Operator ideal of s-type operators using weighted mean sequence space

EZGI ERDOĞAN and VATAN KARAKAYA

ABSTRACT. We introduce a different class of s-type operators by using the generalized weighted mean sequence space $c_0(u, v)$, then it is shown that this new class of operators is a quasi-Banach operator ideal. Moreover, their injectivity and surjectivity are investigated according to sort of s-number. Finally, we proof that it is a closed operator ideal under some conditions.

1. INTRODUCTION

Operator ideal is a natural generalization of the well-known ring theoretical notion. Operator ideal studied on Hilbert spaces in the beginning was introduced on the class of Banach spaces by Pietsch about 1969. s-number concept first used in the theory of the non-selfadjoint integral equations characterizes degree of approximation or compactness of a bounded linear operator and plays an important role in determining the new ideals. The main examples of s-numbers are approximation numbers, Kolmogorov numbers, Gel'fand numbers, Weyl numbers and Chang numbers. Various papers of operator ideals defined by using s-numbers of bounded linear operators can be found in the literature (see [2, 3, 9, 4]).

Initials of these studies are classes of ℓ_p $(1 type and <math>c_0$ type operators introduced by Pietsch [8], [5]. ℓ_p $(1 type and <math>c_0$ type operators are the operators having s-numbers in *p*-summable sequence space ℓ_p $(1 and null sequence space <math>c_0$, respectively. Next, Constantin [2], and Maji and Srivastava [4] generalized the class of ℓ_p (1 type operators to classes of <math>ces - p type and s - type ces (p,q) operators by using the Cesaro sequence space and weighted Cesaro sequence space, respectively. Finally, Şimşek et al. [9] have studied the ideal of all bounded linear operators whose sequence of approximation numbers belong to the generalized modular spaces of Cesaro type, and Kara and İlkhan [3] have studied more general class of ℓ_p type operators by using the generalized weighted mean sequence space.

Altay and Başar [1] introduced the sequence space $c_0(u, v)$ which is the set of all sequences having a range in c_0 under the generalized weighted mean transform. That is;

$$c_0(u,v) = \left\{ x \in w : (y_n) = \left(\sum_{i=1}^n u_n v_i x_i \right) \in c_0 \right\}$$

where (u_n) , (v_k) sequences of positive real numbers such that u_n , $v_k \neq 0$ for all $n, k \in \mathbb{N}$.

Received: 17.09.2017. In revised form: 01.03.2017. Accepted: 20.03.2017

²⁰¹⁰ Mathematics Subject Classification. 47B06, 47L20.

Key words and phrases. Operator ideals, s-numbers, weighted mean sequence space.

Corresponding author: Vatan Karakaya; vkkaya@yahoo.com.

The sequence space $c_0(u, v)$ is called generalized weighted mean sequence space and a complete normed linear space with respect to the norm defined by

$$\|x\|_{c_0(u,v)} = \sup_n \left| \sum_{i=1}^n u_n v_i x_i \right|$$

We introduce a different class of s-type operators by using the generalized weighted mean sequence space $c_0(u, v)$, and then it is shown that this new class of operators is a quasi-Banach operator ideal. Moreover, their injectivity and surjectivity are investigated according to sort of s-number. Finally, we prove that it is a closed operator ideal.

2. DEFINITIONS AND BACKGROUND

In this section, we give some definitions and terminologies with basic notations used throughout this paper.

Let *E* and *F* be Banach spaces. We denote by $\mathcal{L}(E, F)$ the set of all bounded linear operators acting between *E* and *F*, and by \mathcal{L} the ring of all bounded linear operators acting between arbitrary Banach spaces. Throughout this paper *E'* and *a* will show dual of *E* and a continuous function on *E*, respectively. For $a \in E'$ and $y \in F$, the map $a \otimes y : E \to F$ is defined by $(a \otimes y)(x) = (a(x)y)$.

Definition 2.1. (Finite-Rank Operator) A finite-rank operator is a bounded linear operator between Banach spaces whose range is finite-dimensional.

Definition 2.2. (**Operator Ideal**) [5] An operator ideal \mathcal{U} is a subclass of \mathcal{L} such that the components

$$\mathcal{U}(E,F) := \mathcal{U} \cap \mathcal{L}(E,F)$$

satisfy the following conditions:

 $(OI_1) a \otimes y \in \mathcal{U}(E, F)$ for $a \in E'$ and $y \in F$.

(OI₂) $S + T \in \mathcal{U}(E, F)$ for $S, T \in \mathcal{U}(E, F)$.

(OI₃) $RST \in \mathcal{U}(E_0, F_0)$ for $T \in \mathcal{L}(E_0, E)$, $S \in \mathcal{U}(E, F)$, $R \in \mathcal{L}(F, F_0)$, where E_0, F_0 are arbitrary Banach spaces.

From the condition (OI₂), it seems that $\lambda S \in \mathcal{U}(E, F)$ for $S \in \mathcal{U}(E, F)$ and $\lambda \in \mathbb{C}$, then every component $\mathcal{U}(E, F)$ is a linear subset of $\mathcal{L}(E, F)$.

Definition 2.3. (Quasi Norm) [5] A function α which assigns to every operator $T \in \mathcal{U}$ a non-negative number $\alpha(T)$ is called a quasi-norm on the operator ideal \mathcal{U} if it has the following properties:

 $(QN_1) \alpha (a \otimes y) = ||a||_{E'} ||y||_F$ for $a \in E'$ and $y \in F$.

 $(QN_2) \alpha (S+T) \leq A [\alpha (S) + \alpha (T)]$ for $S, T \in \mathcal{U}(E, F)$, here $A \geq 1$ is a constant.

(QN₃) α (*RST*) $\leq ||R|| \alpha$ (*S*) ||T|| for $T \in \mathcal{L}(E_0, E)$, $S \in \mathcal{U}(E, F)$, $R \in \mathcal{L}(F, F_0)$, where E_0, F_0 are arbitrary Banach spaces.

When C = 1, then α becomes a norm on the operator ideal \mathcal{U} .

An ideal \mathcal{U} with a quasi norm α , denoted by $[\mathcal{U}, \alpha]$ and all components $\mathcal{U}(E, F)$ are linear topological Hausdorff spaces. A *quasi-Banach operator ideal* $[\mathcal{U}, \alpha]$ is an operator ideal such that all components $\mathcal{U}(E, F)$ are complete under the quasi norm.

Definition 2.4. (s-number) [6] A map *s* which assigns to every operator *S* an unique sequence $(s_n(S))$ is called an s - function if the following conditions are satisfied:

(OS₁)(monotonicity) $||S|| = s_1(S) \ge s_2(S) \ge ... \ge 0$ for $S \in \mathcal{L}(E, F)$.

(OS₂)(additivity) $s_{n+m-1}(S+T) \leq s_n(S) + s_m(T)$ for $S, T \in \mathcal{L}(E, F)$.

(OS₃)(ideal property) $s_n(RST) \leq ||R|| s_n(S) ||T||$ for $T \in \mathcal{L}(E_0, E)$, $S \in \mathcal{L}(E, F)$, $R \in \mathcal{L}(F, F_0)$.

(OS₄)(rank property) If $S \in \mathcal{F}(E, F)$ and rank(S) < n, then $s_n(S) = 0$.

 (OS_5) (norm property) $s_n(I_n) = 1$, where I_n is the identity map on the n-dimensional Hilbert space ℓ_n^2 .

 $s_n(S)$ is called the *n*-th s – *number* of the operator S.

Regard that if m = 1 in (OS₂), then $s_n (S + T) \le s_n (S) + ||T||$. Some defined s-numbers are given below (see [5]):

one defined s-numbers are given below (see [5])

The *nth* approximation number is defined as $\frac{1}{2}$

 $a_n(S) = \inf \{ \|S - L\| : L \in \mathcal{L}(E, F), \text{ rank } L < n \}.$

The *nth* Gel'fand number is defined as

 $c_n(S) = \inf \{ \|SJ_M\| : M \subset E, \operatorname{codim}(M) < n \}$, where J_M is the natural embedding from subspace M of E into E.

The nth Kolmogorov number is defined as

 $d_n(S) = \inf \{ \|Q_NS\| : N \subset F, \dim(N) < n \}$, where Q_N is the quotient map from F onto F/N.

The *nth* Weyl number is defined as

 $x_n(S) = \inf \{a_n(SA) : ||A|| \le 1$, where $A : \ell_2 \to E\}$, where $a_n(SA)$ is the *n*th approximation number of the operator SA.

The *nth* Chang number is defined as

 $y_n(S) = \inf \{a_n(BS) : ||B|| \le 1$, where $B : F \to \ell_2\}$, where $a_n(BS)$ is the *n*th approximation number of the operator *BS*.

The *nth* Hilbert number is defined as

 $h_n(S) = \inf \{a_n(BSA) : ||A|| \le 1, ||B|| \le 1, \text{ where } A : \ell_2 \to E, B : F \to \ell_2 \}.$

Remark 2.1. [5] For $S \in \mathcal{L}(E, F)$, the following inequalities hold;

 $h_{n}\left(S\right) \leq x_{n}\left(S\right) \leq c_{n}\left(S\right) \leq a_{n}\left(S\right), h_{n}\left(S\right) \leq y_{n}\left(S\right) \leq d_{n}\left(S\right) \leq a_{n}\left(S\right).$

Lemma 2.1. [7] Let $S, T \in \mathcal{L}(E, F)$. Then $|s_n(T) - s_n(S)| \le ||T - S||$ for n = 1, 2, ...

Definition 2.5. (injective) [5] An s-number sequence $s = (s_n)$ is called injective if, given any metric injection $J \in \mathcal{L}(F, F_0)$, $s_n(T) = s_n(JT)$ for all $T \in \mathcal{L}(E, F)$.

A quasi-normed operator ideal $[\mathcal{U}, \alpha]$ is called injective if $T \in \mathcal{U}(E, F)$ and $\alpha(T) = \alpha(JT)$ as $JT \in \mathcal{U}(E, F_0)$, where $T \in \mathcal{L}(E, F)$ and $J \in \mathcal{L}(F, F_0)$ is a metric injection.

Definition 2.6. (surjective) [5] An s-number sequence $s = (s_n)$ is called surjective if, given any metric surjection $Q \in \mathcal{L}(E_0, E)$, $s_n(T) = s_n(TQ)$ for all $T \in \mathcal{L}(E, F)$.

A quasi-normed operator ideal $[\mathcal{U}, \alpha]$ is called surjective if $T \in \mathcal{U}(E, F)$ and $\alpha(T) = \alpha(TQ)$ as $TQ \in \mathcal{U}(E_0, F)$, where $T \in \mathcal{L}(E, F)$ and $Q \in \mathcal{L}(E_0, E)$ is a metric surjection.

Proposition 2.1. [5] Kolmogorov numbers and Weyl numbers are injective, Gel'fand numbers and Chang numbers are surjective.

Definition 2.7. (closed ideal) [5] An operator ideal \mathcal{U} is closed if all components $\mathcal{U}(E, F)$ are closed linear subsets of $\mathcal{L}(E, F)$. This means that \mathcal{U} becomes a Banach operator ideal by using the ordinary operator norm.

3. S-TYPE WEIGHTED MEAN NULL OPERATOR IDEAL

We call an operator $T \in \mathcal{L}(E, F)$ is of *s*-type generalized weighted mean null operator if $\sum_{i=1}^{n} u_n v_i(s_i(T)) \in c_0$. We denote by $\mathcal{U}_{c_0}^{(s)}$ class of all s-type generalized weighted mean

null operators between any two Banach spaces. i.e.

$$\mathcal{U}_{c_0}^{(s)} = \left\{ T \in \mathcal{L}\left(E,F\right) : \lim_{n \to \infty} u_n \sum_{i=1}^n v_i\left(s_i\left(T\right)\right) = 0 \right\}$$

Let (u_n) , (v_k) be bounded sequences of positive real numbers such that

$$(3.1) v_{2k-1} + v_{2k} \le C v_k$$

$$(3.2) (u_n) \in c_0$$

where C > 1 is independent of k.

Theorem 3.1. Let (u_n) , (v_k) be sequences that provide the conditions (3.1) and (3.2), then $\mathcal{U}_{co}^{(s)}$ is an overator ideal.

Proof. To prove $\mathcal{U}_{c_0}^{(s)}$ is an operator ideal, it will be shown the conditions (OI₁), (OI₂), (OI₃) are provided.

Let $a \in E'$ and $y \in F$, then $a \otimes y$ is a finite rank operator with rank one and so by definition of the s-number, we have $s_n (a \otimes y) = 0$, for all $n \geq 2$. We need to show that $a \otimes y \in \mathcal{U}_{c_0}^{(s)}.$

$$\left(\sum_{i=1}^{n} u_n v_i \left(s_i \left(a \otimes y\right)\right)\right)_{n=1}^{\infty} = \left(u_n v_1 s_1 \left(a \otimes y\right)\right)_{n=1}^{\infty}$$

Since $(u_n) \in c_0$, then $\lim_{n\to\infty} u_n v_1 s_1 (a \otimes y) = 0$ and we obtain $a \otimes y \in \mathcal{U}_{c_0}^{(s)} (E \to F)$.

Let $S, T \in \mathcal{U}_{c_0}^{(s)}(E \to F)$. It follows from definition (2.2), s-number forms positive terms and it is non increasing. Using (OS_2) ,

$$\sum_{i=1}^{n} u_n v_i \left(s_i \left(S + T \right) \right) \le \sum_{i=1}^{n} u_n v_{2i-1} s_{2i-1} \left(S + T \right) + \sum_{i=1}^{n} u_n v_{2i} s_{2i} \left(S + T \right)$$
$$\le \sum_{i=1}^{n} u_n \left(v_{2i-1} + v_{2i} \right) s_{2i-1} \left(S + T \right) \le C \sum_{i=1}^{n} u_n v_i s_{2i-1} \left(S + T \right) \le C \sum_{i=1}^{n} u_n v_i \left(s_i \left(S \right) + s_i \left(T \right) \right).$$

(3.3)

 $\sum_{i=1}^{n} u_n v_i \left(s_i \left(S + T \right) \right) \le C \left| \sum_{i=1}^{n} u_n v_i s_i \left(S \right) + \sum_{i=1}^{n} u_n v_i s_i \left(T \right) \right|.$ Since $S, T \in \mathcal{U}_{c_0}^{(s)}(E \to F)$, then we get $S + T \in \mathcal{U}_{c_0}^{(s)}(E \to F)$. To provide (OI_3) , we apply the condition (OS_3) .

For $T \in \mathcal{L}(E_0, E)$, $R \in \mathcal{L}(F, F_0)$,

$$\sum_{i=1}^{n} u_n v_i \left(s_i \left(RST \right) \right) \le \sum_{i=1}^{n} u_n v_i \| R \| s_n \left(S \right) \| T \| = \| R \| \| T \| \sum_{i=1}^{n} u_n v_i s_n \left(S \right).$$

Thus $RST \in \mathcal{U}_{c_0}^{(s)}(E \to F)$, since $S \in \mathcal{U}_{c_0}^{(s)}(E \to F)$. It is shown that $\mathcal{U}_{c_0}^{(s)}$ is an operator ideal.

Let us define the function $\mathfrak{N}_{c_0}^{(s)} : \mathcal{U}_{c_0}^{(s)} \to \mathbb{R}^+$ as follows:

 $\mathfrak{N}_{c_{0}}^{(s)}\left(S\right) = \frac{\sup_{n} \left|\sum_{i=1}^{n} u_{n} v_{i}\left(s_{i}\left(S\right)\right)\right|}{\sup_{n} \left|u_{n} v_{1}\right|}, \text{ where } \left(u_{n}\right), \left(v_{k}\right) \text{ are sequences that provide the con$ ditions (3.1) and (3.2)

Theorem 3.2. The operator ideal $\mathcal{U}_{c_0}^{(s)}$ is a quasi-normed operator ideal with the quasi norm $\mathfrak{N}_{c_0}^{(s)}$.

Proof. To prove $\mathfrak{N}_{c_0}^{(s)}$ is a quasi norm on the operator ideal $\mathcal{U}_{c_0}^{(s)}$, it must be shown that the function $\mathfrak{N}_{c_0}^{(s)}$ satisfies (QN₁), (QN₂), (QN₃).

i) Let $a \in E'$ and $y \in F$, then $a \otimes y$ is a finite rank operator with rank one and so by definition of the s-number, we have $s_n (a \otimes y) = 0$, for all $n \ge 2$.

$$\begin{split} \mathfrak{N}_{c_{0}}^{(s)}\left(a\otimes y\right) &= \frac{\sup_{n}\left|\sum_{i=1}^{n} u_{n} v_{i}\left(s_{i}\left(a\otimes y\right)\right)\right|}{\sup_{n}|u_{n} v_{1}|} = \frac{\sup_{n}|u_{n} v_{1}\left(s_{1}\left(a\otimes y\right)\right)|}{\sup_{n}|u_{n} v_{1}|} \\ &= \frac{\sup_{n}|u_{n} v_{1}|\|a\otimes y\||}{\sup_{n}|u_{n} v_{1}|} = \|a\otimes y\| \end{split}$$

Since $||a \otimes y|| = \sup_{||x||=1} ||a(x)y|| = ||a|| ||y||$, we get $\mathfrak{N}_{c_0}^{(s)}(a \otimes y) = ||a|| ||y||$

ii) Using the inequality (3.3), we get

$$\begin{split} \Re_{c_{0}}^{(s)}\left(S+T\right) &\leq \frac{\sup_{n} \left| C\left[\sum_{i=1}^{n} u_{n} v_{i} s_{i}\left(S\right) + \sum_{i=1}^{n} u_{n} v_{i} s_{i}\left(T\right)\right] \right|}{\sup_{n} |u_{n} v_{1}|} \\ &\leq C\left[\frac{\sup_{n} \left|\sum_{i=1}^{n} u_{n} v_{i} s_{i}\left(S\right)\right|}{\sup_{n} |u_{n} v_{1}|} + \frac{\sup_{n} \left|\sum_{i=1}^{n} u_{n} v_{i} s_{i}\left(T\right)\right|}{\sup_{n} |u_{n} v_{1}|} \right] = C\left[\Re_{c_{0}}^{(s)}\left(S\right) + \Re_{c_{0}}^{(s)}\left(T\right)\right]. \end{split}$$

iii) Now, we show the last condition (QN $_3$). With the third condition (OS $_3$) in the definition (2.4), we obtain

$$\mathfrak{N}_{c_{0}}^{(s)}\left(RST\right) \leq \frac{\sup_{n} \left\| \|R\| \|T\| \sum_{i=1}^{n} u_{n}v_{i}\left(s_{i}\left(S\right)\right)\right|}{\sup_{n} |u_{n}v_{1}|} = \|R\| \|T\| \frac{\sup_{n} \left|\sum_{i=1}^{n} u_{n}v_{i}\left(s_{i}\left(S\right)\right)\right|}{\sup_{n} |u_{n}v_{1}|}.$$

Then, we get $\mathfrak{N}_{c_0}^{(s)}(RST) \le ||R|| \, \mathfrak{N}_{c_0}^{(s)}(S) \, ||T||$.

Theorem 3.3. The operator ideal $\left[\mathcal{U}_{c_0}^{(s)}, \mathfrak{N}_{c_0}^{(s)}\right]$ is a quasi-Banach operator ideal under the quasinorm $\mathfrak{N}_{c_0}^{(s)}$.

Proof. It must shown that each component $\mathcal{U}_{c_0}^{(s)}(E, F)$ of $\mathcal{U}_{c_0}^{(s)}$ is complete under the quasinorm $\mathfrak{N}_{c_0}^{(s)}$. For $T \in \mathcal{U}_{c_0}^{(s)}$, we have

$$\sup_{n} \left| \sum_{i=1}^{n} u_{n} v_{i} \left(s_{i} \left(T \right) \right) \right| \geq \sup_{n} \left| u_{n} v_{1} s_{1} \left(T \right) \right| = \left\| T \right\| \sup_{n} \left| u_{n} v_{1} \right|.$$

Then,

$$\mathfrak{N}_{c_0}^{(s)}(T) \ge \|.T\|$$

Let (T_r) be a Cauchy sequence in $\mathcal{U}_{c_0}^{(s)}$. Then for arbitrary ε positive number, there exists $n_0 \in \mathbb{N}$ such that

(3.5)
$$\mathfrak{N}_{c_0}^{(s)}(T_r - T_m) < \varepsilon \text{ for every } r, m \ge n_0$$

It follows from (3.4) that,

$$\|T_r - T_m\| \le \mathfrak{N}_{c_0}^{(s)} \left(T_r - T_m\right) < \varepsilon \,\forall r, m \ge n_0.$$

Then (T_r) is a Cauchy sequence in $\mathcal{L}(E, F)$. It is well known that $\mathcal{L}(E, F)$ is a Banach space, when F is Banach space. So, $||T_r - T|| \to 0$, as $r \to \infty$, for $T \in \mathcal{L}(E, F)$.

We need to show that $T_r \to T$ as $r \to \infty$ in $\mathcal{U}_{c_0}^{(s)}(E, F)$. Applying Lemma 2.1, we get that

$$|s_n (T_m - T_r) - s_n (T - T_r)| \le ||(T_m - T_r) - (T - T_r)|| = ||T_m - T||$$

Since $T_m \to T$, as $m \to \infty$, we obtain

(3.6)
$$s_n (T_m - T_r) \rightarrow s_n (T - T_r) \text{ as } m \rightarrow \infty$$

Using (3.5), for $r, m \ge n_0$ the following holds

$$\mathfrak{N}_{c_0}^{(s)}\left(T_m - T_r\right) = \frac{\sup_n \left|\sum_{i=1}^n u_n v_i \left(s_i \left(T_m - T_r\right)\right)\right|}{\sup_n |u_n v_1|} < \varepsilon$$

or, equally,

$$\sup_{n} \left| \sum_{i=1}^{n} u_{n} v_{i} \left(s_{i} \left(T_{m} - T_{r} \right) \right) \right| < \varepsilon \sup_{n} \left| u_{n} v_{1} \right|$$

From (3.6) and choosing a fixed $r \ge n_0$, as $m \to \infty$

(3.7)
$$\sup_{n} \left| \sum_{i=1}^{n} u_{n} v_{i} \left(s_{i} \left(T - T_{r} \right) \right) \right| < \varepsilon \sup_{n} \left| u_{n} v_{1} \right|$$

then

$$\mathfrak{N}_{c_0}^{(s)}\left(T_r - T\right) < \varepsilon \ \forall r \ge n_{0.}$$

This shows that, $T_r \to T$ under the quasi-norm $\mathfrak{N}_{c_0}^{(s)}$.

To complete the proof, we shall show that $T \in \mathcal{U}_{c_0}^{(s)}$.

$$\sum_{i=1}^{n} u_n v_i \left(s_i \left(T \right) \right) \le \sum_{i=1}^{n} u_n v_{2i-1} \left(s_{2i-1} \left(T \right) \right) + \sum_{i=1}^{n} u_n v_{2i} \left(s_{2i} \left(T \right) \right) \le \sum_{i=1}^{n} u_n \left(v_{2i-1} + v_{2i} \right) \left(s_{2i-1} \left(T \right) \right)$$
$$\le C \sum_{i=1}^{n} u_n v_i \left(s_{2i-1} \left(T \right) \right) = C \sum_{i=1}^{n} u_n v_i \left(s_{2i-1} \left(T - T_m + T_m \right) \right)$$
$$\le C \left[\sum_{i=1}^{n} u_n v_i \left(s_i \left(T - T_m \right) \right) + \sum_{i=1}^{n} u_n v_i \left(s_i \left(T_m \right) \right) \right].$$

From (3.7) and $(T_m) \in \mathcal{U}_{c_0}^{(s)}$, we get $0 \leq \sum_{i=1}^{n} u_n v_i (s_i(T)) \leq C (1 + \sup_n |u_n v_1|) \varepsilon$ and

 \Box

then $\sum_{i=1}^{n} u_n v_i \left(s_i \left(T \right) \right) \in c_0$. Hence, $T \in \mathcal{U}_{c_0}^{(s)}$. This completes the proof.

Theorem 3.4. If *s*-number sequence is injective, then the quasi-Banach operator ideal $\left[\mathcal{U}_{c_0}^{(s)}, \mathfrak{N}_{c_0}^{(s)}\right]$ is injective.

Proof. Suppose that $JT \in \mathcal{U}_{c_0}^{(s)}(E, F_0)$ for an arbitrary $T \in \mathcal{L}(E, F)$ and a metric injection $J \in \mathcal{L}(F, F_0)$. We shall show that $\mathfrak{N}_{c_0}^{(s)}(JT) = \mathfrak{N}_{c_0}^{(s)}(T)$ and $T \in \mathcal{U}_{c_0}^{(s)}(E, F)$.

By hypothesis, we have $s_n(JT) = s_n(T)$ for every $T \in \mathcal{L}(E, F)$ and $n \in \mathbb{N}$. Thus,

$$\mathfrak{N}_{c_{0}}^{(s)}(JT) = \frac{\sup_{i=1}^{n} u_{n}v_{i}\left(s_{i}\left(JT\right)\right)}{\sup_{n}|u_{n}v_{1}|} = \frac{\sup_{n}\left|\sum_{i=1}^{n} u_{n}v_{i}\left(s_{i}\left(T\right)\right)\right|}{\sup_{n}|u_{n}v_{1}|} = \mathfrak{N}_{c_{0}}^{(s)}(T)$$

Since $JT \in \mathcal{U}_{c_0}^{(s)}(E, F_0)$, we obtain

$$\lim_{n \to \infty} \sum_{i=1}^{n} u_n v_i \left(s_i \left(T \right) \right) = \lim_{n \to \infty} \sum_{i=1}^{n} u_n v_i \left(s_i \left(JT \right) \right) = 0.$$

Therefore, $\mathfrak{N}_{c_0}^{(s)}(JT) = \mathfrak{N}_{c_0}^{(s)}(T)$ and $T \in \mathcal{U}_{c_0}^{(s)}(E, F)$ hold.

Remark 3.2. The quasi-Banach operator ideals $\left[\mathcal{U}_{c_0}^{(c)},\mathfrak{N}_{c_0}^{(c)}\right]$ and $\left[\mathcal{U}_{c_0}^{(x)},\mathfrak{N}_{c_0}^{(x)}\right]$ corresponding to the Gel'fand numbers $c = (c_n)$ and the Weyl numbers $x = (x_n)$, respectively, are injective quasi-Banach operator ideals.

Theorem 3.5. The quasi-Banach operator ideal $\left[\mathcal{U}_{c_0}^{(s)}, \mathfrak{N}_{c_0}^{(s)}\right]$ is surjective, whenever s-number sequence is surjective.

Proof. Suppose that $TQ \in \mathcal{U}_{c_0}^{(s)}(E_0, F)$ for an arbitrary $T \in \mathcal{L}(E, F)$ and a metric surjection $Q \in \mathcal{L}(E_0, E)$. We shall show that $\mathfrak{N}_{c_0}^{(s)}(TQ) = \mathfrak{N}_{c_0}^{(s)}(T)$ and $T \in \mathcal{U}_{c_0}^{(s)}(E, F)$.

By hypothesis, s-number sequence is surjective, then $s_n(TQ) = s_n(T)$ for every $T \in$ $\mathcal{L}(E, F)$ and $n \in \mathbb{N}$. Thus,

$$\mathfrak{N}_{c_0}^{(s)}(TQ) = \frac{\sup_n \left| \sum_{i=1}^n u_n v_i\left(s_i\left(TQ\right)\right) \right|}{\sup_n |u_n v_1|} = \frac{\sup_n \left| \sum_{i=1}^n u_n v_i\left(s_i\left(T\right)\right) \right|}{\sup_n |u_n v_1|} = \mathfrak{N}_{c_0}^{(s)}(T)$$

Since $TQ \in \mathcal{U}_{c_0}^{(s)}(E_0, F)$, we obtain

$$\lim_{n \to \infty} \sum_{i=1}^{n} u_n v_i \left(s_i \left(T \right) \right) = \lim_{n \to \infty} \sum_{i=1}^{n} u_n v_i \left(s_i \left(TQ \right) \right) = 0.$$

Therefore, $\left[\mathcal{U}_{c_0}^{(s)},\mathfrak{N}_{c_0}^{(s)}
ight]$ is surjective

Remark 3.3. The quasi-Banach operator ideals $\left[\mathcal{U}_{c_0}^{(d)}, \mathfrak{N}_{c_0}^{(d)}\right]$ and $\left[\mathcal{U}_{c_0}^{(y)}, \mathfrak{N}_{c_0}^{(y)}\right]$ corresponding to the Kolmogorov numbers $d = (d_n)$ and the Chang numbers $y = (y_n)$, respectively, are surjective quasi-Banach operator ideals.

Theorem 3.6. The following inclusions hold:

$$I. \mathcal{U}_{c_0}^{(a)} \subseteq \mathcal{U}_{c_0}^{(c)} \subseteq \mathcal{U}_{c_0}^{(x)} \subseteq \mathcal{U}_{c_0}^{(h)}; II. \mathcal{U}_{c_0}^{(a)} \subseteq \mathcal{U}_{c_0}^{(d)} \subseteq \mathcal{U}_{c_0}^{(y)} \subseteq \mathcal{U}_{c_0}^{(h)}.$$
Proof. I. Let assume that $S \in \mathcal{U}_{c_0}^{(a)}$. Then, $\left(\sum_{i=1}^n u_n v_i \left(a_i\left(S\right)\right)\right)_{n=1}^{\infty} \in c_0$. Applying Remark 2.1, we obtain

2.1, we obtai

$$0 \le \sum_{i=1}^{n} u_n v_i (h_i(S)) \le \sum_{i=1}^{n} u_n v_i (c_i(S)) \le \sum_{i=1}^{n} u_n v_i (x_i(S)) \le \sum_{i=1}^{n} u_n v_i (a_i(S))$$

II. The proof is similar to part I.

Theorem 3.7. Let $(v_k) \in \ell_1$, then $\mathcal{U}_{c_0}^{(s)}$ is a closed operator ideal.

 \square

Proof. Let $(T_k) \in \mathcal{U}_{c_0}^{(s)}(E, F)$ and $||T_k - T|| \to 0$ for $T \in \mathcal{L}(E, F)$. We need to show that $T \in \mathcal{U}_{c^{\circ}}^{(s)}(E, F)$. For given $\varepsilon > 0$, we fix k and n_0 such that

$$||T_k - T|| < \varepsilon$$
 and $s_n(T_k) < \varepsilon$ for all $n \ge n_0$

From the condition (OS_2) of definition 2.4, we get

$$s_n(T) \le ||T_k - T|| + s_n(T_k) \le 2\varepsilon$$
 for all $n \ge n_0$

and

$$\sum_{i=1}^{n} u_{n} v_{i} s_{i} (T) \leq \sum_{i=1}^{n} u_{n} v_{i} \left[\|T_{k} - T\| + s_{i} (T_{k}) \right] \leq \sum_{i=1}^{n} u_{n} v_{i} (2\varepsilon)$$

Then

Then

$$0 \leq \sum_{i=1}^{n} u_n v_i s_i (T) \leq \sum_{i=1}^{n} u_n v_i (2\varepsilon) \leq 2 \|u_n\|_{\infty} \|v_k\|_1 \varepsilon$$
Thus $\left(\sum_{i=1}^{n} u_n v_i s_i (T)\right) \in c_0$ and $T \in \mathcal{U}_{c_0}^{(s)}(E, F)$.

Remark 3.4.

• In particular if we take $v_n = 1$ and $u_n = \frac{1}{n}$ for all $n \in \mathbb{N}$, then $\mathcal{U}_{c_0}^{(s)}$ is called as $\sum_{i=1}^{v_i} v_i$

Cesaro null type operator ideal.

• Taking $u_n = \frac{1}{\frac{1}{n}}$ for all $n \in \mathbb{N}$, then $\mathcal{U}_{c_0}^{(s)}$ is reduced Norlund null type operator $\sum_{i=1}^{n} v_i$

ideal

Acknowledgements. The first author was supported by TÜBITAK- The Scientific and Technological Research Council of Turkey.

References

- [1] Altay, B. and Başar, F., Some Paranormed Sequence Spaces of Non-Absolute Type Derived by Weighted Mean, J. Math. Anal. Appl., 319 (2006), 494-508
- [2] Constantin, Gh., Operators of ces-p type, Rend. Acc. Naz. Lincei., 52 (1972), No. 8, 875-878
- [3] Kara, E. E. and Ilkhan, M., On a New Class of s-type Operators, Konuralp J. Math., 3 (2015), No. 1, 1–11
- [4] Maji, A. and Srivastava, P. D., On operator ideals using weighted Cesaro sequence space, Egyp. Math. Soc., 22 (2014), 446-452
- [5] Pietsch, A., Eigenvalues and s-numbers, Cambridge University Press, 1987
- [6] Pietsch, A., Operator Ideals, North-Holland Publishing Company, 1980
- [7] Pietsch, A., s-numbers of Operators in Banach Spaces, Studia Math., 51 (1974), 201-223
- [8] Pietsch, A., Einige neue Klassen Von Kompakten linearen Abbildungen, Rev. Math. Pures Appl. (Bucarest), 8 (1963), 427-447
- [9] Şimşek N., Karakaya V. and Polat H., Operator Ideals of Generalized Modular Spaces of Cesaro Type Defined by Weighted Means, J. Comput. Appl. Math., 19 (2015), No. 5, 804-811

MARMARA UNIVERSITY DEPARTMENT OF MATHEMATICS 34722, KADIKÖY, ISTANBUL, TURKEY E-mail address: ezgi.erdogan@marmara.edu.tr

YILDIZ TECHNICAL UNIVERSITY DEPARTMENT OF MATHEMATICAL ENGINEERING 34220, DAVUTPASA, ISTANBUL, TURKEY E-mail address: vkkaya@yahoo.com