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Projection algorithms for composite minimization

XIAONAN YANG and HONG-KUN XU

ABSTRACT. Parallel and cyclic projection algorithms are proposed for minimizing the sum of a finite family
of convex functions over the intersection of a finite family of closed convex subsets of a Hilbert space. These
algorithms consist of two steps. Once the kth iterate is constructed, an inner circle of gradient descent process is
executed through each local function, and then a parallel or cyclic projection process is applied to produce the
(k + 1) iterate. These algorithms are proved to converge to an optimal solution of the composite minimization
problem under investigation upon assuming boundedness of the gradients at the iterates of the local functions
and the stepsizes being chosen appropriately.

1. INTRODUCTION

We are concerned with a composite minimization problem, that is, we consider the
case where the objective function is decomposed into the sum of a finite family of convex
functions and the set of constraints is the intersection of finitely many closed convex sub-
sets of a Hilbert space H . Precisely, the minimization problem under investigation in this
paper can be written as

(1.1) min
x∈C:=

⋂M
i=1 Ci

f(x) :=

N∑
j=1

fj(x),

where M,N are positive integers, each set Ci is a nonempty closed convex subset of a
Hilbert space H , and each local function fi : H → R is a Fréchet differentiable and convex
function. We always assume the feasible set C 6= ∅.

Notice that optimization problems of form (1.1) arise in many applied areas, in parti-
cular, in machine learning and statistics (see [2, 7, 13] for examples and more details).

The convex feasibility problem (CFP) [1, 3] is formulated as

finding a point x∗ with the property: x∗ ∈
N⋂
i=1

Ci.(1.2)

Thus, the composite minimization problem (1.1) can alternatively be rephrased as finding
a solution to the convex feasibility problem (1.2) which also minimizes the composite
function f as defined in (1.1). Consequently, two points should be taken into consideration
of algorithmic approaches to (1.1): (a) the descent property of the values of the objective
function, and (b) the (approximate) feasibility of the iterates generated by the algorithm.
To illustrate these points we consider the special case whereM = N = 1. In this case, (1.1)
is reduced to the constrained convex minimization:

(1.3) min
x∈C1

f1(x).
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The gradient-projection algorithm (GPA) can solve (1.3): GPA generates a sequence {xk}
by the recursion process:

(1.4) xk+1 = PC1(xk − λk∇f1(xk)),
where the initial guess x0 ∈ H is chosen arbitrarily, and λk > 0 is the stepsize. Assume:

(A1) The gradient of f1, ∇f1, is α-Lipschitz (for some α ≥ 0):

‖∇f1(x)−∇f1(z)‖ ≤ α‖x− z‖, x, z ∈ H;

(A2) The sequence of stepsizes, {λk}, satisfies the condition:

0 < lim inf
k→∞

λk ≤ lim sup
k→∞

λk <
2

α
.

It is then easy to find that both points (a) and (b) hold (actually, (b) is trivial); moreover,
the sequence {xk} generated by GPA (1.4) converges [12, 15] weakly to a solution of (1.3)
(if any).

Observe that the splitting of the objective function f into the sum of N (simpler) local
functions, and the set C of constraints into the intersection of M (simpler) convex subsets
aims at providing more efficient algorithmic approaches to (1.1) by utilizing the simpler
structures of the local functions {fj} (for instance, the proximal mappings of fj are com-
putable [4]) and of the sets {Ci} (for instance, the projections PCi

possess closed formulae).
This means that when we study algorithms for the composite optimization problem (1.1),
we should use individual local functions and individual subsets at each iteration, not the
full sum of the local functions {fj}, nor the full intersection of the sets {Ci}.

The purpose of this paper is exactly to provide two such algorithms, which we call
parallel and cyclic projection algorithms (see (3.5) and (3.18) in Section 3) for the reason
that parallel and cyclic projections play a key role in defining these algorithms.

2. PRELIMINARIES

The fundamental tool of our argument in this paper is the concept of projections. Let
H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖, respectively, and let C
be a nonempty closed convex subset of H . The (nearest point) projection from H onto C,
dented by PC , is defined by

PCx := argmin
y∈C
‖x− y‖, x ∈ H.

The following properties are pertinent to our argument in Section 3.

Proposition 2.1. Projections are of the following properties:
(i) 〈x− PCx, y − PCx〉 ≤ 0 for all x ∈ H and y ∈ C.

(ii) 〈PCx−PCy, x−y〉 ≥ ‖PCx−PCy‖2 for all x, y ∈ H ; in particular, PC is nonexpansive,
namely,

‖PCx− PCy‖ ≤ ‖x− y‖, x, y ∈ H.
(iii) ‖PCx− y‖2 ≤ ‖x− y‖2 − ‖PCx− x‖2 for all x ∈ H and y ∈ C.

The following two lemmas are also useful for proving the convergence of our algo-
rithms in this paper.

Lemma 2.1. [12] Assume {ak} is a sequence of nonnegative real numbers with the property:

ak+1 ≤ ak + bk, k ≥ 0,

where {bk} is a sequence of nonnegative real numbers such that
∑∞

k=0 bk < ∞. Then {ak} is
bounded and limk→∞ ak exists.
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Lemma 2.2. [8, Lemma 2.5] Let K be a nonempty subset of a Hilbert space H . Assume {xk} is
a bounded sequence in H with the properties:

(a) limk→∞ ‖xk − z‖ exists for each z ∈ K;
(b) if x′ is a weak cluster point of {xk}, then x′ ∈ K.

Then the full sequence {xk} converges weakly to a point in K.

We need the demiclosedness principle of nonexpansive mappings as follows.

Lemma 2.3. [11, 6] Let K be a closed convex subset of a Hilbert space H and T : C → C a
nonexpansive mapping (i.e., ‖Tx− Ty‖ ≤ ‖x− y‖ for all x, y ∈ K). Suppose {vk} is a sequence
in K such that vk → v weakly and vk − Tvk → 0 in norm, then v = Tv.

3. PROJECTION ALGORITHMS AND THEIR CONVERGENCE ANALYSIS

3.1. Projection Algorithms for the Convex Feasibility Problem. We mention three pro-
jection algorithms [1, 3, 10, 14] for solving CFP (1.2) which will be used in defining our
projection algorithms.

Theorem 3.1. Beginning with an arbitrarily chosen initial guess x0 ∈ H , we iterate {xk} in
either one of the following three projection algorithms:

(i) Sequential projections: xk+1 = PCM
· · ·PC1

xk;
(ii) Parallel projections: xk+1 =

∑M
j=1 βjPCj

xk, with βj > 0 for all j and
∑M

j=1 βj = 1;
(iii) Cyclic projections: xk+1 = PC[k+1]

xk. [Here [k + 1] = i (modM), 0 ≤ i < M .]

Then {xk} converges weakly to a solution of CFP (1.2).

3.2. The Parallel Projection Algorithm. We introduce the following parallel projection
algorithm (PPA) for solving the composite minimization problem (1.1). Take an initial
guess x0 ∈ H arbitrarily and then iterate xk+1 (k ≥ 0) by the iteration process:

xk,0 = xk,(3.5a)

xk,j = xk,j−1 − λk∇fj(xk,j−1), j = 1, 2, · · · , N,(3.5b)

xk+1 =

M∑
i=1

βiPCixk,N ,(3.5c)

where, for each 1 ≤ i ≤ M , PCi
is the projection from H onto Ci, and βi > 0 is such that∑M

i=1 βi = 1.

3.3. Convergence of PPA.

Lemma 3.4. Let {xk}∞k=0 be generated by Algorithm (3.5). Suppose

(3.6) ‖∇fj(xk,j−1)‖ ≤ Lj , j = 1, 2, · · · , N, k ≥ 0,

where, for each 1 ≤ j ≤ N , Lj ≥ 0 is a constant. Set L =
∑N

i=1 Li. Then, for each x ∈ C, we
have

(3.7) ‖xk+1 − x‖2 ≤ ‖xk − x‖2 − 2λk[f(xk)− f(x)] + λ2kL
2.

Proof. The proof given below is some minor modifications of the proof of [9, Lemma 2.1].
However we include it here for the sake of completeness.
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Using the convexity of the norm and nonexpansivity of projections, we immediately
get, for x ∈ C,

‖xk+1 − x‖2 =

∥∥∥∥∥
M∑
i=1

βi(PCi
xk,N − PCi

x)

∥∥∥∥∥
2

≤
M∑
i=1

βi‖PCixk,N − PCix‖2

≤
M∑
i=1

βi‖xk,N − x‖2

= ‖xk,N − x‖2.(3.8)

On the other hand, for each 1 ≤ j ≤ N , we have

‖xk,j − x‖2 = ‖(xk,j−1 − x)− λk∇fj(xk,j−1)‖2

= ‖xk,j−1 − x‖2 − 2λk〈∇fj(xk,j−1), xk,j−1 − x〉+ λ2k‖∇fj(xk,j−1)‖2.

Using (3.6) and the inequality

fj(x) ≥ fj(xk,j−1) + 〈∇fj(xk,j−1), x− xk,j−1〉

we obtain

‖xk,j − x‖2 ≤ ‖xk,j−1 − x‖2 − 2λk[fj(xk,j−1)− fj(x)] + λ2kL
2
j .

Adding up the above inequalities over j = 1, 2, · · · , N yields

‖xk,N − x‖2 ≤ ‖xk − x‖2 − 2λk

N∑
j=1

[fj(xk,j−1)− fj(x)] + λ2k

N∑
j=1

L2
j

= ‖xk − x‖2 − 2λk[f(xk)− f(x)]

+ λ2k

N∑
j=1

L2
j − 2λk

N∑
j=1

[fj(xk,j−1)− fj(xk)].(3.9)

Observing

fj(xk,j−1)− fj(xk) > 〈∇fj(xk), xk,j−1 − xk〉
> −Lj‖xk,j−1 − xk‖

and

‖xk,j−1 − xk‖ = ‖xk,j−1 − xk,0‖

=

∥∥∥∥∥
j−1∑
l=1

(xk,l − xk,l−1)

∥∥∥∥∥
=

∥∥∥∥∥
j−1∑
l=1

λk∇fl(xk,l−1)

∥∥∥∥∥
≤ λk

j−1∑
l=1

Ll,
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we derive from (3.9) that

‖xk,N − x‖2 ≤ ‖xk − x‖2 − 2λk[f(xk)− f(x)] + λ2k

N∑
j=1

L2
j + 2λ2k

N∑
j=1

Lj

(
j−1∑
l=1

Ll

)

= ‖xk − x‖2 − 2λk[f(xk)− f(x)] + λ2k

 N∑
j=1

Lj

2

= ‖xk − x‖2 − 2λk[f(xk)− f(x)] + λ2kL
2.

This together with (3.8) proves (3.7). �

Assume that the sequence of stepsizes {λk} satisfies the condition

(3.10) 0 < λk, lim
k→∞

λk = 0,

∞∑
k=0

λk =∞.

Let

S∗ :=

{
x∗ ∈ C : f(x∗) = inf

x∈C
f(x)

}
and f∗ := inf

x∈C
f(x)

be the set of optimal solutions and the optimal value of the composite minimization pro-
blem (1.1), respectively. We shall always assume from now and onwards that S∗ 6= ∅.

Lemma 3.5. Let {xk} be generated by PPA (3.5) and assume (3.6).
(i) If {xk} is bounded and {λk} satisfies (3.10), then lim infk→∞ f(xk) = infx∈C f(x).

(ii) If λk > 0 (for all k) and
∑∞

k=1 λ
2
k <∞, then limk→∞ ‖xk − x‖ exists for x ∈ S∗; hence,

{xk} is bounded.

Proof. (i) If lim infk→∞ f(xk) > f∗, then there exist some ε0 > 0 and k0 ≥ 0 such that
f(xk) > f∗+ ε0 for all k ≥ k0. Since λk → 0, we may also assume λkL2 < ε0 for all k ≥ k0.
It then turns out from (3.7) that, for x ∈ S∗ and k ≥ k0,

ε0λk ≤ ‖xk − x‖2 − ‖xk+1 − x‖2.

This implies that the series
∑∞

k=k0
λk is convergent, which contradicts (3.10). Therefore,

we must have lim infk→∞ f(xk) = f∗.
We next turn to (ii). Again using (3.7) we obtain, for x ∈ S∗ and k ≥ 0,

‖xk+1 − x‖2 ≤ ‖xk − x‖2 + λ2kL
2.

The conclusion of (ii) now follows immediately from Lemma 2.1. �

Consider the distance function from x ∈ H to the solution set S∗:

dS∗(x) := inf{‖x− z‖ : z ∈ S∗}, x ∈ H.

Corollary 3.1. Let {xk} be generated by PPA (3.5) and assume (3.6). Assume also λk > 0 (for
all k) and

∑∞
k=0 λ

2
k < ∞. Then limk→∞ dS∗(xk) exists. Moreover, if dimH < ∞, then {xk}

converges to an optimal solution of (1.1) if and only if limk→∞ dS∗(xk) = 0.

Proof. By Lemma 3.4, we get for all x ∈ S∗ and k ≥ 0

‖xk+1 − x‖2 ≤ ‖xk − x‖2 − 2λk(f(xk)− f∗) + λ2kL
2.

It turns out that

d2S∗(xk+1) ≤ d2S∗(xk)− 2λk(f(xk)− f∗) + λ2kL
2.(3.11)
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In particular,

d2S∗(xk+1) ≤ d2S∗(xk) + λ2kL
2.(3.12)

Since
∑∞

k=1 λ
2
k <∞, it follows from Lemma 2.1 that limk→∞ d2S∗(xk) exists.

If {xk} converges in norm to an optimal solution x∗ of (1.1) (i.e., x∗ ∈ S∗), then by con-
tinuity of dS∗ , we immediately get limk→∞ dS∗(xk) = dS∗(x∗) = 0. Conversely, assume
dimH < ∞ and limk→∞ dS∗(xk) = 0. For each j ≥ 1, we can find zj ∈ S∗ and some nj
such that

‖xkj − zj‖ <
1

j
.

Since H is finite-dimensional and {xk} is bounded, we may assume xkj
→ x̂. It turns out

that zj → x̂ as well. Consequently, x̂ ∈ S∗ as S∗ is closed. Now we have

lim
k→∞

dS∗(xk) = lim
j→∞

dS∗(xkj
) = dS∗(x̂) = 0.

�

Lemma 3.6. Let the sequence {xk} be generated by PPA (3.5) and assume (3.6). Assume in
addition that the sequence {λk} of stepsizes satisfies the condition:

(3.13) λk > 0 (for all k ≥ 0),
∞∑
k=1

λk =∞,
∞∑
k=1

λ2k <∞.

(A standard prototype is given by λk := 1
k+1 for all k ≥ 0.) Then every weak cluster point of

{xk} is feasible. Moreover, if {xkj
} is a subsequence of {xk} weakly convergent to x∗ such that

limj→∞ f(xkj
) = f∗, then x∗ ∈ S∗.

Proof. The weak lower-semicontinuity of f implies that f(x∗) ≤ lim infj→∞ f(xkj ) = f∗.
It turns out that x∗ ∈ S∗ provided x∗ ∈ C, that is, x∗ is feasible. To see this, we proceed as
follows by using the convexity of the function ‖ · ‖2 and Proposition 2.1(iii):

‖xk+1 − x∗‖2 =

∥∥∥∥∥
N∑
i=1

βi(PCixk,N − x∗)

∥∥∥∥∥
2

≤
N∑
i=1

βi‖PCixk,N − x∗‖2

≤
N∑
i=1

βi(‖xk,N − x∗‖2 − ‖PCixk,N − xk,N‖2)

= ‖xk,N − x∗‖2 −
N∑
i=1

βi‖PCixk,N − xk,N‖2.

It follows that

(3.14)
N∑
i=1

βi‖PCi
xk,N − xk,N‖2 ≤ ‖xk,N − x∗‖2 − ‖xk+1 − x∗‖2.



Projection Algorithms for Composite Minimization 395

Note that

‖xk,N − xk‖ = ‖xk,N − xk,0‖

=

∥∥∥∥∥
N∑
i=1

(xk,j − xk,j−1

∥∥∥∥∥
=

∥∥∥∥∥
N∑
i=1

λk∇fj(xk,j−1)

∥∥∥∥∥
≤ λk

N∑
i=1

Lj = λkL→ 0 (as k →∞).

Now since limk→∞ ‖xk − x∗‖ exists, we get limk→∞ ‖xk,N − xk‖ = 0. It turns out from
(3.14) that

lim
k→∞

N∑
i=1

βi‖PCi
xk,N − xk,N‖2 = 0.

Equivalently, for each 1 ≤ i ≤ N ,

lim
k→∞

‖PCixk,N − xk,N‖2 = 0.

Consequently, for each 1 ≤ i ≤ N ,

lim
k→∞

‖PCi
xk − xk‖2 = 0.

This implies that if z is a weak cluster point of {xk}, then z = PCiz by Lemma 2.3. Hence,
z ∈ Ci for every 1 ≤ i ≤ N . Namely, z ∈ C is feasible. In particular, x∗ is feasible. �

We are now in the position to state and prove the main result is this paper.

Theorem 3.2. Let {xk} be the sequence generated by the parallel projection algorithm (3.5). As-
sume (3.6) and (3.13). Then we have:

(i) If H is finite-dimensional, then {xk} converges to an optimal solution x∗ of the composite
minimization problem (1.1) and {f(xk)} converges to the optimal value f∗.

(ii) In a general Hilbert space H , there exists a subsequence {xkj
} of {xk} such that

(iia) {xkj
} converges weakly to an optimal solution x∗ ∈ S∗, and {f(xkj

)} converges to
the optimal value f∗.

(iib) If, in addition, the limit of the full sequence {f(xk)} exists as k → ∞, then the full
sequence {xk} converges weakly to the optimal solution x∗, and {f(xk)} converges
to the optimal value f∗.

Proof. We first observe the inequality

(3.15) ‖xk+1 − x‖ ≤ ‖xk − x‖+ λ2kL
2

for all x ∈ S∗. This implies that {xk} is bounded and

(3.16) lim
k→∞

‖xk − x‖ exists for every x ∈ S∗.

Now to see (i), we apply Lemma 3.5 to get a subsequence {xkj} of {xk} such that

(3.17) lim
j→∞

f(xkj ) = lim inf
k→∞

f(xk) = f∗.

Since dimH < ∞, we may also assume that xkj → x∗ (in norm) as j → ∞. Notice that
x∗ ∈ S∗. Now apply (3.16) with x replaced with x∗ to obtain

lim
k→∞

‖xk − x∗‖ = lim
j→∞

‖xkj − x∗‖ = 0.
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Namely, xk → x∗ (in norm); hence, f(xk)→ f∗. This proves (i).
To see (iia), we again apply Lemma 3.5 to get a subsequence {xkj

} of {xk} such that
(3.17) holds. However, in this case we can only assume that {xkj

} converges weakly to a
point x∗. By Lemma 3.6, we have x∗ ∈ S∗.

Finally, to prove (iib) we notice that since the full sequence {f(xk)} converges, we must
have

lim
k→∞

f(xk) = f∗.

By Lemma 3.6 again, we have x′ ∈ S∗ whenever x′ is a weak cluster point of the subse-
quence {xk}. Applying Lemma 2.2, we conclude that the full sequence {xk} converges
weakly to a point in S∗. �

3.4. The Cyclic Projection Algorithm. Similarly to the parallel projection algorithm (3.5),
we can introduce the cyclic projection algorithm (CPA) as follows:

xk,0 = xk,(3.18a)

xk,j = xk,j−1 − λk∇fj(xk,j−1), j = 1, 2, · · · , N,(3.18b)
xk+1 = PC[k+1]

xk,N ,(3.18c)

where the initial guess x0 ∈ H is chosen arbitrarily, and [k] is the mod M function defined
in Theorem 3.1(iii).

Our proof of Theorem 3.2 shows that the part played by the parallel projection operator∑M
i=1 βiPCi

in the proof of Theorem 3.2 is to guarantee that the weak cluster points of the
iterates {xk} are feasible (i.e., solutions of CFP (1.2)). This can be done by other projection
operators such as the sequential projection operator [5]. Below we consider the cyclic
projection operator as shown in Theorem 3.1. Therefore, we have the following result, the
proof of which is similar to that of Theorem 3.2 and is thus omitted.

Theorem 3.3. Let {xk} be generated by the CPA (3.18). Assume (3.6) and (3.13). Then the
conclusions of Theorem 3.2 hold.

Remark 3.1. In the algorithm (3.5) or (3.18), in order to construct the (k+1)th iterate xk+1,
an inner circle of iteration process is carried out through each local function, namely, the
gradient-descent step (3.5b) is performed for each local function fj . Consequently, the va-
lue of fj may decrease from xk to xk+1 should the stepsize λk > 0 is chosen appropriately.
However, it is unclear whether or not the value of the sum function f would decrease
from xk to xk+1.

It is also interesting to know whether or not the conclusion of Theorem 3.2(iib) remains
true should the assumption that the limit of the full sequence {f(xk)} exists is removed.

Acknowledgement. The authors were grateful to the reviewers for their careful reading
and helpful comments which improved the presentation of this manuscript.
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