the relation of transitivity (necessary
for R to be a relation of order) does not hold in this case.
Let’s consider the same periodic boundary value system studied in [19]:
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(4.4)


x′(t) = f1(t, x(t), y(t))

y′(t) = f2(t, x(t), y(t)), ∀t ∈ I := [0, T ]

x(0) = x(T )

y(0) = y(T )

where T > 0 and f1, f2 : I × R2 → R.We also suppose that :

(C1.) there exist λ, µ1, µ2, µ3, µ4 > 0,
µ1 + µ2

1− µ3 − µ4
< 1 such that

0 ≤ [f1(t, x, y) + λx]− [f1(t, u, v) + λu] ≤ λ[µ1(x− u) + µ2(y − v)]− λ[µ3(x− u) +
µ2(y − v)] ≤ [f2(t, x, y) + λx]− [f2(t, u, v) + λu] ≤ 0,

∀t ∈ I and x, y, u, v ∈ R, where f1, f2 are two continuous functions.

(C2.) for each z = (x, y) and w = (u, v) ∈ C(I)× C(I) , if z ∈ XR(w) or w ∈ XR(z), we
have: {

f2(t, x, y)] ≤ f2(t, u, v)
f1(t, x, y) ≥ f1(t, u, v)

or{
f2(t, u, v) ≤ f2(t, x, y)
f1(t, u, v) ≥ f1(t, x, y)

(C3.) there exists z0 := (z10 , z
2
0) ∈ C(I)× C(I) such that:{
z10(t) ≤ f1(t, z10(t), z20(t))
z20(t) ≥ f2(t, z10(t), z20(t))

or{
f1(t, z

1
0(t), z

2
0(t)) ≤ z10(t)

f2(t, z
1
0(t), z

2
0(t)) ≥ z20(t)

(C4.) the following inequalities hold:{
(1 + λ)

∫ T
0
Gλ(t, s)z

1
0(s)ds ≥ z10(t)

(1 + λ)
∫ T
0
Gλ(t, s)z

2
0(s)ds ≤ z20(t),∀t ∈ I.

We recall that the problem (see [19],[6], [16]),{
x′(t) = h(t)

x(0) = x(T ), t ∈ I,

where h ∈ C(I) and x ∈ C1(I), is equivalent, for some λ 6= 0 to

x(t) =

∫ T

0

Gλ(t, s)[h(s) + λx(s)]ds,∀t ∈ I,
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where Gλ(t, s) is defined like in [19]:

Gλ(t, s) =


eλ(T+s−t)

eλT − 1
, 0 ≤ s ≤ t ≤ T

eλ(s−t)

eλT − 1
, 0 ≤ t ≤ s ≤ T

.

Thus, we have that the system [4.4] is equivalent to the coupled fixed point problem :{
x = F1(x, y)

y = F2(x, y),

where F1, F2 : X2 → X,X = C(I),

F1(x, y)(t) =

∫ T

0

Gλ(t, s)[f1(s, x(s), y(s)) + λx(s)]ds

F2(x, y)(t) =

∫ T

0

Gλ(t, s)[f2(s, x(s), y(s)) + λy(s)]ds

In order to apply the results presented in the previous section, we have to consider the
complete metric space (X, d), where X = C(I,R and the metric d is induced by the sup-
norm on X ,

d(u, v) = sup
t∈I
|u(t)− v(t)| ,∀u, v ∈ C(I).

We also have to link the problem introduced above to the theoretical results recalled and
presented; consequently, if (x, y) ∈ X2 is a coupled point of F , then we have x(t) =
F1(x, y)(t) and, similarly, y(t) = F2(x, y)(t), ∀t ∈ I , where F := (F1, F2).

Theorem 4.5. Consider the problem [4.4] under the assumptions (1)-(4). Then there exists
a unique solution (x∗, y∗) of the BVP [4.4].

Proof. In order to reach the conclusion of this results, we will apply Theorem 3.4.For this,
we have to verify all the assumptions of this Theorem:
We have that (X, d) is a complete metric space, so the second hypothesis of Theorem [3.4]
is verified.
From the first condition (C1.), 0 ≤ [f1(t, x, y) + λx] − [f1(t, u, v) + λu] ≤ λ[µ1(x − u) +
µ2(y − v)] − λ[µ3(x − u) + µ2(y − v)] ≤ [f2(t, x, y) + λx] − [f2(t, u, v) + λu] ≤ 0, we have
that

|[F1(x, y)(t)− F1(u, v)(t)| =∣∣∣∣∣
∫ T

0

Gλ(t, s)[f1(s, x(s), y(s)) + λx(s)]ds−
∫ T

0

Gλ(t, s)[f2(s, u(s), v(s)) + λu(s)]ds

∣∣∣∣∣
=

∣∣∣∣∣
∫ T

0

Gλ[(t, s)[f1(s, x(s), y(s))− f1(s, u(s), v(s)) + λx(s)− λu(s)]ds

∣∣∣∣∣
≤ λ

∫ T

0

Gλ(t, s) |(µ1(x(s)− u(s))|+ |µ2(y(s)− v(s))|)ds

≤ µ1d(x, u) + µ2d(y, v).

Applying supt∈I , we get:

(4.5) d(F1(x, y), F1(u, v)) ≤ µ1d(x, u) + µ2d(y, v).
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In a similar way, we get

(4.6) d(F2(x, y), F2(u, v)) ≤ µ3d(x, u) + µ4d(y, v).

Summing up relations (4.5) and (4.6), we get:

d(F1(x, y), F1(u, v)) + d(F2(x, y), F2(u, v)) ≤ (µ1 + µ3)d(x, u) + (µ2 + µ4)d(y, v),

where µ1+µ2+µ3+µ4 < 1 follows from condition (C1.). Consequently, the fourth hypot-
hesis of Theorem 3.3 is verified.
From the second condition (C2.) we have that (f1(t, x, y), f2(t, x, y)) ∈ XR(f1(t, u, v), f2(t, u, v),
∀w ∈ XR(z), z = (x, y), w = (u, v) which is equivalent to f1 × f2(t, x, y) ∈ XR(f1 ×
f2(t, u, v), (t, u, v)). Thus f1 and f2 have the mixed R−monotone property on X , so the
first hypothesis of Theorem 3.3 is also checked. In a similar way we prove the mixed
R−monotone property of f1 and f2 using the other pair of assumptions in condition (C2.).
Since f1, f2 have the mixedR−monotone property onX , then there exists (r, s) ∈ X2 such
that (x, y), (x0, y0) ∈ XR(r, s), so the additional assumption of 3.4 is verified.
Now, from the third condition (C3.), z10(t) ≤ f1(t, z10(t), z20(t)) and z20(t) ≥ f2(t, z10(t), z20(t)),
where z0 = (z10 , z

2
0) we obtain that (f1(t, z10(t), z20(t)) ∈ XR(z

1
0 , z

2
0)↔ f1×f2(t, z10(t), z20(t)) ∈

XR(z
1
0 , z

2
0). It follows that there exists a coupled fixed point, namely z0 = (z10 , z

2
0) ∈ X×X ,

for the pair (f1, f2)(the third hypothesis of Theorem 3.3).
Further, it can be easily checked that, for any n ∈ N,

(fn1 (t, z
1
0(t), z

2
0(t)), f

n
2 (t, z

1
0(t), z

2
0(t))) ∈ XR(f

n−1
1 (t, z10(t), z

2
0(t)), f

n−1
2 (t, z10(t), z

2
0(t))).

Using this and the continuity of f1 and f2, it can be easily proved that
{
fn1 (t, z

1
0(t), z

2
0(t))

}
n∈N

and
{
fn1 (t, z

1
0(t), z

2
0(t))

}
n∈N are Cauchy sequences inX , so the last hypothesis of Theorem

3.3 is also checked. Thus, we get that the periodic boundary problem 4.4 has a unique
solution in C(I)× C(I). �

5. CONCLUSIONS

Our approach brings numerous new features to the coupled fixed point theory. First,
the contractive condition is weaker than the one used in [1],[6]. Second, the reflexive
relation R used in our results is more flexible than the relation of order used in most of
the papers devoted to coupled fixed points appeared lately (see [7],[6],[19],[4]...). Third,
the proof of existence and uniqueness of the solution to the PBV problem is essentially
different from the proofs presented so far, because it takes advantage of the properties of
the reflexive relation R, instead of using the relation of order(see [4],[6],[19],...).
In addition to this, Corollary 3.1 emphasizes the fact that our results are more general than
some results in the field which could be considered, under certain conditions, particular
cases of the theorems presented in Section 3.
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