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Operator ideal of s-type operators using weighted mean
sequence space

EZGI ERDOĞAN and VATAN KARAKAYA

ABSTRACT. We introduce a different class of s-type operators by using the generalized weighted mean se-
quence space c0 (u, v), then it is shown that this new class of operators is a quasi-Banach operator ideal. Moreo-
ver, their injectivity and surjectivity are investigated according to sort of s-number. Finally, we proof that it is a
closed operator ideal under some conditions.

1. INTRODUCTION

Operator ideal is a natural generalization of the well-known ring theoretical notion.
Operator ideal studied on Hilbert spaces in the beginning was introduced on the class
of Banach spaces by Pietsch about 1969. s-number concept first used in the theory of
the non-selfadjoint integral equations characterizes degree of approximation or compact-
ness of a bounded linear operator and plays an important role in determining the new
ideals. The main examples of s-numbers are approximation numbers, Kolmogorov num-
bers, Gel’fand numbers, Weyl numbers and Chang numbers. Various papers of operator
ideals defined by using s-numbers of bounded linear operators can be found in the litera-
ture (see [2, 3, 9, 4]).

Initials of these studies are classes of `p (1 < p <∞) type and c0 type operators introdu-
ced by Pietsch [8], [5]. `p (1 < p <∞) type and c0 type operators are the operators having
s-numbers in p−summable sequence space `p (1 < p <∞) and null sequence space c0,
respectively. Next, Constantin [2], and Maji and Srivastava [4] generalized the class of
`p (1 < p <∞) type operators to classes of ces − p type and s − type ces (p, q) operators
by using the Cesaro sequence space and weighted Cesaro sequence space, respectively.
Finally, Şimşek et al. [9] have studied the ideal of all bounded linear operators whose
sequence of approximation numbers belong to the generalized modular spaces of Cesaro
type, and Kara and İlkhan [3] have studied more general class of `p type operators by
using the generalized weighted mean sequence space.

Altay and Başar [1] introduced the sequence space c0 (u, v) which is the set of all se-
quences having a range in c0 under the generalized weighted mean transform. That is;

c0 (u, v) =

{
x ∈ w : (yn) =

(
n∑

i=1

unvixi

)
∈ c0

}
where (un) , (vk) sequences of positive real numbers such that un, vk 6= 0 for all n, k ∈ N.
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The sequence space c0 (u, v) is called generalized weighted mean sequence space and
a complete normed linear space with respect to the norm defined by

‖x‖c0(u,v) = sup
n

∣∣∣∣∣
n∑

i=1

unvixi

∣∣∣∣∣
We introduce a different class of s-type operators by using the generalized weighted

mean sequence space c0 (u, v) , and then it is shown that this new class of operators is a
quasi-Banach operator ideal. Moreover, their injectivity and surjectivity are investigated
according to sort of s-number. Finally, we prove that it is a closed operator ideal.

2. DEFINITIONS AND BACKGROUND

In this section, we give some definitions and terminologies with basic notations used
throughout this paper.

Let E and F be Banach spaces. We denote by L (E,F ) the set of all bounded linear
operators acting between E and F, and by L the ring of all bounded linear operators
acting between arbitrary Banach spaces. Throughout this paper E′ and a will show dual
of E and a continuous function on E, respectively. For a ∈ E′ and y ∈ F, the map
a⊗ y : E → F is defined by (a⊗ y) (x) = (a (x) y) .

Definition 2.1. (Finite-Rank Operator) A finite-rank operator is a bounded linear opera-
tor between Banach spaces whose range is finite-dimensional.

Definition 2.2. (Operator Ideal) [5] An operator ideal U is a subclass of L such that the
components

U (E,F ) := U ∩ L (E,F )
satisfy the following conditions:

(OI1) a⊗ y ∈ U (E,F ) for a ∈ E′ and y ∈ F.
(OI2) S + T ∈ U (E,F ) for S, T ∈ U (E,F ) .
(OI3) RST ∈ U (E0, F0) for T ∈ L (E0, E) , S ∈ U (E,F ) , R ∈ L (F, F0) , where E0, F0

are arbitrary Banach spaces.

From the condition (OI2), it seems that λS ∈ U (E,F ) for S ∈ U (E,F ) and λ ∈ C, then
every component U (E,F ) is a linear subset of L (E,F ) .

Definition 2.3. (Quasi Norm) [5] A function α which assigns to every operator T ∈ U
a non-negative number α (T ) is called a quasi-norm on the operator ideal U if it has the
following properties:

(QN1) α (a⊗ y) = ‖a‖E′ ‖y‖F for a ∈ E′ and y ∈ F.
(QN2) α (S + T ) ≤ A [α (S) + α (T )] for S, T ∈ U (E,F ), here A ≥ 1 is a constant.
(QN3) α (RST ) ≤ ‖R‖α (S) ‖T‖ for T ∈ L (E0, E) , S ∈ U (E,F ) , R ∈ L (F, F0) , where

E0, F0 are arbitrary Banach spaces.
When C = 1, then α becomes a norm on the operator ideal U .

An ideal U with a quasi norm α, denoted by [U , α] and all components U (E,F ) are
linear topological Hausdorff spaces. A quasi-Banach operator ideal [U , α] is an operator
ideal such that all components U (E,F ) are complete under the quasi norm.

Definition 2.4. (s-number) [6] A map s which assigns to every operator S an unique
sequence (sn (S)) is called an s− function if the following conditions are satisfied:

(OS1)(monotonicity) ‖S‖ = s1 (S) ≥ s2 (S) ≥ ... ≥ 0 for S ∈ L (E,F ) .
(OS2)(additivity) sn+m−1 (S + T ) ≤ sn (S) + sm (T ) for S, T ∈ L (E,F ) .
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(OS3)(ideal property) sn (RST ) ≤ ‖R‖ sn (S) ‖T‖ for T ∈ L (E0, E) , S ∈ L (E,F ) ,
R ∈ L (F, F0) .

(OS4)(rank property) If S ∈ F (E,F ) and rank(S) < n, then sn (S) = 0.
(OS5)(norm property) sn (In) = 1, where In is the identity map on the n-dimensional Hilbert

space `2n.
sn (S) is called the n-th s− number of the operator S.

Regard that if m = 1 in (OS2), then sn (S + T ) ≤ sn (S) + ‖T‖ .
Some defined s-numbers are given below (see [5]):

The nth approximation number is defined as
an (S) = inf {‖S − L‖ : L ∈ L (E,F ) , rank L < n}.
The nth Gel’fand number is defined as
cn (S) = inf {‖SJM‖ :M ⊂ E, codim (M) < n}, where JM is the natural embedding

from subspace M of E into E.
The nth Kolmogorov number is defined as
dn (S) = inf {‖QNS‖ : N ⊂ F, dim (N) < n}, where QN is the quotient map from F

onto F/N.
The nth Weyl number is defined as
xn (S) = inf {an (SA) : ‖A‖ ≤ 1, where A : `2 → E} , where an (SA) is the nth approx-

imation number of the operator SA.
The nth Chang number is defined as
yn (S) = inf {an (BS) : ‖B‖ ≤ 1, where B : F → `2} , where an (BS) is the nth approx-

imation number of the operator BS.
The nth Hilbert number is defined as
hn (S) = inf {an (BSA) : ‖A‖ ≤ 1, ‖B‖ ≤ 1, where A : `2 → E, B : F → `2}.

Remark 2.1. [5] For S ∈ L (E,F ) , the following inequalities hold;

hn (S) ≤ xn (S) ≤ cn (S) ≤ an (S) , hn (S) ≤ yn (S) ≤ dn (S) ≤ an (S) .

Lemma 2.1. [7] Let S, T ∈ L (E,F ) . Then |sn (T )− sn (S)| ≤ ‖T − S‖ for n = 1, 2, ...

Definition 2.5. (injective) [5] An s-number sequence s = (sn) is called injective if, given
any metric injection J ∈ L (F, F0), sn(T ) = sn(JT ) for all T ∈ L (E,F ) .

A quasi-normed operator ideal [U , α] is called injective if T ∈ U (E,F ) and α(T ) =
α(JT ) as JT ∈ U (E,F0), where T ∈ L (E,F ) and J ∈ L (F, F0) is a metric injection.

Definition 2.6. (surjective) [5] An s-number sequence s = (sn) is called surjective if, given
any metric surjection Q ∈ L (E0, E), sn(T ) = sn(TQ) for all T ∈ L (E,F ) .

A quasi-normed operator ideal [U , α] is called surjective if T ∈ U (E,F ) and α(T ) =
α(TQ) as TQ ∈ U (E0, F ), where T ∈ L (E,F ) and Q ∈ L (E0, E) is a metric surjection.

Proposition 2.1. [5] Kolmogorov numbers and Weyl numbers are injective, Gel’fand numbers
and Chang numbers are surjective.

Definition 2.7. (closed ideal) [5] An operator ideal U is closed if all components U(E,F )
are closed linear subsets of L (E,F ). This means that U becomes a Banach operator ideal
by using the ordinary operator norm.

3. S-TYPE WEIGHTED MEAN NULL OPERATOR IDEAL

We call an operator T ∈ L (E,F ) is of s-type generalized weighted mean null operator if
n∑

i=1

unvi (si (T )) ∈ c0. We denote by U (s)
c0 class of all s-type generalized weighted mean
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null operators between any two Banach spaces. i.e.

U (s)
c0 =

{
T ∈ L (E,F ) : lim

n→∞
un

n∑
i=1

vi (si (T )) = 0

}
Let (un) , (vk) be bounded sequences of positive real numbers such that

(3.1) v2k−1 + v2k ≤ Cvk,

(3.2) (un) ∈ c0,
where C > 1 is independent of k.

Theorem 3.1. Let (un) , (vk) be sequences that provide the conditions (3.1) and (3.2), then U (s)
c0

is an operator ideal.

Proof. To prove U (s)
c0 is an operator ideal, it will be shown the conditions (OI1), (OI2), (OI3)

are provided.
Let a ∈ E′ and y ∈ F , then a ⊗ y is a finite rank operator with rank one and so by

definition of the s-number, we have sn (a⊗ y) = 0, for all n ≥ 2. We need to show that
a⊗ y ∈ U (s)

c0 . (
n∑

i=1

unvi (si (a⊗ y))

)∞
n=1

= (unv1s1 (a⊗ y))∞n=1

Since (un) ∈ c0, then limn→∞ unv1s1 (a⊗ y) = 0 and we obtain a⊗ y ∈ U (s)
c0 (E → F ) .

Let S, T ∈ U (s)
c0 (E → F ) . It follows from definition (2.2), s-number forms positive terms

and it is non increasing. Using (OS2),
n∑

i=1

unvi (si (S + T )) ≤
n∑

i=1

unv2i−1s2i−1 (S + T ) +

n∑
i=1

unv2is2i (S + T )

≤
n∑

i=1

un (v2i−1 + v2i) s2i−1 (S + T ) ≤ C
n∑

i=1

unvis2i−1 (S + T ) ≤ C
n∑

i=1

unvi (si (S) + si (T )) .

(3.3)
n∑

i=1

unvi (si (S + T )) ≤ C

[
n∑

i=1

unvisi (S) +

n∑
i=1

unvisi (T )

]
.

Since S, T ∈ U (s)
c0 (E → F ) , then we get S + T ∈ U (s)

c0 (E → F ) .
To provide (OI3), we apply the condition (OS3).
For T ∈ L (E0, E) , R ∈ L (F, F0),

n∑
i=1

unvi (si (RST )) ≤
n∑

i=1

unvi ‖R‖ sn (S) ‖T‖ = ‖R‖ ‖T‖
n∑

i=1

unvisn (S) .

Thus RST ∈ U (s)
c0 (E → F ), since S ∈ U (s)

c0 (E → F ) .

It is shown that U (s)
c0 is an operator ideal. �

Let us define the function N
(s)
c0 : U (s)

c0 → R+ as follows:

N
(s)
c0 (S) =

supn

∣∣∣∣∣
n∑

i=1

unvi (si (S))

∣∣∣∣∣
supn |unv1|

, where (un) , (vk) are sequences that provide the con-

ditions (3.1) and (3.2) .

Theorem 3.2. The operator ideal U (s)
c0 is a quasi-normed operator ideal with the quasi norm N

(s)
c0 .
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Proof. To prove N
(s)
c0 is a quasi norm on the operator ideal U (s)

c0 , it must be shown that the
function N

(s)
c0 satisfies (QN1), (QN2), (QN3).

i) Let a ∈ E′ and y ∈ F , then a ⊗ y is a finite rank operator with rank one and so by
definition of the s-number, we have sn (a⊗ y) = 0, for all n ≥ 2.

N(s)
c0 (a⊗ y) =

supn

∣∣∣∣∣
n∑

i=1

unvi (si (a⊗ y))

∣∣∣∣∣
supn |unv1|

=
supn |unv1 (s1 (a⊗ y))|

supn |unv1|

=
supn |unv1 ‖a⊗ y‖|

supn |unv1|
= ‖a⊗ y‖

Since ‖a⊗ y‖ = sup‖x‖=1 ‖a (x) y‖ = ‖a‖ ‖y‖ , we get N(s)
c0 (a⊗ y) = ‖a‖ ‖y‖

ii) Using the inequality (3.3) , we get

N(s)
c0 (S + T ) ≤

supn

∣∣∣∣∣C
[

n∑
i=1

unvisi (S) +

n∑
i=1

unvisi (T )

]∣∣∣∣∣
supn |unv1|

≤ C


supn

∣∣∣∣∣
n∑

i=1

unvisi (S)

∣∣∣∣∣
supn |unv1|

+

supn

∣∣∣∣∣
n∑

i=1

unvisi (T )

∣∣∣∣∣
supn |unv1|

 = C
[
N(s)

c0 (S) +N(s)
c0 (T )

]
.

iii) Now, we show the last condition (QN3). With the third condition (OS3) in the defi-
nition (2.4) , we obtain

N(s)
c0 (RST ) ≤

supn

∣∣∣∣∣‖R‖ ‖T‖
n∑

i=1

unvi (si (S))

∣∣∣∣∣
supn |unv1|

= ‖R‖ ‖T‖
supn

∣∣∣∣∣
n∑

i=1

unvi (si (S))

∣∣∣∣∣
supn |unv1|

.

Then, we get N(s)
c0 (RST ) ≤ ‖R‖N(s)

c0 (S) ‖T‖ . �

Theorem 3.3. The operator ideal
[
U (s)
c0 ,N

(s)
c0

]
is a quasi-Banach operator ideal under the quasi-

norm N
(s)
c0 .

Proof. It must shown that each component U (s)
c0 (E,F ) of U (s)

c0 is complete under the quasi-
norm N

(s)
c0 . For T ∈ U (s)

c0 , we have

sup
n

∣∣∣∣∣
n∑

i=1

unvi (si (T ))

∣∣∣∣∣ ≥ sup
n
|unv1s1 (T )| = ‖T‖ sup

n
|unv1| .

Then,

(3.4) N(s)
c0 (T ) ≥ ‖.T‖

Let (Tr) be a Cauchy sequence in U (s)
c0 . Then for arbitrary ε positive number, there exists

n0 ∈ N such that

(3.5) N(s)
c0 (Tr − Tm) < ε for every r,m ≥ n0.

It follows from (3.4) that,

‖Tr − Tm‖ ≤ N(s)
c0 (Tr − Tm) < ε ∀r,m ≥ n0.
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Then (Tr) is a Cauchy sequence in L (E,F ) . It is well known that L (E,F ) is a Banach
space, when F is Banach space. So, ‖Tr − T‖ → 0, as r →∞, for T ∈ L (E,F ) .

We need to show that Tr → T as r →∞ in U (s)
c0 (E,F ) .

Applying Lemma 2.1, we get that

|sn (Tm − Tr)− sn (T − Tr)| ≤ ‖(Tm − Tr)− (T − Tr)‖ = ‖Tm − T‖
Since Tm → T, as m→∞, we obtain

(3.6) sn (Tm − Tr)→ sn (T − Tr) as m→∞.
Using (3.5) , for r,m ≥ n0 the following holds

N(s)
c0 (Tm − Tr) =

supn

∣∣∣∣∣
n∑

i=1

unvi (si (Tm − Tr))

∣∣∣∣∣
supn |unv1|

< ε

or, equally,

sup
n

∣∣∣∣∣
n∑

i=1

unvi (si (Tm − Tr))

∣∣∣∣∣ < ε sup
n
|unv1|

From (3.6) and choosing a fixed r ≥ n0, as m→∞

(3.7) sup
n

∣∣∣∣∣
n∑

i=1

unvi (si (T − Tr))

∣∣∣∣∣ < ε sup
n
|unv1|

then
N(s)

c0 (Tr − T ) < ε ∀r ≥ n0.
This shows that, Tr → T under the quasi-norm N

(s)
c0 .

To complete the proof, we shall show that T ∈ U (s)
c0 .

n∑
i=1

unvi (si (T )) ≤
n∑

i=1

unv2i−1 (s2i−1 (T ))+

n∑
i=1

unv2i (s2i (T )) ≤
n∑

i=1

un (v2i−1 + v2i) (s2i−1 (T ))

≤ C
n∑

i=1

unvi (s2i−1 (T )) = C

n∑
i=1

unvi (s2i−1 (T − Tm + Tm))

≤ C

[
n∑

i=1

unvi (si (T − Tm)) +

n∑
i=1

unvi (si (Tm))

]
.

From (3.7) and (Tm) ∈ U (s)
c0 , we get 0 ≤

n∑
i=1

unvi (si (T )) ≤ C (1 + supn |unv1|) ε and

then
n∑

i=1

unvi (si (T )) ∈ c0. Hence, T ∈ U (s)
c0 . This completes the proof. �

Theorem 3.4. If s-number sequence is injective, then the quasi-Banach operator ideal
[
U (s)
c0 ,N

(s)
c0

]
is injective.

Proof. Suppose that JT ∈ U (s)
c0 (E,F0) for an arbitrary T ∈ L (E,F ) and a metric injection

J ∈ L (F, F0) . We shall show that N(s)
c0 (JT ) = N

(s)
c0 (T ) and T ∈ U (s)

c0 (E,F ) .
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By hypothesis, we have sn (JT ) = sn (T ) for every T ∈ L (E,F ) and n ∈ N. Thus,

N(s)
c0 (JT ) =

supn

∣∣∣∣∣
n∑

i=1

unvi (si (JT ))

∣∣∣∣∣
supn |unv1|

=

supn

∣∣∣∣∣
n∑

i=1

unvi (si (T ))

∣∣∣∣∣
supn |unv1|

= N(s)
c0 (T )

Since JT ∈ U (s)
c0 (E,F0), we obtain

lim
n→∞

n∑
i=1

unvi (si (T )) = lim
n→∞

n∑
i=1

unvi (si (JT )) = 0.

Therefore, N(s)
c0 (JT ) = N

(s)
c0 (T ) and T ∈ U (s)

c0 (E,F ) hold. �

Remark 3.2. The quasi-Banach operator ideals
[
U (c)
c0 ,N

(c)
c0

]
and

[
U (x)
c0 ,N

(x)
c0

]
correspon-

ding to the Gel’fand numbers c = (cn) and the Weyl numbers x = (xn) , respectively, are
injective quasi-Banach operator ideals.

Theorem 3.5. The quasi-Banach operator ideal
[
U (s)
c0 ,N

(s)
c0

]
is surjective, whenever s-number

sequence is surjective.

Proof. Suppose that TQ ∈ U (s)
c0 (E0, F ) for an arbitrary T ∈ L (E,F ) and a metric sur-

jection Q ∈ L (E0, E) . We shall show that N(s)
c0 (TQ) = N

(s)
c0 (T ) and T ∈ U (s)

c0 (E,F ) .
By hypothesis, s-number sequence is surjective, then sn (TQ) = sn (T ) for every T ∈

L (E,F ) and n ∈ N. Thus,

N(s)
c0 (TQ) =

supn

∣∣∣∣∣
n∑

i=1

unvi (si (TQ))

∣∣∣∣∣
supn |unv1|

=

supn

∣∣∣∣∣
n∑

i=1

unvi (si (T ))

∣∣∣∣∣
supn |unv1|

= N(s)
c0 (T )

Since TQ ∈ U (s)
c0 (E0, F ), we obtain

lim
n→∞

n∑
i=1

unvi (si (T )) = lim
n→∞

n∑
i=1

unvi (si (TQ)) = 0.

Therefore,
[
U (s)
c0 ,N

(s)
c0

]
is surjective. �

Remark 3.3. The quasi-Banach operator ideals
[
U (d)
c0 ,N

(d)
c0

]
and

[
U (y)
c0 ,N

(y)
c0

]
correspon-

ding to the Kolmogorov numbers d = (dn) and the Chang numbers y = (yn) , respectively,
are surjective quasi-Banach operator ideals.

Theorem 3.6. The following inclusions hold:

I. U (a)
c0 ⊆ U

(c)
c0 ⊆ U

(x)
c0 ⊆ U

(h)
c0 ; II. U (a)

c0 ⊆ U
(d)
c0 ⊆ U

(y)
c0 ⊆ U

(h)
c0 .

Proof. I. Let assume that S ∈ U (a)
c0 . Then,

(
n∑

i=1

unvi (ai (S))

)∞
n=1

∈ c0. Applying Remark

2.1, we obtain

0 ≤
n∑

i=1

unvi (hi (S)) ≤
n∑

i=1

unvi (ci (S)) ≤
n∑

i=1

unvi (xi (S)) ≤
n∑

i=1

unvi (ai (S))

II. The proof is similar to part I. �

Theorem 3.7. Let (vk) ∈ `1, then U (s)
c0 is a closed operator ideal.
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Proof. Let (Tk) ∈ U (s)
c0 (E,F ) and ‖Tk − T‖ → 0 for T ∈ L (E,F ) . We need to show that

T ∈ U (s)
c0 (E,F ) . For given ε > 0, we fix k and n0 such that

‖Tk − T‖ < ε and sn (Tk) < ε for all n ≥ n0
From the condition (OS2) of definition 2.4, we get

sn (T ) ≤ ‖Tk − T‖+ sn (Tk) ≤ 2ε for all n ≥ n0
and

n∑
i=1

unvisi (T ) ≤
n∑

i=1

unvi [‖Tk − T‖+ si (Tk)] ≤
n∑

i=1

unvi (2ε)

Then

0 ≤
n∑

i=1

unvisi (T ) ≤
n∑

i=1

unvi (2ε) ≤ 2 ‖un‖∞ ‖vk‖1 ε

Thus

(
n∑

i=1

unvisi (T )

)
∈ c0 and T ∈ U (s)

c0 (E,F ) . �

Remark 3.4.

• In particular if we take vn = 1 and un = 1
n∑

i=1

vi

for all n ∈ N, then U (s)
c0 is called as

Cesaro null type operator ideal.
• Taking un = 1

n∑
i=1

vi

for all n ∈ N, then U (s)
c0 is reduced Norlund null type operator

ideal.
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