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A descent global optimization method based on smoothing
techniques via Bezier curves

AHMET SAHINER, NURULLAH YILMAZ and GULDEN KAPUSUZ

ABSTRACT. In this study, we introduce a new global optimization method, named Esthetic Delving Method,
based on the auxiliary function approach. First, we design the method theoretically and then present its imple-
mentable version. Finally, we apply the algorithm to the test problems in order to demonstrate its efficiency.

1. INTRODUCTION

We consider the following optimization problem

(P ) min
x∈Rn

f(x)

where the objective function f : Rn → R is continuously differentiable.
The problem (P ) is seen in many practical problems of engineering, finance, medical

and other sciences. When the function f has many local minimizers, finding the global
solution of problem (P ) become very difficult. In recent years, many new methods have
been developed for the solution of the problem (P ).

There are different types of global optimization methods and algorithms based on de-
terministic, stochastic and heuristic ideas [4, 12, 19, 14]. Each of these methods outmaneu-
ver each other from different aspects but the deterministic methods are the reliable ones
[11, 20]. The auxiliary function method is the frequently used deterministic global opti-
mization methods [16]. The prominent methods in auxiliary function approach are Filled
Function Method [2, 3], Tunneling Algorithms [6, 17] and Cut-Peak Algorithms [13, 5]. In
these methods, specific functions are used in order to reach the global minimum step by
step [18, 10, 15, 16, 7]. The main difficulty for these methods is escaping from the current
local minimizer in order to find the lower one.

Bezier curves were introduced in [1]. They constitute one of the important way for
smooth modeling technique in Computer Aided Design. They are widely used in curve
and surface designing problems [9].

In this study, we propose Esthetic Delving Method as a new global optimization techni-
que by the help of Bezier curves. We observe that this new method decrease the compu-
tational costs satisfactorily after applying on test problems.

2. PRELIMINARIES

Throughout the paper, x∗k denotes the k−th local minimizer and x∗ denotes the global
minimizer. We assume that the following conditions are satisfied for the objective function
f(x):
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Assumption 1. The function f is coercive, i.e. f(x) → ∞ as ‖x‖ → ∞. Therefore, there
exists a closed and bounded box Ω ⊂ Rn containing all the minimizers of f .

Assumption 2. The function f has a finite number of local minimizers.

Also we recall the following definitions.

Definition 2.1. The basin f(x) at an isolated minimum x0 is a connected domain B(x0),
consisting of all points such that the steepest descent trajectory of f(x) converges to x0,
starting from the any of them.

Definition 2.2. The simple basin f(x) at an isolated minimum x0 is a connected domain
S(x0) ⊂ B(x0) such that for any x 6= x0, (x− x0)T∇f(x) > 0.

The sets Ωβ1 and Ω2 are defined as Ωβ1 = {x : f(x) ≥ f(x∗k)− β, x ∈ Ω} and
Ω2 = {x : f(x) < f(x∗k), x ∈ Ω} for β > 0, respectively.

Definition 2.3. A Bezier curve is defined by a set of control point P0 through Pn, where n
is the order of Bezier cuve defined by

B(t) =

n∑
i=0

bi,n(t)Pi, 0 ≤ t ≤ 1,

where the polynomials

bi,n(t) =

(
n
i

)
ti(1− t)n−i

are known as Bernstein basis polynomials of degree n.

3. NEW GLOBAL OPTIMIZATION TECHNIQUE

In this section, we introduce a new global optimization method based on finding the
global minimum of the given smooth objective function iteratively by the virtue of the
following steps:

1. Apply a local solver to compute a local minimizer x∗k and the value f(x∗k) of the
function f .

2. Consider the function φ(x, x∗k) := min{f(x), f(x∗k)} and apply a local solver to
compute its minimizer x∗k+1. It is clear that f(x∗k+1) ≤ f(x∗k).

3. Set x∗k = x∗k+1 and go to Step 2. Then by Assumption 2 after the finite number of
iterations the algorithm will find a global minimizer of the function f .

The key point for this idea is that the minimizers of the function f(x) higher than x∗k
are not the minimizer of the function φ(x, x∗k).

Lemma 3.1. Let f be a smooth function and x∗k be its local minimizer. The local minimizers of the
function f lower than x∗k are the local minimizers of φ(x, x∗k) and the higher minimizers of f are
not minimizers of the function φ(x, x∗k) higher than f(x∗k).

It can be observed that, the function φ(x, x∗k) is non-smooth. Therefore, it is not possible
to find the local minimizers by applying gradient-based methods. In order to address this
problem, we propose to smooth functions. Since we have

φ(x, x∗k) = f(x∗k) + min{f(x)− f(x∗k), 0},

the function φ(x, x∗i ) can be re-written as

(3.1) φ(x, x∗k) = f(x∗i ) + (f(x)− f(x∗k))χAk
(x),
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where Ak = {x ∈ Rn : f(x)− f(x∗k) < 0} and χAk
: Rn → R is characteristic function of a

set Ak which is defined as

χAk
(x) =

 1 x ∈ Ak,
0 x 6∈ Ak.

Based on the equation (3.1) we design the following smoothing function for φ(x, x∗k):

φ̃(x, x∗k, β) = f(x∗k) + (f(x)− f(x∗k)) χ̃Ak
(x, β),

where

χ̃Ak
(x, β) =


0 t > β,
q1(t, β) 0 ≤ t ≤ β,
q2(t, β) −β ≤ t ≤ 0,
1 t < −β,

is the smoothed version of characteristic function of Ak that is obtained by using Bezier
curves in the transition region, where the functions q1(t, β) and q2(t, β) are defined as

q1(t, β) = − t
2 + 2βt− β2

(2β2)
,

and

q2(t, β) =
(t/β − 1)

2

2
,

for t = f(x)− f(x∗k).

Theorem 3.1. Let β > 0 and x∗k be a minimizer of the function f then, we have the following:
i. The function φ̃(x, x∗k, β) is continuously differentiable,

ii. 0 ≤ φ̃(x, x∗k, β)− φ(x, x∗k) ≤ β/2 for all x ∈ Rn,
iii. φ̃(x, x∗k, β) approaches φ(x, x∗k), when β → 0.

Proof. i. Since the function χ̃Ak
(x, β) is smooth, we conclude that the function φ̃(x, x∗k, β)

is also smooth.
ii. In case of f(x) − f(x∗k) > β, the function χ̃Ak

(x, β) = χAk
(x) = 0. Therefore

φ̃(x, x∗k, β) − φ(x, x∗k) = 0. Similarly, if f(x) − f(x∗k) < −β, then χ̃Ak
(x, β) = χAk

(x) = 0.
Hence we get φ̃(x, x∗k, β)− φ(x, x∗k) = 0.

Let us assume that 0 ≤ f(x) − f(x∗k) ≤ β. Since 0 ≤ χ̃Ak
(x, β) ≤ 1/2 and χAk

(x) = 0,
we have

φ̃(x, x∗k, β)− φ(x, x∗k) = (f(x)− f(x∗k)) (χ̃Ak
(x, β)− χAk

(x)) ≤ β/2.
Similarly, for 0 ≤ f(x)− f(x∗k) ≤ β we have 1/2 ≤ χ̃Ak

(x, β) ≤ 1 and χAk
(x) = 1 then, we

have
φ̃(x, x∗k, β)− φ(x, x∗k) = (f(x)− f(x∗k)) (χ̃Ak

(x, β)− χAk
(x)) ≤ β/2.

iii. It can be easily obtained by letting β → 0. �

Since, the function φ̃(x, x∗k, β) behaves like a constant function at those x points for
which the f(x) > f(x∗k). To minimize φ̃(x, x∗k, β) may cause the increase in computational
costs. Moreover, depending on the smoothing parameter, it can not be possible to escape
from the current local minimizer. So, we add a term to the function φ(x, x∗k, β). The added
term (function) ϕ is defined on R+ and it satisfies the following properties:

i. ϕ(t) > 0,
ii. ϕ

′
(t) < 0,

iii. limt→∞ ϕ(t) = 0.
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Examples of ϕ include π
2 − arctan(t), exp(−t) and 1

1+t . Finally, the complete Esthetic
Delving function is as the following:

φ̃(x, x∗k, β, α) = f(x∗k) + (f(x)− f(x∗k)) χ̃Ak
(x, β) + αϕ(‖x− x∗k‖2),

where α is a real parameter.

Theorem 3.2. Let x∗k be a local minimizer of the function f , then the function φ̃(x, x∗k, β, α) has
no stationary point for all x ∈ Ωβ1 .

Proof. For any x ∈ Ωβ1 , x 6= x∗k we have φ̃(x, x∗k, β, α) = f(x∗k) + αϕ(‖x − x∗k‖2) and
∇φ̃(x, x∗k, β, α) = α∇ϕ(‖x− x∗k‖2) 6= 0. �

Theorem 3.3. Let x∗k be a local minimizer of the function f . If the function f(x) has local minimi-
zer x∗k+1 lower than x∗k, then there exist local minimizer x̄ of φ̃(x, x∗k, β, α) such that x̄ ∈ S(x∗k+1).

Proof. We first prove that the φ̃(x, x∗k, β, α) has a minimizer according to Assumptions 1
and 2. Assume that the function f(x) has a local minimizer lower than x∗k. It can be con-
cluded that the set Ω3 = {x : f(x) ≤ f(x∗k), x ∈ Ω} is not empty. Moreover, Ω3 is closed
since f(x) continuous and bounded since it is contained by Ω. Therefore, the function
φ̃(x, x∗k, β, α) has minimizer in Ω3.

Let us further assume that the function f(x) has a local minimizer x∗k+1 lower than x∗k,
and x̄ be a local minimizer of the function φ̃(x, x∗k, β, α), then we have

∇φ̃(x̄, x∗k, β, α) = ∇f(x̄) + α∇ϕ(‖x̄− x∗k‖2) = 0.

Therefore, we have∇f(x̄) = −α∇ϕ(‖x̄−x∗k‖2). From the above definition of the function
ϕ(‖x− x∗k‖2), we have

(x̄− x∗k)∇f(x̄) = (x̄− x∗k)
(
−α∇ϕ(‖x̄− x∗k‖2)

)
> 0.

Since we obtain x̄ depending on ϕ(‖x − x∗k‖2), for sufficiently small α values x̄ is close
enough to x∗k+1, (x̄− x∗k) is close enough to (x∗k+1 − x∗k) and ‖x̄− x∗k‖ ≥ ‖x∗k+1 − x∗k‖. This
gives us the vectors (x̄− x∗k) and (x̄− x∗k+1) are almost in the same directions. Therefore,
we obtain

(x̄− x∗k)∇f(x̄) = (x̄− x∗k+1)
(
−α∇ϕ(‖x̄− x∗k‖2)

)
> 0.

It is clear that x̄ ∈ S(x∗k+1) and it completes the proof. �

Algorithm:

Step 0. – Set k = 1, β = 0.1, α = 1, ε = 10−2, the maximum number of directions D,
the directions di for i = 1, 2, . . . , D, the number of maximum iterationsN and
determine boundary of Ω.

– Choose the function ϕ(t).
Step 1. Find the k−th local minimizer x∗k of the objective function f(x) starting from the

any random point x0.
Step 2. Construct the the function

φ̃(x, x∗k, β, α) = f(x∗k) + (f(x)− f(x∗k)) χ̃Ak
(x, β) + αϕ(‖x− x∗k‖2),

Step 3. Set i = 1 and use x0 = x∗k + εdi as a starting point and find the minimizer of
φ̃(x, x∗k, β, α) and denote it as xs.

Step 4. If xs ∈ Ω, then go to Step 5; otherwise, go to Step 6.
Step 5. Take x0 = xs and go to Step 1.
Step 6. If i ≥ D or k ≥ N stop the algorithm and take the global minimizer x∗ = x∗k

otherwise set i = i+ 1 and go to Step 3.
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If each time different local minimizers are found then by Assumption 2 after the finite
number of iterations the algorithm will find a global minimizer of the function f . Then
some large number N > 0 can be determined as a maximum number of iterations used as
a stopping criteria. The function φ̃(x, x∗k, β, α) needn’t to have a local maximizer at x∗k but
it may have a local maximizer at any point in Ω. The parameters α and β are determined
in the beginning and they are not changed in the loop. For local search, any of local solver
can be used. We use Quasi Newton Method as a local solver.

4. NUMERICAL EXAMPLES

In this section, we apply our algorithm to test problems. The proposed algorithm is
programmed in Matlab R2011A. For these tables we use some symbols in order to abbre-
viate the expressions. The iteration number is denoted by k, the starting point by x0, the
local minimum point of the k−th iteration by x∗k, the value of f at a local minimum point
x∗k by f∗k . We call our algorithm as EDA, the algorithm proposed in [8] is called by CDFA.
We use the following test problems in Table 1 which are taken from [8].

TABLE 1. The list of test problems

Problem No. Function Name Dimension n Region Optimum value
1 Two dimensional function c = 0.5c = 0.2 and 0.05 2 [−3, 3]2 0
2 3-hump back Camel function 2 [−3, 3]2 0
3 6-hump back Camel function 2 [−3, 3]2 −1.0316
4 Treccani function 2 [−3, 3]2 0
5 Goldstein-Price function 2 [−3, 3]2 3.0000
6 Shubert function 2 [−10, 10]2 −186.73091
7 Shekel function 4 [0, 10]4 −10.1532
8 n−dimensional function 7, 10 [−10, 10]n 0

TABLE 2. Result for Problem 1 for c = 0.2, 0.5 and 0.05

EDA CDFA
k x0 x∗k f∗k x∗k f∗k
1

(6,−2)
(3.7387,−1.2649) 0.6165 (5.7221,−1.8806) 2.5070

2 (2.7380,−0.7884) 0.0887 (3.7387,−1.2649) 0.6165
3 (1.8784,−0.3458) 1.8135e− 014 (1.5909,−0.2703) 2.8126e− 009

1
(0, 0)

(0.0420,−0.0948) 0.5175 (0.0420,−0.0948) 0.5175
2 (1.5872,−0.2606) 5.0239e− 014 (1.0000, 0) 5.7949e− 016

1
(10,−10)

(7.7280,−2.8341) 6.5031 (8.7299,−3.2965) 9.0733
2 (6.7248,−2.3724) 4.3943 (7.7280,−0.4022) 6.5031
3 (1.8513,−0.4021) 1.7899e− 014 (1.8513,−0.4021) 4.3885e− 011

The results on the total iteration numbers of EDA on Problem 1-8 and the comparison
of EDA with CDFA are presented in Tables 2-9. Different conditions for the same test
problems are separated by using double lines in the Tables 2, 3, 4, 8 and 9.

It can be seen from the tables, both EDA and CDFA can find the global optimal solution
for all test problems. For Problem 1, both EDA and CDFA use the same number of iterati-
ons to find the optimal solution but the EDA presents better solution in terms of function
values in general. For Problem 3, the EDA uses fewer number of iterations in comparing
with CDFA. For Problem 4, both EDA and CDFA report same number of iterations and
close function values. For Problem 5, again EDA and CDFA report same number of itera-
tions and same function values. For Problem 6, the EDA uses fewer number of iterations
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TABLE 3. Results of the Problem 2 for x0 = (−2, 1) and x0 = (2, 1)

EDA CDFA
k x0 x∗k f∗k x∗k f∗k
1

(−2,−1)
(−1.7476,−0.8738) 0.2986 (−1.7476,−0.8738) 0.2936

2 (−0.0000,−0.0000) 9.7984e− 014 (−0.0000,−0.0000) 4.0157e− 010

1
(2, 1)

(1.7476, 0.8738) 0.2986 (1.7476, 0.8738) 0.2936
2 (0.0000,−0.0000) 9.7984e− 014 (−0.0000,−0.0000) 3.9567e− 010

TABLE 4. Results of the Problem 3 for x0 = (−2, 1),x0 = (2,−1) and x0 = (−2,−1)

EDA CDFA
k x0 x∗k f∗k x∗k f∗k
1

(−2, 1)
(0.0898, 0.7127) −1.0316 (−1.6071, 0.5687) 2.1043

2 (0.0898, 0.7127) −1.0316

1
(2,−1)

(−0.0898,−0.7127) −1.0316 (1.6071,−0.5687) 2.1043
2 (−0.0898,−0.7127) −1.0316

1
(−2,−1)

(−0.0898, 0.7127) −1.0316 (1.7036,−0.79608) −0.21546
2 (−0.0898,−0.7127) −1.0316

TABLE 5. Numerical results of the Problem 4

EDA CDFA
k x0 x∗k f∗k x∗k f∗k
1

(−1, 0)
(−1.0000, 0.0000) 1.0000 (−1.0000, 0.0000) 1.0000

2 (−0.0000,−0.0000) 1.4037e− 016 (−0.0000,−0.0000) 2.4048e− 017

TABLE 6. Numerical results of the Problem 5

EDA CDFA
k x0 x∗k f∗k x∗k f∗k
1

(−1,−1)
(−0.6000,−0.4000) 30.0000 (−0.6000,−0.4000) 30.0000

2 (0.0000,−1.0000) 3.0000 (0.0000,−1.0000) 3.0000

compared to CDFA. For Problem 7, both methods report same number of iterations and
same function values. For Problem 8 with n = 7 the EDA uses more number of iterations
but for n = 10 the EDA uses fewer number of iterations compared CDFA. For Problem 2,
both EDA and CDFA use the same number of iterations to find the optimal solution but
the EDA presents better solution in terms of function values for all conditions.

5. CONCLUSION

We have introduced a new global optimization algorithm based on the Bezier curves.
The new method presents satisfactory results on test problems. By comparing our method
with the CDFA, we can conclude that our method gives better results than the CDFA in
terms of number of iterations and final function values.

On the other hand, we present a new formulation and a new smoothing approach. This
approach can be generalized to other non-smooth functions. For future works, we are
planing to study on designing smoothing function for the class of non smooth functions.
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TABLE 7. Numerical results of the Problem 6

EDA CDFA
k x0 x∗k f∗k x∗k f∗k
1

(1, 1)

(2.0467, 2.0467) 2.2918e− 015 (2.0467, 2.0467) 0
2 (5.4829, 2.7859) −38.2960 (3.2800, 4.8581) −46.511
3 (5.4829, 4.8581) −186.739 (4.2760, 4.8581) −79.411
4 (5.4892, 4.8581) −186.739

TABLE 8. Numerical results of the Problem 7 for x0 = (1, 1, 1, 1) and x0 = (6, 6, 6, 6)

EDA CDFA
k x0 x∗k f∗k x∗k f∗k
1 (1,1,1,1) (1.0001, 1.0002, 1.0001, 1.0002) −5.0552 (1.0001, 1.0002, 1.0001, 1.0002) −5.0552
2 (4.0000, 4.0001, 4.0000, 4.0001) −10.1532 (4.0000, 4.0000, 4.0000, 4.0000) −10.1529

1 (6,6,6,6) (5.9987, 6.0003, 5.9987, 6.0003) −2.6829 (5.9987, 6.0002, 5.9987, 6.0002) −2.6822
2 (4.0000, 4.0001, 4.0000, 4.0001) −10.1532 (4.0000, 4.0001, 4.0000, 4.0001) −10.1529

TABLE 9. Numerical results of the Problem 8 for n = 7 and n = 10

EDA CDFA
k x0 x∗k f∗k x∗k f∗k

1
(2, 2, . . . , 2)

(0.0100, 1.0000, 1.0000, 1.0000,
0.4443

(1.0000, 1.0000, 1.0000, 1.0000,
2.3538e− 013

1.0000, 1.0000, 1.0000) 1.0000, 1.0000, 1.0000)

2 (1.0000, 1.0000, 1.0000, 1.0000,
1.4992e− 14

1.0000, 1.0000, 1.0000)

1

(6, 6, . . . , 6)

(2.9798, 2.9948, 2.9949, 2.9949,
12.5250

(1.0101, 0.0103, 0.0103, 0.0104,
2.66532.9949, 2.9949, 2.9949, 2.9949, 0.0103, 0.0102, 1.0000, 6.0000,

2.9949, 2.9949) 6.0000, 6.0000)

2
(1.0000, 1.0000, 1.0000, 1.0000,

5.6436e− 14
(1.1615, 1.1651, 0.4418, 0.9258,

2.44431.0000, 1.0000, 1.0000, 1.0000 0.9638,−0.4809, 0.9926, 6.0000,
1.0000, 1.0000) 6.0000, 6.0000)

3
(1.9900, 1.0000, 1.0000, 1.0000,

0.44431.0000, 1.0000, 1.0000, 6.0000,
6.0000, 6.0000)

4
(1.0000, 1.0000, 1.0000, 1.0000

01.0000, 1.0000, 1.0000, 1.0000,
1.0000, 1.0000)
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