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Existence and convergence for a new multivalued hybrid
mapping in CAT(κ) spaces

EMIRHAN HACIOĞLU and VATAN KARAKAYA

ABSTRACT. Most of the studies about hybrid mappings are carried out for single-valued mappings in Hilbert
spaces. We define a new class of multivalued mappings in CAT (k) spaces which contains the multivalued
generalization of (α, β) - hybrid mappings defined on Hilbert spaces. In this paper, we prove existence and
convergence results for a new class of multivalued hybrid mappings on CAT(κ) spaces which are more general
than Hilbert spaces and CAT(0) spaces.

1. INTRODUCTION

Although many real-life events and their scientific modellings have nonlinear struc-
ture, the fixed point studies for single-valued or multivalued mappings have been deve-
loped mostly on linear spaces, such as Hilbert spaces and Banach spaces. Therefore, it
is very important to study fixed point theory on nonlinear spaces. The CAT(κ) spaces
(for κ ≥0) form very good example of non-linear spaces which allow to develop fixed
point theory on it due to their convex structure and rich properties similar to Banach and
Hilbert spaces.

So far, fixed points studies on these spaces mainly focused on CAT(0) spaces for sin-
gle and multivalued non-expansive mappings. However, not much is known on CAT (κ)
spaces for multivalued mappings. We give definition of a new class of multivalued map-
pings in CAT(κ) spaces and this new class is general than a multivalued generalization
of (α, β)-hybrid mappings in Hilbert spaces. Moreover, most of the studies about hybrid
mappings are done for single-valued mappings in Hilbert spaces. In this paper, the re-
sults are given for multivalued hybrid mappings on general spaces than Hilbert spaces
and CAT(0) spaces. Let H be a Hilbert space and K ⊆ H,K 6= ∅. Let us take T as a single
valued mapping from K to H . If T satisfies

||Tx− Ty|| ≤ ||x− y||, 2||Tx− Ty||2 ≤ ||Tx− y||2 + ||Ty − x||2

and
3||Tx− Ty||2 ≤ ||x− y||2 + ||Tx− y||2 + ||Ty − x||2

for all x, y ∈ K then it called non-expansive, non-spreading [10] and hybrid [17], respecti-
vely. None of these classes of mappings is included in the other. In 2010, Aoyama et al.
[1] defined λ-hybrid as follows;

(1 + λ)||Tx− Ty||2 − λ||x− Ty||2 ≤ (1− λ)||x− y||2 + λ||Tx− y||2

where x, y ∈ K and λ is fixed real number. λ-hybrid mappings are general than non-
expansive mappings, non-spreading mappings and hybrid mappings. In 2011, Aoyama
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and Kohsaka [2] introduced α-non-expansive mappings in Banach spaces as follows:

||Tx− Ty||2 ≤ (1− 2α)||x− y||2 + α||Tx− y||2 + α||x− Ty||2

where x, y ∈ K and α < 1 is fixed. They showed that α-non-expansive and λ-hybrid
are equivalent in Hilbert spaces for λ < 2. Kocourek et al. [9], introduced more general
class of mappings than the above mappings in Hilbert spaces, called (α, β)−generalized
hybrid, as follows;

α||Tx− Ty||2 + (1− α)||x− Ty||2 ≤ β||Tx− y||2 + (1− β)||x− y||2

where x, y ∈ K and α, β are fixed real numbers.
Many iterative processes to find a fixed point of multivalued mappings have been in-

troduced in metric and Banach spaces. The well known one is defined by Nadler as gene-
ralization of Picard as follows;

xn+1 ∈ Txn.
A multivalued version of Mann and Ishikawa fixed point procedures goes as follow;

xn+1 ∈ (1− ζn)xn + ζnTxn

and
xn+1 ∈ (1− ζn)xn + ζnTyn, yn ∈ (1− ςn)xn + ςnTxn,

where {ζn} and {ςn} are sequences in [0, 1].
Gursoy and Karakaya [7] (see also [8]) introduced Picard-S iteration as follows:

xn+1 = Tyn, yn = (1− ζn)Txn + ζnTzn, zn = (1− ςn)xn + ςnTxn,

where {ζn} and {ςn} are sequences in [0, 1]. They have showed that it converges to fixed
point of contraction mappings faster than Ishikawa, Noor, SP, CR, S and some other itera-
tions. Also they use it to solve differential equations. Now, we define multivalued version
of Picad-S iteration in CAT(κ) spaces as follows:

(1.1) xn+1 = PK(un), yn = PK((1− ζn)wn ⊕ ζnvn), zn = PK((1− ςn)xn ⊕ ςnwn)

where {ζn} and {ςn} are sequences in [0, 1] with lim infn(1−ςn)ςn > 0, un ∈ Tyn, vn ∈ Tzn
and wn ∈ Txn.

2. PRELIMINARIES

Let (X, d) be a metric space and K ⊆ X,K 6= ∅ . In rest of this paper, we will use
following notations; C(X) for all nonempty, closed subsets ofX , CC(X) for all nonempty
closed and convex subsets of X , KC(X) for nonempty, compact and convex subsets of
X and CB(X) for all nonempty, closed and convex subsets of X . Let Hd be Pompeiu-
Hausdorff metric on CB(X), defined by

Hd(A,B) = max{sup
x∈A

d(x,B), sup
x∈B

d(x,A)},

where d(x,B) = inf{d(x, y); y ∈ B}. A point p is called fixed point of multivalued map-
ping T if p ∈ Tp and the set of all fixed points of T is denoted by F (T ).

Let (X, d) be bounded metric space and take x, y ∈ X and K ⊆ X,K 6= ∅ . A geodesic
path (or shortly a geodesic) joining x and y is a map c : [0, t] ⊆ R → X such that c(0) =
x, c(t) = y and d(c(r), c(s)) = |r − s| for all r, s ∈ [0, t].In fact, c is an isometry and
d(c(0), c(t)) = t. The image of c, c([o, t]) is called geodesic segment from x to y and it is
not necessarily be unique. It is unique then it is denoted by [x, y]. z ∈ [x, y] if and only if
there exists t ∈ [0, 1] such that d(z, x) = (1− t)d(x, y) and d(z, y) = td(x, y). The point z is
denoted by z = (1 − t)x ⊕ ty. For fixed r > 0, the space (X, d) is called r-geodesic space
if any two point x, y ∈ X with d(x, y) < r there is a geodesic joining x to y. if for every
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x, y ∈ X , there is a geodesic path then (X, d) called geodesic space and uniquely geodesic
space if that geodesic path is unique for any pair x, y. We call a subset K ⊆ X as a convex
subset if it contains all geodesic segment joining any pair of points in it.

Definition 2.1. (see:[3]) Let κ ∈ R.
i) if κ = 0, then Mn

κ is Euclidean space En,
ii) if κ > 0, then Mn

κ is obtained from the sphere Sn by multiplying distance function by 1√
κ

,
iii) if κ < 0, then Mn

κ is obtained from hyperbolic space Hn by multiplying distance function
by 1√

−κ .

In a geodesic metric space (X, d), a geodesic triangle, ∆(x, y, z) consist of three point
x, y, z as vertices and three geodesic segments of any pair of these points, that is, q ∈
∆(x, y, z) means that q ∈ [x, y] ∪ [x, z] ∪ [y, z]. The triangle ∆(x, y, z) in M2

κ is called com-
parison triangle for the triangle ∆(x, y, z) such that d(x, y) = d(x, y), d(x, z) = d(x, z) and
d(y, z) = d(y, z) and such a comparison triangle always exists provided that the perimeter
d(x, y) + d(y, z) + d(z, x) < 2Dκ(Dκ = π√

K
if κ > 0 and∞ otherwise) in M2

κ (Lemma 2.14
in [3]). A point point z ∈ [x, y] called comparison point for z ∈ [x, y] if d(x, z) = d(x, z).
A geodesic triangle ∆(x, y, z) in X with perimeter less than 2Dκ (and given a comparison
triangle ∆(x, y, z) for ∆(x, y, z) in M2

κ) satisfies CAT (κ) inequality if d(p, q) ≤ d(p, q) for
all p, q ∈ ∆(x, y, z) where p, q ∈ ∆(x, y, z) are the comparison points of p, q respectively.
The Dκ-geodesic metric space (X, d) is called CAT (κ) space if every geodesic triangle in
X with perimeter less than 2Dκ satisfies the CAT (κ) inequality.

If for every x, y, z ∈ X , there is an R ∈ (0, 2] satisfying

d2(x, (1− λ)y ⊕ λz) ≤ (1− λ)d2(x, y) + λd2(x, z)− R

2
λ(1− λ)d2(y, z),

then (X, d) is called R−convex [13]. Hence, (X, d) is a CAT (0) space if and only if it is a
2−convex space.

Lemma 2.1. (see:[14]) Let κ > 0 and (X, d) be a CAT (κ) space with diam(X) < π−ε
2
√
κ

for some
ε ∈ (0, π2 ). Then (X, d) is a R−convex space for R = (π − 2ε) tan(ε).

Proposition 2.1. (see:[3]) Let X be CAT (κ) space. Then any ball of radius smaller than π
2
√
κ

is
convex.

Proposition 2.2. (Exercise 2.3 (1) in [3]) Let κ > 0 and (X, d) be a CAT (κ) space with
diam(X) < Dκ

2 = π
2
√
κ

. Then, for any x, y, z ∈ X and t ∈ [0, 1], we have

d((1− t)x⊕ ty, z) ≤ (1− t)d(x, z) + td(y, z).

Proposition 2.3. (see:[15]) The modulus of convexity for CAT (κ) space X (of dimension ≥ 2)
and number r < π

2
√
κ

and let m denote the midpoint of the segment [x, y] joining x and y defined
by the modulus δr by sitting

δ(r, ε) = inf{1− 1

r
d(a,m)}

where the infimum is taken over all points a, x, y ∈ X satisfying d(a, x) ≤ r, d(a, y) ≤ r and
ε ≤ d(x, y) < π

2
√
κ

.

Lemma 2.2. (see:[15]) Let X be a complete CAT (κ)space with modulus of convexity δ(r, ε) and
let x ∈ E. Suppose that δ(r, ε) increases with r (for a fixed ε) and suppose {tn} is a sequence in
[b, c] for some b, c ∈ (0, 1), {xn} and {yn} are the sequences inX such that lim supn→∞ d(xn, x) ≤
r, lim supn→∞ d(yn, x) ≤ r and limn→∞ d((1 − tn)xn ⊕ tnyn, x) = r for some r ≥ 0. Then
limn→∞ d(xn, yn) = 0.
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Let {xn} be a bounded sequence in a CAT (κ) space X , x ∈ X and

r(x, {xn}) = lim sup
n→∞

d(x, xn).

The asymptotic radius of {xn} is defined by

r({xn}) = inf{r(x, {xn});x ∈ X.},

the asymptotic radius of {xn}with respect to K ⊆ X is defined by

rK({xn}) = inf{r(x, {xn});x ∈ K.},

and the asymptotic center of {xn} is defined by

A({xn}) = {x ∈ X : r(x, {xn}) = r({xn})}

and let ωw(xn) := ∪A({xn}) where union is taken on all subsequences of {xn}.

Definition 2.2. (see:[6]) A sequence {xn} ⊂ X is said to be ∆− convergent to x ∈ X if
x is the unique asymptotic center of all subsequence {un} of {xn}. In this case we write
∆− limn xn = x and read as x is the ∆−limit of {xn}.

Proposition 2.4. (see:[6]) Let X be a complete CAT (κ) space, K ⊆ X nonempty, closed and
convex, {xn} is a sequence in X . If rK({xn}) < π

2
√
κ

, then AK({xn}) consists of exactly one
point.

Lemma 2.3. (see:[5])

i) Every bounded sequence in X has a ∆-convergent subsequence,
ii) If K is a closed and convex subset of X and if {xn} is a bounded sequence in K, then the

asymptotic center of {xn} is in K.

Lemma 2.4. (see:[5]) If {xn} is a bounded sequence in X with A({xn}) = {x} and {un} is a
subsequence of {xn} with A({un}) = u and the sequence {d(xn, u)} converges, then x = u.

Lemma 2.5. (see:[6]) Let κ > 0 and X be a complete CAT (κ) space with diam(X) ≤ π−ε
2
√
κ

for
some ε ∈ (0, π/2). Let K be a nonempty, closed and convex subset of X . Then

i) the metric projection PK(x) of x onto K is a singleton,
ii) if x /∈ K and y ∈ K with u 6= PK(x), then ∠PK(x)(x, y) ≥ π

2 ,
iii) for each y ∈ K, d(PK(x), PK(y)) ≤ d(x, y).

Definition 2.3. Let (X, d) be a metric space. T is called (a1, a2, b1, b2)−multivalued hybrid
mapping from X to 2X if

a1(x)d2(u, v) + a2(x)d2(u, y) ≤ b1(x)d2(x, v) + b2(x)d2(x, y)

is satisfied for all x, y ∈ X, u ∈ Tx and v ∈ Ty where a1, a2 : X → R and b1, b2 : X → [0, 1]
with a1(x) + a2(x) ≥ 1, a1(x) ≤ 0 or a2(x) ≤ 0 and b1(x) + b2(x) ≤ 1.

In the rest of the paper, X will be a complete CAT (κ) space (κ > 0).

3. EXISTENCE RESULTS

Proposition 3.5. Let K be a nonempty, closed and convex subset of X with rad(K) < π
2
√
κ

and
T be (a1, a2, b1, b2)− multivalued hybrid mapping from K to 2X with F (T ) 6= ∅. Then F (T )
closed and Tp = {p} for all p ∈ F (T ).
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Proof. Let {xn} be a sequence in F (T ) and xn → x ∈ X. Then for any u ∈ Tx, we have

d2(u, xn) ≤ a1(x)d2(u, xn) + a2(x)d2(u, xn) ≤ b1(x)d2(x, xn) + b2(x)d2(x, xn) ≤ d2(x, xn).

Taking limit on n, we have
d(u, x) ≤ 0

and so u = x ∈ Tx = {x}. �

Theorem 3.1. (Demiclosed principle) Let K be a nonempty, closed convex subset of X where
diam(X) < π

2
√
κ

, and T : K → CC(X) be a (a1, a2, b1, b2)−multivalued hybrid mapping. Let
{xn} be a sequence in K with ∆ − limn→∞ xn = z and limn→∞ d(xn, Txn) = 0. Then z ∈ K
and z ∈ T (z).

Proof. By Lemma 2.3, z ∈ K. We can find a sequence {yn} such that d(xn, yn) = d(xn, Txn),
so we have limn→∞ d(xn, yn) = 0. Because T is (a1, a2, b1, b2)−multivalued hybrid map-
ping, we have

a1(z)d2(u, yn) + a2(z)d2(u, xn) ≤ b1(z)d2(z, yn) + b2(z)d2(z, xn).

for all u ∈ Tz. Then, by triangular inequality, we have d(xn, u) ≤ d(xn, yn) + d(yn, u). So,
we have, lim supn→∞ d(xn, u) ≤ lim supn→∞ d(yn, u) and again since d(yn, u) ≤ d(yn, xn)+
d(xn, u), we have lim supn→∞ d(yn, u) ≤ lim supn→∞ d(xn, u), combining these, we have
that lim supn→∞ d(xn, u) = lim supn→∞ d(yn, u). Then we get

a1(z)d2(u, yn) + a2(z)d2(u, xn) ≤ b1(z)d2(z, yn) + b2(z)d2(z, xn)

≤ b1(z)[d(z, xn) + d(xn, yn)]2 + b2(z)d2(xn, z)

which implies that lim supn→∞ d(u, xn) ≤ lim supn→∞ d(z, xn). Hence, z = u ∈ Tz. �

Corollary 3.1. Let K be a nonempty, closed and convex subset of X where diam(X) < π
2
√
κ

,
and T : K → X be a (a1, a2, b1, b2)− hybrid mapping. Let{xn} be a sequence in K with
∆− limn→∞ xn = z and limn→∞ d(xn, Txn) = 0. Then z ∈ K and Tz = z.

Corollary 3.2. Let X be a complete CAT (0) space and K be a nonempty, closed and convex
subset of X , and T : K → CC(X) be a (a1, a2, b1, b2)−multivalued hybrid mapping. Let{xn} be
a bounded sequence in K with ∆− limn→∞ xn = z and limn→∞ d(xn, Txn) = 0. Then z ∈ K
and z ∈ Tz.

Corollary 3.3. LetX be a completeCAT (0) space andK be a nonempty, closed and convex subset
of X , and T : K → X be a (a1, a2, b1, b2)− hybrid mapping. Let {xn} be a bounded sequence in
K with ∆− limn→∞ xn = z and limn→∞ d(xn, Txn) = 0. Then z ∈ K and Tz = z.

Theorem 3.2. Let K be a nonempty, closed and convex subset of X with rad(K) < π
2
√
κ

and T
be (a1, a2, b1, b2)− multivalued hybrid mapping from K to C(K). Then F (T ) 6= ∅.

Proof. Let x0 ∈ K and xn ∈ Txn−1 for all n ∈ N. Assume that AK{xn} = {z}. Then z ∈ K
by Lemma 2.3 , for all n ∈ N and for any u ∈ Tz, we have

a1(z)d2(u, xn) + a2(z)d2(u, xn−1) ≤ b1(z)d2(z, xn) + b2(z)d2(z, xn−1)

and taking limit superior on both side implies that

lim sup
n→∞

d2(u, xn) ≤ lim sup
n→∞

d2(z, xn);

hence z = u ∈ Tz = {u}. �

Corollary 3.4. Let K be a nonempty, closed and convex subset of X with rad(K) < π
2
√
κ

and T
be (a1, a2, b1, b2)− hybrid mapping from K to K. Then F (T ) 6= ∅.
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Proof. Let F = {T (x)}. Then F is (a1, a2, b1, b2)−multivalued hybrid mapping from K to
CC(K). Hence F has at least one fixed point and so does T by Theorem 3.2. �

Since for any κ > κ′, CAT (κ′) space is CAT (κ), therefore following corollaries holds.

Corollary 3.5. Let X be a complete CAT (0) space, K be a nonempty, closed and convex subset
of X and T be (a1, a2, b1, b2)− multivalued hybrid mapping from K to CC(K). Then there is an
x0 ∈ K such that the sequence {xn} defined by xn ∈ Txn−1 for all n ∈ N is bounded if and only
if F (T ) 6= ∅.

Corollary 3.6. Let X be a complete CAT (0) space, K be a nonempty, closed and convex subset
of X and T be (a1, a2, b1, b2)−hybrid mapping from K to K. Then there is an x0 ∈ K such that
the sequence {xn} defined by xn = Txn−1 for all n ∈ N is bounded if and only if F (T ) 6= ∅.

Example 3.1. Let X = [1, 7] with usual metric and T : X → C(X) be multivalued map-
ping defined by

Tx =

{
{1}, x ∈ [1, 4];

[1, 2x
2+1

x2+1 ], x ∈ (4, 7].

We will show that T is a (a1, a2, b1, b2)−multivalued hybrid mapping with a1(x) = 2x+3
x+2 ,

a2(x) = −x−1
x+2 , b1(x) = x+1

x+2 , b2(x) = 1
x+2 for all x ∈ X .

Case 1: if x, y ∈ [1, 4], it is obvious.
Case 2: if x ∈ [1, 4], y ∈ (4, 7], then for all u ∈ Tx and v ∈ Ty, we have that d2(u, v) ≤
1, 9 < d2(Tx, y) ≤ d2(u, y), 0 < d2(x, Ty) ≤ d2(x, v) and so

2x+ 3

x+ 2
d2(u, v) ≤ 2x+ 3

x+ 2
≤ 9x+ 9

x+ 2
+
x+ 1

x+ 2
d2(x, v) +

1

x+ 2
d2(x, y)

≤ x+ 1

x+ 2
d2(u, y) +

x+ 1

x+ 2
d2(x, v) +

1

x+ 2
d2(x, y).

Case 3: if x, y ∈ (4, 7], then for all u ∈ Tx and v ∈ Ty, we have that d2(u, v) ≤ 1, 4 <
d2(Tx, y) ≤ d2(u, y), 4 < d2(x, Ty) ≤ d2(x, v) and so

3x+ 3

x+ 2
d2(u, v) ≤ 3x+ 3

x+ 2
≤ 4x+ 4

x+ 2
+

4x+ 4

x+ 2
+

1

x+ 2
d2(x, y)

≤ x+ 1

x+ 2
d2(u, y) +

x+ 1

x+ 2
d2(x, v) +

1

x+ 2
d2(x, y).

Thus T is a (a1, a2, b1, b2)−multivalued hybrid mapping with fixed point 1, T (1) = {1}.

4. CONVERGENCE RESULTS

Lemma 4.6. Let K be a nonempty, closed and convex subset of X where diam(X) ≤ π−ε
2
√
κ

for
some ε ∈ (0, π/2), and T : K → CC(X) be (a1, a2, b1, b2)−multivalued hybrid mapping.
Let{xn} be a sequence in K with limn→∞ d(xn, Txn) = 0 and {d(xn, p)} converges for all
p ∈ F (T ). Then ωw(xn) ⊆ F (T ) and ωw(xn) includes exactly one point.

Proof. Take u ∈ ωw(xn). Then we can find a subsequence {un} of {xn} with A({un}) =
{u}. Then by Lemma 2.3, we can find a subsequence {vn} of {un}with ∆− limn→∞ vn =
v ∈ K .By Theorem 3.1, we have v ∈ F (T ) and by Lemma 2.4, we conclude that u = v.
Hence, we get ωw(xn) ⊆ F (T ). Let us take subsequence {un} of {xn}with A({un}) = {u}
and A({xn}) = {x}. Because of v ∈ ωw(xn) ⊆ F (T ), {d(xn, u)} converges, by Lemma 2.4,
we have x = u, this means that ωw(xn) includes exactly one point. �
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Theorem 4.3. Let K be a nonempty, closed and convex subset of X where diam(X) ≤ π−ε
2
√
κ

for some ε ∈ (0, π/2), and T : K → CC(X) be a (a1, a2, b1, b2)−multivalued hybrid mapping
with T (p) = {p} for all p ∈ F (T ). If {xn} is a sequence in K defined by (1.1) then, {xn} ∆−
convergent to an element of F (T ).

Proof. Let p ∈ F (T ). Then T (p) = {p}. Since T is a (a1, a2, b1, b2)−multivalued hybrid
mapping, then for all x ∈ K,u ∈ Tx, we have that

d2(u, p) ≤ a1(x)d2(u, p) + a2(x)d2(u, p) ≤ b1(x)d2(x, p) + b2(x)d2(x, p) ≤ d2(x, p).

Hence, we get d(u, p) ≤ d(x, p). Then

d(zn, p) = d(PK((1− ςn)xn ⊕ ςnwn), p) ≤ d((1− ςn)xn ⊕ ςnwn, p)

≤ (1− ςn)d(xn, p) + ςnd(wn, p) ≤ (1− ςn)d(xn, p) + ςnd(xn, p) ≤ d(xn, p),

d(yn, p) = d(PK((1−ζn)wn⊕ζnvn, p) ≤ d((1−ζn)wn⊕ζnvn, p) ≤ (1−ζn)d(wn, p)+ζnd(vn, p)

≤ (1− ζn)d(xn, p) + ζnd(zn, p) ≤ d(xn, p)

and
d(xn+1, p) = d(PK(un), PK(p)) ≤ d(un, p) ≤ d(yn, p).

So, d(xn+1, p) ≤ d(yn, p) ≤ d(xn, p) implies limn→∞ d(xn, p) = limn→∞ d(yn, p) exists. Let
us say, limn→∞ d(xn, p) = k. Since d(wn, p) ≤ d(xn, p) and d(vn, p) ≤ d(zn, p) ≤ d(xn, p),
we have that lim supn→∞ d(wn, p) ≤ k, lim supn→∞ d(vn, p) ≤ k and

d(yn, p) = d(PK((1− ζn)wn ⊕ ζnvn, p)
≤ d((1− ζn)wn ⊕ ζnvn, p)
≤ (1− ζn)d(wn, p) + ζnd(vn, p)

≤ (1− ζn)d(xn, p) + ζnd(zn, p)

≤ d(xn, p)

which implies that that limn→∞ d((1 − ζn)wn ⊕ ζnvn, p) = k, so by Lemma 2.2, we have
that limn→∞ d(wn, vn) = 0. And again from

d(yn, p) = d(PK((1− ζn)wn ⊕ ζnvn, p)
≤ d((1− ζn)wn ⊕ ζnvn, p)
≤ (1− ζn)d(wn, p) + ζnd(vn, p)

≤ (1− ζn)(d(wn, vn) + d(vn, p)) + ζnd(vn, p)

≤ (1− ζn)d(wn, vn) + d(vn, p)

we have that k ≤ lim infn→∞ d(vn, p) and since d(vn, p) ≤ d(zn, p) ≤ d(xn, p), we have that
limn→∞ d(zn, p) = k. By R−convexivity, we have

d2(zn, p) = d2(PK((1− ςn)xn ⊕ ςnwn), Pp)

≤ d2((1− ςn)xn ⊕ ςnwn, p)

≤ (1− ςn)d2(xn, p) + ςnd
2(wn, p)−

R

2
(1− ςn)ςnd

2(xn, wn)

≤ (1− ςn)d2(xn, p) + ςnd
2(xn, p)−

R

2
(1− ςn)ςnd

2(xn, wn)

≤ d2(xn, p)−
R

2
(1− ςn)ςnd

2(xn, wn)

which implies that

R

2
(1− ςn)ςnd

2(xn, wn) ≤ d2(xn, p)− d2(zn, p).
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Since limn→∞(d2(xn, p) − d2(zn, p)) = 0 and lim infn(1 − ςn)ςn > 0, therefore we get
limn→∞ d(xn, wn) = 0 and hence limn→∞ d(xn, Txn) = 0. So, by Lemma 4.6, {xn} has
∆−limit which in F (T ). �

Theorem 4.4. Let K be a nonempty, compact and convex subset of X where diam(X) ≤ π−ε
2
√
κ

for some ε ∈ (0, π/2), and T : K → KC(X) be a continuous (a1, a2, b1, b2)−multivalued hybrid
mapping with T (p) = {p} for all p ∈ F (T ).If {xn} is a sequence in K defined by (1.1) then, {xn}
strongly converges to an element of F (T ).

Proof. By Theorem 4.3, we have that limn→∞ d(Txn, xn) = 0 and limn→∞ d(xn, p) exists
for all p ∈ F (T ). Since K is compact, there is a convergent subsequence {xni} of {xn}, say
limi→∞ x

ni
= z. Then we have

d(z, Tz) ≤ d(z, xni ) + d(xni , Txni ) +Hd(Txni , T z)

and taking limit on i, continuity of T implies that z ∈ Tz. �
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