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Robust vector optimization with a variable domination
structure

ELISABETH KÖBIS and CHRISTIANE TAMMER

ABSTRACT. In this paper we propose a new definition of robustness for uncertain vector-valued optimization
problems equipped with a variable domination structure, derive scalarization results and present algorithms for
computing robust solutions.

1. INTRODUCTION

Uncertain data contaminate most optimization problems in various applications ran-
ging from science and engineering to industry and thus represent an essential component
in optimization. From a mathematical point of view, many problems can be modeled as
an optimization problem and be solved, but in real life, having exact data is very rare
and seems almost impossible. Due to a lack of complete information, uncertain data can
highly affect solutions and thus influence the decision making process. Hence, it is crucial
to address this important issue in optimization theory.

As was recently observed in [11, 12], robust multiobjective optimization is an important
application of set optimization. In case uncertainties are present during an optimization
process, the decision maker generally has two options: Using stochastic optimization ap-
proaches, solutions are desired that are likely to satisfy the given requirements (optima-
lity and constraints). Alternatively, robust optimization searches for solutions, which are
of good quality in the worst-case scenarios, regardless of how likely this event may be.
Robust multiobjective optimization with a fixed domination structure was examined in
[11, 12]. In this paper we develop corresponding results in case the ordering set depends
on the decision variable.

First, variable domination structures were introduced by Yu in [19]. An interesting
overview on recent developments in vector optimization with variable domination struc-
ture is given by Eichfelder in [6]. Motivated by applications in medical image registration
[5, 6], variable domination structures in vector optimization gained recognition as they al-
low to introduce a specification of the decision-maker’s preferences into the model. Due
to these important applications, variable domination structures have gained increasing
interest, compare [1, 2]. More recently, variable domination structures were introduced in
set optimization, see [3, 8, 9, 15].

The focus of this paper lies in combining robust approaches to vector optimization with
variable domination structures, which is a completely new concept in uncertain vector op-
timization. Our approach enables the decision maker to specify his / her preferences with
regard to the domination structure rather than relying on a given optimality concept. Our
analysis is, for a fixed domination structure, closely related to the approaches conducted
in [11, 12]. We introduce a new definition of robust solutions of uncertain multiobjective
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optimization problems, where the domination structure is equipped with a variable do-
mination structure. Then we develop a scalarization approach to obtain robust solutions
of uncertain multiobjective optimization problems equipped with the mentioned varia-
ble domination structure. Moreover, we present two algorithms for computing robust
solutions of uncertain vector-valued optimization problems.

2. PRELIMINARIES

We recall some notation of uncertain multiobjective optimization introduced in Ehrgott
et al. [4] (see also [12]) used in this paper. Throughout this work, let Y be a linear topo-
logical space, X is a linear space and let an uncertainty set ∅ 6= U ⊆ RN be given. For
∅ 6= X ⊆ X , let f : X × U → Y be the function that is to be minimized. The uncertainty
set U contains all the possible parameter values that the uncertain parameter may attain.
Our goal is to obtain solutions that are robust, i.e., that perform well even in the worst-
case scenario. For the scalar case Y = R, this would mean to minimize the functional
supξ∈U f(x, ξ) on X . Of course, if f is vector-valued, this scalar approach cannot be easily
transferred to vector optimization. Due to the absence of a total order on Y , we need to
define the meaning of an optimal solution.

We define for x ∈ X
fU (x) := {f(x, ξ)| ξ ∈ U}

the image of f under U . For a fixed ξ ∈ U , the vector optimization problem is denoted by

(P (ξ)) min
x∈X

f(x, ξ).

The family of all problems
⋃
ξ∈U (P (ξ)) is denoted by P (U).

Consider the following figure (where Y = R2), which shows three feasible solution
sets. Our objective is to attain a robust solution, i.e., a solution set fU (x0), which is not
dominated by any other solution set. If we compare sets with respect to the natural orde-
ring cone R2

= := {x ∈ R2|xi ≥ 0, i = 1, 2}, this means that for a robust solution x0, there
does not exist another element x ∈ X \ {x0} such that fU (x) ⊆ fU (x0)− R2

=. In the figure
below we see that x1 is not robust since it is dominated by x3. x2 and x3 are robust, as
their solution sets are not dominated by any other set.
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FIGURE 1. Left: x1 is not robust, but x2 and x3 are robust. Right: x1, x2

and x3 are robust.

The general idea now is that each solution x ∈ X is associated with a certain set C(x),
where C : X ⇒ Y is a set-valued mapping. Consider, for example, the right illustration in
Figure 1. The element x1 now is equipped with a smaller cone, which means that x1 is not
dominated by any other solution anymore, thus x1 is considered to be robust here. This
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approach enables the decision-maker to specify his / her preferences directly when the
uncertain optimization problem is modeled. There are various applications of variable
domination structures in vector optimization available in the literature, for instance in the
optimal treatment planning of intensity-modulated radiation therapy and consumer de-
mand in economics (see [6]), to which our approach can directly be applied here. We will
refer to this solution concept as robust minimality (see Definition 2.2). A second solution
concept for robustness in vector optimization will be introduced in Definition 2.2.
Above we implicitly used the upper set less relation introduced by Kuroiwa [16, 17] to
compare sets while focusing on their upper bounds.

Definition 2.1 (Upper Set Less Relation, [16, 17]). Let C ⊂ Y be a proper pointed closed
convex cone. Then the upper set less relation for two nonempty sets A,B ⊂ Y is given
as

A �uC B :⇐⇒ A ⊆ B − C.

In the following we will work with the variable domination structure given by the set-
valued map C : X ⊇ X ⇒ Y , where we assume for each x ∈ X that C(x) is a proper
pointed closed convex cone with nonempty interior. Then we characterize the upper set
less relation with respect to for two arbitrary nonempty sets A,B ⊂ Y analogously to
Definition 2.1 for fixed x ∈ X by

A �uQ(x) B :⇐⇒ A ⊆ B −Q(x),(2.1)

where Q(x) = C(x) (Q(x) = C(x) \ {0}, Q(x) = intC(x), respectively).
Related to the concept of variable domination structures, there are two main concepts

known in the literature (see Eichfelder [6]). For a vector-valued function f : X → Y and
a cone-valued map C : X ⇒ Y , an element f(x0) = y0 is called minimal if there does not
exist any x ∈ X with f(x) = y such that

y0 ∈ y + C(x0) \ {0}.

Moreover, an element x0 is called nondominated if there does not exist x ∈ X with f(x) =
y such that

y0 ∈ y + C(x) \ {0}.
Below we formally introduce two kinds of robust solutions of the family of uncertain

problems P (U) based on the concepts of minimal and nondominated solutions. The solu-
tion concept follows the line of the approach in [12], but here we consider variable domi-
nation structures.

Definition 2.2 (Robust Minimal Solutions / Robust Nondominated Solutions). A solution
x0 ∈ X of P (U) is called strictly (weakly, · , respectively) robust minimal if there does not
exist x ∈ X \ {x0} such that for Q = C(x0) (Q = intC(x0), Q = C(x0) \ {0}): fU (x) �uQ
fU (x0), or equivalently,

@x ∈ X \ {x0} : fU (x) ⊆ fU (x0)−Q.

A solution x0 ∈ X of P (U) is called strictly (weakly, · , respectively) robust nondominated
if there does not exist x ∈ X \ {x0} such that for Q = C(x) (Q = intC(x), Q = C(x) \ {0}):
fU (x) �uQ fU (x0).

We establish that the upper set less relation is suitable for a risk-averse decision maker,
since robust solutions are not dominated by other elements with respect to their upper
bounds. Hence, there are no solutions whose worst cases are smaller with respect to an
ordering set than the worst cases of said robust solution.
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Below we provide a motivating example for the choice of the ordering cones in Defini-
tion 2.2 in the context of portfolio optimization, where the data describing the returns and
risks are uncertain.

Example 2.1 (Portfolio Optimization). A shareholder would like to invest in a portfolio
consisting of n shares that maximizes his wins and minimizes the risk associated with the
shares at the same time. Let x = (x1, . . . , xn)T be the vector of shares and r = (r1, . . . , rn)T

be the vector of returns of the respective shares. The return of the whole portfolio is
then rp := 〈r, x〉 = rT · x. Of course, the return vector r is subject to uncertainties such
that r is a vector of random variables, such that we write µ := E(r) (here E(·) denotes
the expected values of r) and µi := E(ri), i = 1, 2, . . . , n. The covariance matrix that

represents the risk is denoted by D =

d11 · · · d1n

...
. . .

...
d1n · · · dnn

, which is assumed to be positive

definite. The entries in the covariance matrix C can be computed by means of dij =
E[(ri − E(ri)) · (rj − E(rj))] for i, j = 1, 2, . . . , n. The values in the main diagonal of D
are the variances of the respective shares. The risk of a portfolio x can then be described
by xT · D · x. Moreover, it is assumed that no short sales are allowed, i.e., xi ≥ 0, i =

1, 2, . . . , n, and all the available capital shall be used and normed to one, i.e.,
n∑
i=1

xi = 1.

Now, the goal is to minimize the risk and maximize the returns simultaneously. Both
objectives are contradictory, because higher returns are usually accompanied by higher
risk. As is described in Fliege and Werner [10], the vector µ and the covariance matrix D
are themselves perturbed by uncertainty, namely, by the given distribution function. In
case that the probability distribution on the returns ri is not (or just partly) known, we
can assume that both µ as well as D depend additionally on some uncertain parameter ξ
which is assumed to belong to a so-called uncertainty set U . Then, we suppose that µ :
U → R and D : U → Rn,n. Consequently, we obtain the following uncertain optimization
problem for ξ ∈ U

min
x∈K

(
f1(x, ξ), f2(x, ξ)

)T
,(2.2)

with f1(x, ξ) := −µ(ξ)T · x, f2(x, ξ) := xT · D(ξ) · x, and K := {x ∈ Rn : xi ≥ 0, i =
1, 2, . . . , n,

∑n
i=1 xi = 1}, where U denotes the set of possible values of the uncertain

vector ξ. If the decision-maker would like to follow a robust approach, all possible returns
and risk outcomes can be allocated in a set fU (x) := {(f1(x, ξ), f2(x, ξ))T | ξ ∈ U}. The
selection of the ordering cone C(x) in the notion of robust minimal solutions can be an
indicator for the relevance of the particular solution x. For example, if a solution x is
known to be less relevant for the decision-maker, then the corresponding coneC(x) can be
chosen large enough, while more desired solutions can be equipped with a smaller cone.
In that sense, C(x) can be chosen to model the importance of each x. Therefore, possible
portfolios can be ranked by a decision maker according to their preference. Given a finite
number of portfolios x1, . . . , xm, a decision-maker ranks these portfolios such that, after
re-numbering, x1 4 . . . 4 xm, where 4 denotes a preference relation. Then the variable
domination structure should be chosen such that C(xm) ⊆ . . . ⊆ C(x1), then portfolios
with a higher ranking are equipped with a smaller ordering cone.

Since the involved data µ and C are assumed to be uncertain, it seems likely that there
exist undesired elements in the objective space that are located far from where most un-
certain data is found. If there exists such an element f(x, ξ̃) belonging to the set fU (x)
as illustrated in Figure 2 and the standard fixed ordering cone R2

+ is used, then another
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solution x might become robust nondominated, although most of the data is located worse
than x, due to single elements or “outliers”. Clearly, the portfolio x is the preferred solu-
tion, and the portfolio x should not be considered. When one uses a variable domination
structure, the coneC(x) which is associated with a set fU (x) could be adapted accordingly
to deal which such a situation. If real-world data is available, problem (2.2) can be solved
by using Algorithms 1 and 2.

−µ(ξ)T · x

xT ·D(ξ) · x

fU (x)

fU (x)
fU (x) − C(x)

f(x, ξ̃)

FIGURE 2. If isolated elements exists that are located far from where most
data is found, minimality of other elements, which otherwise would be
considered “worse”, is affected (see Example 2.1). Such a situation can be
resolved using variable domination structures.

3. MAIN RESULTS

In this section, we provide some scalarizing methods for finding strictly (weakly, ·,
respectively) robust minimal / nondominated solutions of the uncertain problem P (U).
Recall that the dual cone of a cone C is defined by C∗ := {y∗ ∈ Y ∗| ∀y ∈ C : y∗(y) ≥ 0},
where Y ∗ denotes the dual space of Y . The quasi-interior of C∗ is given as C# := {y∗ ∈
Y ∗| ∀y ∈ C \ {0} : y∗(y) > 0}. For fixed x ∈ X , we denote the dual cone of C(x)
by C∗(x), and the quasi-interior of C∗(x) is written as C#(x). Furthermore, we define
C
∗

:= ∩x∈XC∗(x) and C
#

:= ∩x∈XC#(x).

Theorem 3.1. Consider the minimization problem

(PUy∗ ) min
x∈X

sup
ξ∈U

y∗(f(x, ξ))

for some y∗ ∈ Y ∗\{0}. The following statements hold.
(a) If x0 ∈ X is the unique optimal solution of (PUy∗) with y∗ ∈ C∗(x0)\{0}, then x0 is

strictly robust minimal.
(b) If x0 ∈ X is an optimal solution of (PUy∗) with y∗ ∈ C∗(x0)\{0} and maxξ∈U y

∗(f(x, ξ))
exists for y∗ ∈ C∗(x0) \ {0} and each x ∈ X , then x0 is weakly robust minimal.

(c) If x0 ∈ X is an optimal solution of (PUy∗) with y∗ ∈ C#(x0) and maxξ∈U y∗(f(x, ξ))
exists for each x ∈ X with y∗ ∈ C#(x0), then x0 is robust minimal.

(d) If x0 ∈ X is the unique optimal solution of (PUy∗) with y∗ ∈ C∗\{0}, then x0 is strictly
robust nondominated and strictly robust minimal.

(e) If x0 ∈ X is an optimal solution of (PUy∗) with y∗ ∈ C∗ \ {0} and maxξ∈U y∗(f(x, ξ))

exists for y∗ ∈ C
∗ \ {0} and each x ∈ X , then x0 is weakly robust nondominated and

weakly robust minimal.
(f) If x0 ∈ X is an optimal solution of (PUy∗) with y∗ ∈ C#

and maxξ∈U y
∗(f(x, ξ)) exists

for each x ∈ X with y∗ ∈ C#
, then x0 is robust nondominated and robust minimal.
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Proof. We first show assertions (a)–(c). Suppose that x0 ∈ X is not strictly (weakly, · ,
respectively) robust minimal. Consequently, there exists x ∈ X \ {x0} such that fU (x) �uQ
fU (x0), which is equivalent to fU (x) ⊆ fU (x0) − Q, where Q = C(x0) (Q = intC(x0),
Q = C(x0) \ {0}, respectively). This implies

∀ξ ∈ U ∃η ∈ U : f(x, ξ) ∈ f(x0, η)−Q.

Due to the definition of the dual cone C∗(x0) and the quasi-interior of C∗(x0), we obtain
for y∗ ∈ C∗(x0) (y∗ ∈ C∗(x0) \ {0}, y∗ ∈ C#(x0), respectively)

y∗(f(x, ξ)) [≤ / < / <] y∗(f(x0, η(ξ)))

for every ξ ∈ U . We arrive at

(3.3) sup
ξ∈U

y∗(f(x, ξ)) [≤ / < / <] sup
ξ∈U

y∗(f(x0, η(ξ))) ≤ sup
η∈U

y∗(f(x0, η).

Note that the strict inequalities in (3.3) hold because the existence of maxξ∈U y∗(f(x, ξ))
was assumed. But this is a contradiction to the assumption. The assertions (d)–(f) can be
proven in a similar manner, bearing in mind that y∗ ∈ C∗\{0} implies that y∗ ∈ C∗(x)\{0}
for every x ∈ X , and in particular for x = x0. �

At this point it is interesting to investigate whether it is possible to provide assumptions
that ensure the inverse direction in Theorem 3.1 to hold true. To this end, we follow an
approach by Jahn [14, Lemma 2.1], which we adapt to a variable domination setting.

Theorem 3.2. Consider the minimization problem (PUy∗ ), and assume that the objective space
Y is locally convex. Suppose that x0 is strictly robust minimal and that the set fU (x0) − C(x0)
is closed and convex. Then there does not exist an element x ∈ X \ {x0} such that for every
y∗ ∈ C∗(x0)

sup
ξ∈U

y∗(f(x, ξ)) ≤ sup
ξ∈U

y∗(f(x0, ξ)).

Proof. Assume that x0 ∈ X is strictly robust minimal. This is equivalent to

@x ∈ X \ {x0} : fU (x) ⊆ fU (x0)− C(x0)

⇐⇒ ∀x ∈ X \ {x0} : fU (x) * fU (x0)− C(x0)

⇐⇒ ∀x ∈ X \ {x0} : ∃ξx ∈ U : f(x, ξx) /∈ fU (x0)− C(x0).

Since fU (x0) − C(x0) is closed and convex, we use a classical separation argument (see,
for example, [13, Theorem 3.18.]) such that we get

∀x ∈ X \ {x0} ∃ξx ∈ U , ∃y∗ ∈ Y ∗ \ {0}, α ∈ R :

y∗(f(x, ξx)) > α ≥ y∗(y) ∀y ∈ fU (x0)− C(x0),(3.4)

and this yields

∀x ∈ X \ {x0} ∃y∗ ∈ Y ∗ \ {0}, α ∈ R : sup
ξ∈U

y∗(f(x, ξ)) > α ≥ sup
y∈fU (x0)−C(x0)

y∗(y).

Furthermore,

sup
y∈fU (x0)−C(x0)

y∗(y) = sup
ξ∈U

y∗(f(x0, ξ)) + sup
c∈−C(x0)

y∗(c) = sup
ξ∈U

y∗(f(x0, ξ)).

To show that y∗ ∈ C∗(x0), suppose that y∗ /∈ C∗(x0), which means that there are c ∈ C(x0)
such that y∗(c) < 0. With (3.4), we obtain for any ξ ∈ U , c ∈ C(x0) and some λ ≥ 0

α ≥ y∗(f(x0, ξ)− λc) = y∗(f(x, ξ))− λy∗(c) λ→+∞→ +∞,
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a contradiction. Altogether, we conclude with

∀x ∈ X \ {x0} ∃y∗ ∈ C∗(x0) : sup
ξ∈U

y∗(f(x, ξ)) > sup
ξ∈U

y∗(f(x0, ξ)),

which is equivalent to

@ x ∈ X \ {x0} ∀y∗ ∈ C∗(x0) : sup
ξ∈U

y∗(f(x, ξ)) ≤ sup
ξ∈U

y∗(f(x0, ξ)).

�

For the following theorem, we define C := ∩x∈XC(x), and the dual cone of C will be
denoted by (C)∗ (as opposed to C

∗
, which was the intersection of all dual cones C∗(x),

x ∈ X , in Theorem 3.1). We skip the proof of the following result, as it can be derived
similarly to the proof the Theorem 3.2.

Theorem 3.3. Consider the minimization problem (PUy∗ ), and assume that the objective space
Y is locally convex. Suppose that x0 is strictly robust nondominated and that the set fU (x0)− C
is closed and convex. Then there does not exist an element x ∈ X \ {x0} such that for every
y∗ ∈ (C)∗

sup
ξ∈U

y∗(f(x, ξ)) ≤ sup
ξ∈U

y∗(f(x0, ξ)).

Using the above scalarization results, we are now able to formulate a first algorithm
for finding strictly (·, weakly) robust minimal and nondominated solutions of P (U). In
the following, we assume that

⋂
x∈X C

∗(x) 6= {0}. For brevity, solutions that are strictly
(weakly, ·) robust minimal and nondominated will be called strictly (weakly, ·) robust.

Algorithm 1 for deriving strictly (weakly, ·) robust solutions to P (U)

Input: Uncertain multiobjective problem P (U), solution sets OptC = Optint C =
OptC\{0} = ∅.

Step 1: Compute the set C :=
⋂
x∈X C

∗(x). Set C := C \{0}. Denote C
#

= ∩x∈XC#.
Step 2: If C = ∅: STOP. Output: Set of strictly robust solutions OptC , set of weakly

robust solutions Optint C , set of robust solutions OptC\{0}.
Step 3: Choose y∗ ∈ C. Set C := C \ {y∗}.
Step 4: Find an optimal solution x0 of (PUy∗).

a): If x0 is a unique optimal solution of (PUy∗), then

OptC := OptC ∪ {x
0}.

b): If maxξ∈U y∗ ◦ f(x, ξ) exists for all x ∈ X , then

Optint C := Optint C ∪ {x
0}.

c): If maxξ∈U y∗ ◦ f(x, ξ) exists for all x ∈ X and y∗ ∈ C#
, then

OptC\{0} := OptC\{0} ∪ {x
0}.

Step 5: Go to Step 2.
A sufficient condition for the existence of an optimal solution of (PUy∗) in Step 4 of the

preceding algorithm is given by the theorem of Weierstrass: If U is compact and f(x, ·)
is continuous in ξ ∈ U , then an optimal solution of (PUy∗) exists. Furthermore, we pre-
sent an interactive algorithm for finding a single robust minimal solution to the uncertain
multiobjective optimization problem P (U). This algorithm uses the input of the decision
maker, who either accepts the calculated solution or not. In the interactive procedure in
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Algorithm 2 we use a surrogate one-parametric optimization problem. Therefore, a syste-
matic generation of solutions is possible.

Algorithm 2 for deriving a single accepted strictly (weakly, ·) robust solution to P (U):
Input: Uncertain multiobjective problem P (U).
Step 1: Compute the set C :=

⋂
x∈X C

∗(x). Set C := C \{0}. Denote C
#

= ∩x∈XC#.
Step 2: Choose y∗ ∈ C.
Step 3: Find an optimal solution x0 to (PUy∗).

a): If x0 is a unique optimal solution of (PUy∗), then x0 is strictly robust robust
for P (U).

b): If maxξ∈U y∗ ◦ f(x, ξ) exists for all x ∈ X , then x0 is weakly robust for P (U).
c): If maxξ∈U y∗ ◦ f(x, ξ) exists for all x ∈ X and y∗ ∈ C#

, then x0 is robust for
P (U).

If x0 is accepted by the decision-maker: STOP. Output: x0. Otherwise, go to
Step 4.

Step 4: Set l := 0, t0 := 0. Choose ŷ∗ ∈ C, such that ȳ∗ 6= y∗. Go to Step 5.
Step 5: Choose tl+1 with 0 ≤ tl < tl+1 ≤ 1 and compute an optimal solution xl+1 to

(P (U)ŷj+tl+1(ŷj+1−yj)) min
x∈X

sup
ξ∈U

(
ŷj + tl+1(ŷj+1 − yj)

)
◦ f(x, ξ).

Let y∗ = ŷj + tl+1(ŷj+1 − yj).
a): If xl+1 is a unique optimal solution of (PUy∗), then x0 is strictly robust robust

for P (U).
b): If maxξ∈U y∗ ◦ f(x, ξ) exists for all x ∈ X , then xl+1 is weakly robust for
P (U).

c): If maxξ∈U y∗ ◦ f(x, ξ) exists for all x ∈ X and y∗ ∈ C#
, then xl+1 is robust

for P (U).
If no optimal solution to (P (U)ȳj+tl+1(ȳj+1−ȳj)) can be found for all t > tl, go to
Step 2. Otherwise, go to Step 6.

Step 6: If xl+1 is accepted by the decision maker: STOP. Output: xl+1. Otherwise,
go to Step 7.

Step 7: If tl+1 = 1, then set l := l + 1 and go to Step 4. Otherwise, set l := l + 1 and
go to Step 5.

4. CONCLUSIONS

This paper explores robust approaches to uncertain vector-valued optimization pro-
blems, where the ordering is equipped with a variable domination structure. In robust
optimization, one traditionally hedges against perturbations in the worst-case scenarios.
Robust solutions are then immunized against perturbations, and thus this approach is
applicable if a decision maker acts risk averse. In uncertain vector optimization, this si-
tuation can be modeled by using the upper set less relation. By allowing the domination
structure to vary depending on the risk-averseness of the practitioner, it is now possi-
ble to fully model his / her preferences in order to obtain robust solutions. This paper
introduces this concept, gives some scalarization results along with new numerical algo-
rithms that generate robust solutions. Our work leaves many avenues for future research.
For instance, a deeper analysis of our proposed algorithms for finding robust solutions
of uncertain vector optimization problems with variable domination structures is neces-
sary. Moreover, it would be interesting to investigate different set relations in relation
with robustness in vector optimization with variable domination structures.
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[11] Ide, J., and Köbis, E., Concepts of efficiency for uncertain multi-objective optimization problems based on set order
relations, Math. Method Oper. Res., 80 (2014), No. 1, 99–127
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[15] E. Köbis. Set optimization by means of variable order relations, Optimization, DOI:

10.1080/02331934.2016.1172226, (2016)
[16] Kuroiwa, D., Some duality theorems of set-valued optimization with natural criteria, In Proceedings of the

International Conference on Nonlinear Analysis and Convex Analysis. World Scientific, 221-228, 1999
[17] Kuroiwa, D., The natural criteria in set-valued optimization, Sūrikaisekikenkyūsho Kōkyūroku, (1031):85–90,
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