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A forward-backward iterative method for zero points of
sum of two accretive operators

XIAOLONG QIN1, QAMRUL HASAN ANSARI2,3 and JEN-CHIH YAO4

ABSTRACT. In this paper, we study a zero point problem of the sum of two accretive operators based on
a viscosity forward-backward iterative algorithm with computational errors. Strong convergence results are
established in the framework of q-uniformly smooth Banach spaces. We also apply the strong convergence
results to solve variational inequality problems, convex minimization problems and fixed point problems.

1. INTRODUCTION

Fixed point theory of nonexpansive mappings has been applied to the variational in-
clusion problem of finding a point z ∈ H such that 0 ∈ Az, where H is a Hilbert space and
A : H → 2H is a maximal monotone operator. One of the most popular techniques for sol-
ving the inclusion problems goes back to the work of Browder [3]. The basic idea is to
reduce the above inclusion problem to a fixed point problem of the resolvent operator
JA

r := (I + rA)−1 : H → 2H , where r is a positive real number. If A has some monotonicity
condition, then the resolvent of A is firmly nonexpnsive, that is,

〈JA
r x− JA

r y,x− y〉 ≥ ‖JA
r x− JA

r y‖2, ∀x,y ∈ H.

The property of the resolvent ensures that the Picard iterative algorithm xn+1 = JA
r xn, con-

verges weakly to a fixed point of JA
r , which is necessarily a zero point of A.

Rockafellar [14] introduced the following proximal point algorithm: For any initial
point x0 ∈ H, a sequence {xn} is generated by

xn+1 = JA
rn(xn + en), ∀n≥ 0,

where {rn} is a sequence of positive real numbers and {en} is an error sequence in H. He
proved the weak convergence of sequence {xn} under appropriate restrictions imposed
on {rn}. To find the strong convergence, Bruck [5] proposed the following algorithm:
For any initial point x0 ∈ H and fixed point u ∈ H, xn+1 = JA

rnu, ∀n ≥ 0. He proved the
strong convergence of sequence {xn} under appropriate restrictions imposed on {rn}. In
the case of A = S+T , where S and T are monotone operators, splitting algorithms have
recently been investigated for solving the inclusion problem; see [2, 6, 9, 11, 17] and the
references therein. These algorithms in the framework of Hilbert spaces are based on
the good properties of resolvent operators, but these properties are not available in the
framework of general Banach spaces; see, for example, [13] and the references therein.

In this paper, we are interested in finding iteratively a zero point x∗ of the sum of two
accretive operators A and B, that is,

(1.1) x∗ ∈ (A+B)−1(0).
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This inclusion problem, which includes variational inequality problems, equilibrium pro-
blems, complementary problems, minimization problems, fixed point problems as special
cases, is quite general. Indeed, many nonlinear problems arising in applied areas such as
signal processing, image recovery, and machine learning can be mathematically modeled
as (1.1); see [7] and the references therein.

In this paper, we propose a viscosity forward-backward iterative algorithm with com-
putational errors for zero points of the sum of two accretive operators. Strong conver-
gence of the proposed algorithm is obtained in the framework of q-uniformly smooth
Banach spaces. The organization of this paper is as follows. In Section 2, we provide
some necessary mathematical preliminaries. In Section 3, the main strong convergence
theorems are established in the framework of q-uniformly smooth Banach spaces without
any compact restriction. Numerical experiments are also provided to support the main
results.

2. PRELIMINARIES

Throughout the paper, unless otherwise specified, we always assume that E is a Banach
space with its dual E∗. Let Jq : E→ 2E∗ be the generalized duality mapping defined by

Jq(x) :=
{

y ∈ E∗ : ‖y‖= ‖x‖q−1, 〈y,x〉= ‖x‖q} , ∀x ∈ E.

Let εE : [0,∞)→ [0,∞) be defined by

ε
E(t) = sup

{
‖x+ y‖−‖x− y‖−2

2
: t ≥ ‖y‖, ‖x‖= 1

}
.

Then εE is said to be modulus of smoothness of E. Let q> 1 be some real number. E is said
to be q-uniformly smooth if there exists a fixed constant κ > 0 such that εE(t) ≤ κtq. If E
is q-uniformly smooth, then q≤ 2 and E is uniformly smooth; see [16] and the references
therein.

A mapping T : E→E is said to be nonexpansive if ‖T x−Ty‖≤ ‖x−y‖, ∀x,y∈E. Let D be
a nonempty subset of set C. A mapping QD : C→D is said to be a contraction if Q2

D =QD. It
is called sunny if for each x∈C and t ∈ (0,1), we have QDx=QD

(
tx+(1−t)QDx

)
. QD is said

to be a sunny nonexpansive retractction if QD is sunny, nonexpansive and a contraction.
D is said to be a nonexpansive retract of C if there exists a nonexpansive retraction from C
onto D. It is known that QC is sunny nonexpansive if and only if 〈x−QCx,Jq(y−QCx)〉 ≤ 0,
∀x ∈ E, y ∈C.

From now onward, we always assume that E is a q-uniformly smooth Banach space.
Let I denote the identity operator on E. An operator A ⊂ E×E with range R(A) = ∪{Az :
z ∈ D(A)} and domain D(A) = {z ∈ E : Az 6= /0} is said to be accretive if for each xi ∈ D(A)
and yi ∈ Axi, i = 1,2, such that 〈y1− y2,Jq(x1− x2)〉 ≥ 0. An accretive operator A is said
to be m-accretive if and only if R(I + rA) = E for all r > 0. In a real Hilbert space, an
operator A is m-accretive if and only if A is maximal monotone. Throughout this paper,
we denote by A−1(0) the set of zero points of A. For an m-accretive operator A, we can
define a nonexpansive single-valued mapping JA

r : R(I+ rA)→ D(A) by JA
r = (I+ rA)−1 for

each r > 0, which is called the resolvent of A. An operator A : C→ E is said to be α-inverse
strongly accretive if there exists a constant α > 0 such that

〈Ax−Ay,Jq(x− y)〉 ≥ α‖Ax−Ay‖q, ∀x,y ∈C.

In addition, we also need the following lemmas which play an important role in this
paper.
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Lemma 2.1. [16] Let E be a q-uniformly smooth Banach space. Then

q〈y,Jq(x)〉+‖x‖q +Kq‖y‖q ≥ ‖x+ y‖q, ∀x,y ∈ E,

where Kq is some fixed positive real constant.

Lemma 2.2. [8] Let {an} be a sequence of nonnegative real numbers such that

an+1 ≤ (1− tn)an +bn + cn, ∀n≥ 0,

where {cn} is a sequence of nonnegative real numbers, {tn} ⊂ (0,1) and {bn} is a sequence of real
numbers. Assume that

(a) limsupn→∞

bn
tn
≤ 0 and ∑

∞
n=0 tn = ∞.

(b) ∑
∞
n=0 cn < ∞.

Then limn→∞ an = 0.

Lemma 2.3. [1] Let E be a Banach space and let A be an m-accretive operator on E. For µ1 > 0,
µ2 > 0 and x ∈ E, we have

Jµ1

((
1− µ1

µ2

)
Jµ2x+

µ1

µ2
x
)
= Jµ2x,

where JA
µ2

= (I +µ2A)−1 and JA
µ1

= (I +µ1A)−1.

Lemma 2.4. [12] Let E be a real uniformly smooth Banach space, C be a nonempty convex closed
subset of E, T : C→C be a nonexpansive mapping with a nonempty fixed point set and f : C→C
be a contractive mapping. For each t ∈ (0,1), let xt be the unique solution of equation t f (x)+(1−
t)T x = x. Then {xt} converges in norm to a fixed point QF(T ) f (x̄) = x̄, where QF(T ) is the unique
sunny nonexpansive retraction from C onto F(T ), as t→ 0.

Lemma 2.5. [10] For a real number κ > 1, we have

aκ
1 +(κ−1)a

κ
κ−1
2 ≥ a1a2κ,

for arbitrary positive real numbers a1 and a2.

Lemma 2.6. Let E be a Banach space, C be a nonempty convex and closed subset of E, B : E→ 2E

be an m-accretive operator and A : C→ E be a single valued operator. Then

(A+B)−1(0) = F(JA
a (I−aA)),

where JA
a (I−aA) is the resolvent of A for a > 0.

Proof. Notice that

r ∈ (A+B)−1(0) ⇔ r−aAr ∈ r+aBr ⇔ r ∈ F(JA
a (I−aA)).

This completes the proof. �

3. MAIN RESULTS

Now, we are in a position to give the main results of this paper.

Theorem 3.1. Let E be a q-uniformly smooth Banach space with the constant Kq and C be a
nonempty convex closed subset of E. Let B : E→ 2E be an m-accretive operator such that D(B)⊂C
and A : C→ E be an α-inverse strongly accretive operator. Assume that (A+B)−1(0) 6= /0. Let
f : C→C be a κ-contraction mapping. Let {rn} be a positive number sequence and {αn} be a real
number sequence in (0,1). Let JB

rn = (I+ rnB)−1 and {en} be an error sequence in E. Let x0 ∈C be
an arbitrary initial and {xn} be a sequence generated by

xn+1 = JB
rn(yn− rnAyn + en),
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where yn = (1−αn)xn +αn f (xn), n ≥ 0. Assume that {αn}, {en} and {rn} satisfy the following
conditions:

(a) ∑
∞
n=0 αn = ∞, ∑

∞
n=1 |αn−αn−1|< ∞ and limn→∞ αn = 0.

(b) 0 < a≤ rn ≤ b <
(

qα

Kq

) 1
q−1 and ∑

∞
n=1 |rn− rn−1|< ∞, where a and b are two constants.

(c) ∑
∞
n=0 ‖en‖< ∞.

Then {xn} converges strongly to x̄ = Pro j(A+B)−1(0) f (x̄), where Pro j(A+B)−1(0) is the unique sunny
nonexpansive retraction of C onto (A+B)−1(0).

Proof. First, we show that the sequence I−rnA is nonexpansive. In view of Lemma 2.1, we
find that

‖(I− rnA)x− (I− rnA)y‖q

≤ ‖x− y‖q +Kqrq
n‖Ax−Ay‖q−qrn〈Ax−Ay,Jq(x− y)〉

≤ ‖x− y‖q +Kqrq
n‖Ax−Ay‖q−qrnα‖Ax−Ay‖q

= ‖x− y‖q− (αq−Kqrq−1
n )rn‖Ax−Ay‖q, ∀x,y ∈C.

By assumption (b), I− rnA is nonexpansive. Fix p ∈ (A+B)−1(0), we find that

‖yn− p‖ ≤ (1−αn)‖xn− p‖+αn‖ f (xn)− p‖
≤ αn‖ f (p)− p‖+

(
1−αn(1−κ)

)
‖xn− p‖.

It follows that

‖xn+1− p‖ ≤ ‖(yn− rnAyn + en)− p‖
≤ ‖en‖+‖(I− rnA)p− (I− rnA)yn‖
≤ ‖en‖+αn‖ f (p)− p‖+

(
1−αn(1−κ)

)
‖xn− p‖

≤ ‖en‖+max
{
‖ f (p)− p‖

1−κ
+‖xn− p‖

}
≤ ‖en−1‖+‖en‖+max

{
‖p− f (p)‖

1−κ
,‖xn−1− p‖

}
...

≤
n

∑
i=0
‖ei‖+max

{
‖p− f (p)‖

1−κ
,‖x0− p‖

}
≤

∞

∑
i=0
‖ei‖+max

{
‖p− f (p)‖

1−κ
,‖x0− p‖

}
< ∞.

This proves that the sequence {xn} is a bounded sequence, so is {yn}. Notice that

‖yn− yn−1‖ ≤ |αn−αn−1|‖ f (xn−1)− xn−1‖+
(
1−αn(1−κ)

)
‖xn− xn−1‖.

Putting zn = yn− rnAyn + en, we find that

‖zn− zn−1‖ ≤ ‖en‖+‖en−1‖+‖yn− yn−1‖+‖rn− rn−1‖‖Ayn−1‖
≤ ‖en‖+‖en−1‖+

(
1−αn(1−κ)

)
‖xn− xn−1‖+ |αn−αn−1|‖ f (xn−1)− xn−1‖

+ |rn− rn−1|‖Ayn−1‖.
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It follows from Lemma 2.3 that

‖xn+1− xn‖=
∥∥∥∥Jrn−1

(
rn−1

rn
zn +

(
1− rn−1

rn

)
Jrnzn

)
− Jrn−1zn−1

∥∥∥∥
≤
∥∥∥∥(1− rn−1

rn

)
(Jrnzn− zn−1)+

rn−1

rn
(zn− zn−1)

∥∥∥∥
≤
∥∥∥∥(zn− zn−1)+

(
1− rn−1

rn

)
(Jrnzn− zn)

∥∥∥∥
≤ |rn− rn−1|

a
‖Jrnzn− zn‖+‖zn− zn−1‖

≤ fn +
(
1−αn(1−κ)

)
‖xn− xn−1‖,

where

fn = |αn−αn−1|‖xn−1− f (xn−1)‖+ |rn− rn−1|

(
‖Ayn−1‖+

‖zn− JB
rnzn‖

a

)
+‖en‖+‖en−1‖.

It follows from (a), (b) and (c) that ∑
∞
n=1 fn < ∞. From Lemma 2.2, we have limn→∞ ‖xn+1−

xn‖= 0. In view of yn−xn =αn( f (xn)−xn), we find from the above that limn→∞ ‖yn−xn‖= 0.
Hence

(3.2) lim
n→∞
‖yn− xn+1‖= 0.

Notice that
‖JB

rn(yn− rnAyn)− yn‖ ≤ ‖JB
rn(yn− rnAyn)− JB

rn(yn− rnAyn + en)‖+‖xn+1− yn‖
≤ ‖en‖+‖xn+1− yn‖.

This implies from (3.2) that

(3.3) lim
n→∞
‖yn− JB

rn(yn− rnAyn)‖= 0.

Notice that〈yn− JB
a (I−aA)yn

a
−

yn− JB
rn(I− rnA)yn

rn
,Jq
(
JB

a (I−aA)yn− JB
rn(I− rnA)yn

)〉
≥ 0.

Hence, we find that

‖JB
a (I−aA)yn− JB

rn(I− rnA)yn‖q

≤ rn−a
rn

〈
yn− JB

rn(I− rnA)yn,Jq
(
JB

a (I−aA)yn− Jrn(I− rnA)yn
)〉

≤ ‖yn− JB
rn(I− rnA)yn‖‖JB

a (I−aA)yn− JB
rn(I− rnA)yn‖q−1.

This implies that

‖JB
a (I−aA)yn− JB

rn(I− rnA)yn‖ ≤ ‖yn− JB
rn(I− rnA)yn‖.

It follows that
‖JB

a (I−aA)yn− yn‖ ≤ ‖JB
a (I−aA)yn− Jrn(I− rnA)yn‖+‖JB

rn(I− rnA)yn− yn‖
≤ 2‖JB

rn(I− rnA)yn− yn‖.

From (3.3), we have

(3.4) lim
n→∞
‖JB

a (yn−aAyn)− yn‖= 0.

Notice that JB
a (I− aA) is a nonexpansive mapping. Put x̄ = limt→0 xt , where xt solves the

fixed point equation xt = (1− t)JB
a (I− aA)xt + t f (xt), ∀t ∈ (0,1). Furthermore, one has x̄ =
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Pro j(A+B)−1(0) f (x̄), where Pro j(A+B)−1(0) is the unique sunny nonexpansive retraction of C
onto zero point (A+B)−1(0).

Now, we are in a position to claim that limsupn→∞〈 f (x̄)− x̄,Jq(yn− x̄)〉 ≤ 0. It follows
that

‖xt − yn‖q ≤ t〈 f (xt)− yn,Jq(xt − yn)〉+(1− t)〈JB
a (I−aA)xt − yn,Jq(xt − yn)〉

≤ t〈 f (xt)− xt ,Jq(xt − yn)〉+ t〈xt − yn,Jq(xt − yn)〉
+(1− t)

(
〈JB

a (I−aA)xt − JB
a (I−aA)yn,Jq(xt − yn)〉+ 〈JB

a (I−aA)yn− yn,Jq(xt − yn)〉
)

≤ t〈 f (xt)− xt ,Jq(xt − yn)〉+‖xt − yn‖q +(1− t)‖JB
a (I−aA)yn− yn‖‖xt − yn‖q−1,

which implies that

t〈 f (xt)− xt ,Jq(yn− xt)〉 ≤ ‖JB
a (I−aA)yn− yn‖‖xt − yn‖q−1.

Fixing t and letting n→ ∞, we find from (3.4) that

limsup
n→∞

〈 f (xt)− xt ,Jq(yn− xt)〉 ≤ 0.

Since Jq : E → E∗ is uniformly continuous on any bounded sets of E, which ensures that
limits limsupn→∞ and limsupt→0 are interchangeable, we find that

(3.5) limsup
n→∞

〈 f (x̄)− x̄,Jq(yn− x̄)〉 ≤ 0.

Finally, we prove xn→ x̄ as n→ ∞. In view of Lemma 2.5, we find that

‖yn− x̄‖q ≤ (1−αn)〈xn− x̄,Jq(yn− x̄)〉+αn〈 f (xn)− x̄,Jq(yn− x̄)〉
= αn〈 f (xn)− f (x̄),Jq(yn− x̄)〉+(1−αn)〈xn− x̄,Jq(yn− x̄)〉+αn〈 f (x̄)− x̄,Jq(yn− x̄)〉

≤ αn〈 f (x̄)− x̄,Jq(yn− x̄)〉+
(
1−αn(1−κ)

)
‖xn− x̄‖‖yn− x̄‖q−1

≤
(
1−αn(1−κ)

)(1
q
‖xn− x̄‖q +

q−1
q
‖yn− x̄‖q

)
+αn〈 f (x̄)− x̄,Jq(yn− x̄)〉.

This implies that

(3.6) ‖yn− x̄‖q ≤ qαn〈 f (x̄)− x̄,Jq(yn− x̄)〉+
(
1−αn(1−κ)

)
‖xn− x̄‖q.

It also follows from Lemma 2.5 that

‖xn+1− x̄‖q ≤ ‖Jrn(yn− rnAyn + en)− x̄‖‖xn+1− x̄‖q−1

≤ ‖(I− rnA)yn− (I− rnA)x̄+ en‖‖xn+1− x̄‖q−1

≤ ‖en‖‖xn+1− x̄‖q−1 +‖yn− x̄‖‖xn+1− x̄‖q−1

≤ ‖en‖‖xn+1− x̄‖q−1 +
1
q
‖yn− x̄‖q +

q−1
q
‖xn+1− x̄‖q.

This implies from (3.6) that

‖xn+1− x̄‖q ≤ ‖yn− x̄‖q +q‖en‖‖xn+1− x̄‖q−1

≤
(
1−αn(1−κ)

)
‖xn− x̄‖q +qαn〈 f (x̄)− x̄,Jq(yn− x̄)〉+q‖en‖‖xn+1− x̄‖q−1.

By using Lemma 2.2, we find that {xn} converges strongly to x̄. �

From Theorem 3.1, we have the following result on a finite family of inverse strongly
accretive operators.
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Corollary 3.1. Let E be a q-uniformly smooth Banach space with the constant Kq and let C be
a nonempty closed and convex subset of E. Let µ ≥ 1 be some positive integer and Ai : C→ E
be an λi-inverse strongly accretive operator, for each 1 ≤ i ≤ µ . Let B : E → 2E be an m-accretive
operator such that D(B)⊂C. Assume that (∑µ

i=1 Ai+B)−1(0) 6= /0. Let f :C→C be a κ-contraction
mapping. Let {rn} be a positive number sequence and {αn} be a real number sequence in (0,1).
Let JB

rn = (I+ rnB)−1 and let {en} be an error sequence in E. Let x0 ∈C be an arbitrary initial and
{xn} be a sequence generated by

xn+1 = JB
rn

(
yn− rn

µ

∑
i=1

Aiyn + en

)
,

where yn = (1−αn)xn +αn f (xn), ∀n≥ 0. Assume that {αn}, {en} and {rn} satisfy the following
conditions:

(a) ∑
∞
n=0 αn = ∞, ∑

∞
n=1 |αn−αn−1|< ∞ and limn→∞ αn = 0.

(b) 0< a≤ rn≤ b<
(

q∑
µ

i=1 λi
Kq

) 1
q−1

and ∑
∞
n=1 |rn−rn−1|<∞, where a and b are two constants.

(c) ∑
∞
n=0 ‖en‖< ∞.

Then {xn} converges strongly to x̄ = Pro j(∑µ

i=1 Ai+B)−1(0) f (x̄), where Pro j(∑µ

i=1 Ai+B)−1(0) is the uni-

que sunny nonexpansive retraction of C onto (∑
µ

i=1 Ai +B)−1(0).

Proof. Notice that ∑
µ

i=1 Ai : C→ E is ∑
µ

i=1 λi-inverse strongly accretive. Indeed,〈
µ

∑
i=1

Aix−
µ

∑
i=1

Aiy,Jq(x− y)

〉
= 〈A1x−A1y,Jq(x− y)〉+ 〈A2x−A2y,Jq(x− y)〉+ · · ·+ 〈Aµ x−Aµ y,Jq(x− y)〉
≥ λ1‖x− y‖q +λ2‖x− y‖q + · · ·+λµ‖x− y‖q

≥
µ

∑
i=1

λi‖x− y‖q, ∀x,y ∈C.

We can get the desired conclusion from Theorem 3.1 easily. �

Next, we give a result on zero points of an m-accretive operator.

Corollary 3.2. Let E be a q-uniformly smooth Banach space with the constant Kq and let C be a
nonempty convex closed subset of E. Let B : E → 2E be an m-accretive operator with a nonempty
zero point set such that D(B)⊂C. Let f : C→C be a κ-contraction mapping. Let {rn} be a positive
number sequence and {αn} be a real number sequence in (0,1). Let JB

rn = (I + rnB)−1 and {en} be
an error sequence in E. Let x0 ∈C be an arbitrary initial and {xn} be a sequence generated by

xn+1 = JB
rn

(
(1−αn)xn +αn f (xn)+ en

)
.

Assume that {αn}, {en} and {rn} satisfy the following conditions:
(a) ∑

∞
n=0 αn = ∞, ∑

∞
n=1 |αn−αn−1|< ∞ and limn→∞ αn = 0.

(b) 0 < a≤ rn and ∑
∞
n=1 |rn− rn−1|< ∞, where a is a constant.

(c) ∑
∞
n=0 ‖en‖< ∞.

Then {xn} converges strongly to x̄ = Pro jB−1(0) f (x̄), where Pro jB−1(0) is the unique sunny nonex-
pansive retraction of C onto B−1(0).

In the framework of Hilbert spaces, the concept of monotonicity coincides with the
concept of accretivity. From now onward, we always assume that C is a nonempty clo-
sed convex subset of a Hilbert space H. From Theorem 3.1, we have the following result
immediately.



360 X. Qin, Q. H. Ansari and J.-C. Yao

Corollary 3.3. Let A : C→ H be an α-inverse strongly monotone operator and B : H → 2H be a
maximal monotone operator such that D(B) ⊂C. Assume that (A+B)−1(0) 6= /0. Let f : C→C
be a κ-contraction mapping. Let {rn} be a positive number sequence and {αn} be a real number
sequence in (0,1). Let Jrn = (I + rnB)−1 and let {en} be an error sequence in H. Let x0 ∈C be an
arbitrary initial and {xn} be a sequence generated by

xn+1 = JB
rn(yn− rnAyn + en),

where yn = (1−αn)xn +αn f (xn), ∀n≥ 0. Assume that {αn}, {en} and {rn} satisfy the following
conditions:

(a) ∑
∞
n=0 αn = ∞, limn→∞ αn = 0, and ∑

∞
n=1 |αn−αn−1|< ∞.

(b) 0 < a≤ rn ≤ b < 2α and ∑
∞
n=1 |rn− rn−1|< ∞, where a and b are two constants.

(c) ∑
∞
n=0 ‖en‖< ∞.

Then {xn} converges strongly to x̄ = Pro j(A+B)−1(0) f (x̄), where Pro j(A+B)−1(0) is the metric pro-
jection of C onto (A+B)−1(0).

Let A : C→ H be a monotone operator. Recall that the classical variational inequality,
denoted by V I(C,A), is to find u ∈C such that

(3.7) 〈Au,v−u〉 ≥ 0, ∀v ∈C.

One see that variational inequality (3.7) is equivalent to a fixed point problem. The ele-
ment u ∈C is a solution of variational inequality (3.7) if and only if u ∈C satisfies equation
u = PC(u− rAu), where r > 0 is a constant.

Let BC be the indicator function of C, that is,

BC(x) =

{
0, if x ∈C,

∞, if x /∈C.

Since BC is a proper lower and semicontinuous convex function on H, the subdifferential
∂BC of BC is maximal monotone. So, we can define the resolvent Jr of ∂BC for r > 0, i.e.,
Jr := (I + r∂BC)−1. Letting x = Jry, we find that

y ∈ x+ r∂BCx ⇔ y ∈ rNCx+ x

⇔ 〈y− x,v− x〉 ≤ 0,∀v ∈C

⇔ PCy = x,

where PC is the metric projection from H onto C and NCx := {e ∈ H : 〈e,v− x〉,∀v ∈C}.

Corollary 3.4. Let A : C → H be an α-inverse strongly monotone mapping. Assume that the
solution set of V I(C,A) is not empty. Let f : C→C be a κ-contraction mapping. Let {αn} be a real
number sequence in (0,1). Let {en} be an error sequence in H and {rn} be a positive real number
sequence in (0,2α). Let x0 ∈C be an arbitrary initial and {xn} be a sequence generated by

xn+1 = PC(yn− rnAyn + en),

where yn = (1−αn)xn +αn f (xn), ∀n≥ 0. Assume that {αn}, {en} and {rn} satisfy the following
conditions:

(a) ∑
∞
n=0 αn = ∞, ∑

∞
n=1 |αn−αn−1|< ∞ and limn→∞ αn = 0.

(b) 0 < a≤ rn ≤ b < 2α and ∑
∞
n=1 |rn− rn−1|< ∞, where a and b are two constants.

(c) ∑
∞
n=0 ‖en‖< ∞.

Then {xn} converges strongly to a point x̄ which is a solution to V I(C,A), where x̄ = PV I(C,A) f (x̄).

Proof. Putting B = ∂BC in Corollary 3.3, we find the desired conclusion immediately. �



Forward-Backward Iterative Method for Zero Points 361

Recall that a mapping T : C→ E is said to be α-strictly pseudocontractive if there exits
a constant α ∈ [0,1) such that

‖T x−Ty‖2 ≤ ‖x− y‖2 +α‖(I−T )x− (I−T )y‖2, ∀x,y ∈C.

The class of strictly pseudocontractive mappings was first introduced by Browder and
Petryshyn [4]. It is known that if T is α-strictly pseudocontractive, then I − T is 1−α

2 -
inverse strongly monotone.

Corollary 3.5. Let T : C→C be an α-strictly pseudocontractive mapping with a nonempty fixed
point set, f : C→C be a fixed κ-contraction and {αn} be a real number sequence in (0,1). Let {en}
be an error sequence in H and {rn} be a positive real number sequence in (0,1−α). Let x0 ∈C be
an arbitrary initial and {xn} be a sequence generated by

xn+1 = PC((1− rn)yn + rnTyn + en),

where yn = (1−αn)xn +αn f (xn), ∀n≥ 0. Assume that {αn}, {en} and {rn} satisfy the following
conditions:

(a) ∑
∞
n=0 αn = ∞, ∑

∞
n=1 |αn−αn−1|< ∞ and limn→∞ αn = 0.

(b) 0 < a≤ rn ≤ b < 1−α and ∑
∞
n=1 |rn− rn−1|< ∞, where a and b are two constants.

(c) ∑
∞
n=0 ‖en‖< ∞.

Then {xn} converges strongly to a point x̄ ∈ F(T ), where x̄ = PF(T ) f (x̄).

Proof. Putting A= I−T , we find A is 1−α

2 -inverse strongly monotone. We also have F(T ) =
V I(C,A) and PC(yn− rnAyn +en) = PC((1− rn)yn + rnTyn +en). So, by using Corollary 3.3, we
obtain the desired result. �

For a proper lower semicontinuous convex function g : H→ (−∞,∞], the subdifferential
mapping ∂g of g is defined by

∂g(x) = {x∗ ∈ H : 〈y− x,x∗〉 ≤ g(y)−g(x),∀y ∈ H}, ∀x ∈ H.

Rockafellar [15] proved that ∂g is a maximal monotone operator. It is easy to verify that
0 ∈ ∂g(v) if and only if g(v) = minx∈H g(x).

Corollary 3.6. Let g : H→ (−∞,+∞] be a proper convex lower semicontinuous function such that
(∂g)−1(0) is not empty. Let f : H→ H be a κ-contraction. Let {αn} be a real number sequence in
(0,1). Let {en} be a sequence in H and let {rn} be a positive real number sequence. Let x0 ∈ H be
an arbitrary initial and {xn} be a sequence generated by

xn+1 = argmin
z∈H

{
g(z)+

‖z− yn− en‖2

2rn

}
,

where yn = (1−αn)xn +αn f (xn), ∀n≥ 0. Assume that {αn}, {en} and {rn} satisfy the following
conditions:

(a) ∑
∞
n=0 αn = ∞, ∑

∞
n=1 |αn−αn−1|< ∞ and limn→∞ αn = 0.

(b) 0 < a≤ rn ≤ b < ∞, where a and b are two constants.
(c) ∑

∞
n=0 ‖en‖< ∞.

Then {xn} converges strongly to a point x̄ ∈ (∂ f )−1(0), where x̄ = P(∂ f )−1(0) f (x̄).

Proof. Since g : H → (−∞,∞] is a proper convex and lower semicontinuous function, we
see that subdifferential ∂g of g is maximal monotone. Noting that

xn+1 = argmin
z∈H

{
g(z)+

‖z− yn− en‖2

2rn

}
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is equivalent to

0 ∈ ∂g(xn+1)+
1
rn
(xn+1− yn− en).

It follows that
yn ∈ xn+1 + rn∂g(xn+1)− en.

Putting A = 0, we derive from Corollary 3.3 the desired conclusion immediately. �

In order to illustrate the effectiveness of the algorithm we proposed, we give the fol-
lowing numerical results using software Matlab 7.0. Put αn = 1

n and en = sinn
n2 . Let E be

the set of real numbers and C = [0,5]. Let A = 2x and let B be the subdifferential of the
indicator function of C. Then the zero point of the sum A and B is 0. If we choose x0 ∈C ar-
bitrarily, then for 50 different initial values, we see all the results are convergent in Figure
1.

Let E be the set of real numbers and C = [0,π]. Let A = x− sinx and let B be the sub-
differential of the indicator function of C. Then the zero point of the sum A and B is 0. If
we choose x0 ∈C arbitrarily, then for 20 different initial values, we see all the results are
convergent in Figure 2.
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