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Extended convergence of Gauss-Newton’s method and
uniqueness of the solution

IOANNIS K. ARGYROS, YEOL JE CHO and SANTHOSH GEORGE

ABSTRACT. The aim of this paper is to extend the applicability of the Gauss-Newton’s method for solving
nonlinear least squares problems using our new idea of restricted convergence domains. The new technique
uses tighter Lipschitz functions than in earlier papers leading to a tighter ball convergence analysis.

1. INTRODUCTION

Let us consider the nonlinear least squares problem:

(1.1) min f(x) :=
1

2
F (x)TF (x),

where F : Rj −→ Ri is Fréchet-differentiable, j ≥ i and ‖.‖ stands for the 2−norm unless
otherwise stated. Gauss-Newton’s method (GN) defined for each n = 0, 1, 2 . . . by

(1.2) xn+1 = xn − [F ′(xn)TF ′(xn)]−1F ′(xn)TF (xn)

where x0 is an initial point is undoubtedly the most popular method for generating a
sequence {xn} approximating a solution p of problem (1.1). There is a plethora of ball
convergence results for GN based on Lipschitz-type conditions [1–15]. In the present
study, we use our new idea of restricted convergence domains leading to tighter Lipschitz
functions and to the advantages (A) over earlier work such as [4–8, 13, 15]:

(a1) A larger radius of convergence resulting to a wider choice of initial points.
(a2) Tighter error bounds on the distances ‖xn−p‖ leading to the computation of fewer

iterates to obtain a desired error tolerance.
(a3) An at least as precise information on the location of the solution.

The advantages (A) are obtained under the same computational cost as in earlier studies,
since in practice the computation of the old Lipschitz functions requires the computation
of the new Lipschitz functions as special cases. The study of the ball convergence of
iterative methods is also important because it shows the degree of difficulty in obtaining
good initial points x0. Our technique can be used in an analogous way to improve results
for other iterative methods [1, 4–15].

The rest of the paper is structured as follows. Section 2 contains auxiliary results, whe-
reas Section 3 includes the ball convergence of GN.

2. AUXILIARY RESULTS

In order to make the paper as self contained as possible we restate some standard con-
cepts and results.
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Let Ri×j denote the set of all i × j matrix M1,M
†
1 denote the Moore-penrose inverse

of matrix M1, and if M1 has full rank (namely: rank(M1) = min{m,n} = n) then M†1 =
(MT

1 M1)−1MT
1 . We state the auxilary results [4–8, 12, 15].

Lemma 2.1. Suppose that M1,M3 ∈ Ri×j , M2 = M1 + M3, ‖M†1‖‖M3‖ < 1, rank(M1) =
rank(M2), then

(2.1) ‖M†2‖ ≤
‖M†1‖

1− ‖M†1‖‖M3‖
.

Moreover, if rank(M2) = rank(M1) = min{m,n}, then, we have

(2.2) ‖M†2 −M
†
1‖ ≤

√
2‖M†1‖2‖M3‖

1− ‖M†1‖‖M3‖
.

Lemma 2.2. Suppose that M1,M3 ∈ Ri×j , M2 = M1 + M3, ‖M3M
†
1‖ < 1, rank(M1) =

rank(M2) = n, then rank(M2) = n.

Lemma 2.3. Let

(2.3) ϕ(t) =
1

tα

∫ t

0

L(u)uα−1du, α ≥ 1, 0 ≤ t ≤ ρ,

where L(u) is a positive integrable function and nondecreasing monotonically in [0, ρ]. Then ϕ(t)
is nondecreasing with respect to t.

Lemma 2.4. Suppose that

(2.4) ψ(t) =
1

tα

∫ t

0

L(u)(t− u)du,

where L(u) is a positive integrable function in [0, ρ]. Then ψ(t) is nondecreasing monotonically
increasing with respect to t.

3. LOCAL CONVERGENCE

Let U(w, ξ), Ū(w, ξ) stand, respectively for the open and closed balls in Ri with center
w ∈ Ri and of radius ξ > 0.

We base the local convergence analysis of GN on some scalar Lipschitz functions.

Definition 3.1. Let L0 be a nondecreasing, positive integrable function defined on the in-
terval [0, ρ].We say that F ′ satisfies the center-radius Lipschitz condition with L0 average,
if

‖F ′(x)− F ′(p)‖ ≤
∫ d(x)

0

L0(u)du for each x ∈ U(p, ρ).

Define parameters ρ0 for some β > 0 by

(3.5) ρ0 = sup{u ∈ [0, ρ] : βL0(u) < 1}.
Set U0 = U(p, ρ0). Notice that U0 ⊆ U(p, ρ).

Definition 3.2. LetL be a nondecreasing, positive integrable function defined on the inter-
val [0, ρ0].We say that F ′ satisfies the restricted-radius Lipschitz condition withL average,
if

‖F ′(x)− F ′(xθ)‖ ≤
∫ d(x)

θd(x)

L(u)du for each x ∈ U(p, ρ0), 0 ≤ θ ≤ 1,

where xθ = p+ θ(x− p) and d(x) = ‖x− p‖.



Extended convergence of Gauss-Newton’s method 137

Notice: L = L(L0). That is the construction of function L depends on L0 and ρ0. In
earlier studies [4–8, 14, 15] the following definition was used:

Definition 3.3. Let L1 be a nondecreasing positive integrable function defined on the
interval [0, ρ]. We say that F ′ satisfies the radius Lipschitz condition with L1 average, if

‖F ′(x)− F ′(xθ)‖ ≤
∫ d(x)

θd(x)

L1(u)du for each x ∈ U(p, ρ), 0 ≤ θ ≤ 1.

Notice that

(3.6) L0(u) ≤ L1(u),

(3.7) L(u) ≤ L1(u)

hold and L1

L0
can be arbitrarily large [4–6]. In the earlier studies (with the exception of our

works where both L1 and L0 are used) only the function L1 is used in the convergence
analysis of the Gauss-Newton method. However, in view of (3.6) and (3.7) the earlier
results can be improved, if the more precise function L0 and L are used instead of L1 (or
L1 and L0). If one uses the Banach lemma on invertible operators [11] and L1, then

(3.8) ‖[F ′(x)TF ′(x)]−1F ′(x)T ‖ ≤ β

1− β
∫ d(x)
0

L1(u)du

is obtained (for β > 0 to be defined later) instead of the more precise estimate using L0 :

(3.9) ‖[F ′(x)TF ′(x)]−1F ′(x)T ‖ ≤ β

1− β
∫ d(x)
0

L0(u)du
.

Similarly, at the numerators of the estimates involved L,L0 can be used instead of the
less presise L0, L1 leading to the advantages (A). We can state the main local convergence
result for the Gauss-Newton method.

Theorem 3.1. Suppose: vector p satisfies problem (1.1); F has a continuous derivative in U(p, ρ);
F ′(p) has full rank: F ′ satisfies the center-radius -Lipschitz condition with L0 average; F ′ satisfies
the restricted-radius-Lipschitz condition with L average and ρ satisfies

(3.10) λ(L0, L, ρ) = λ(ρ) =
β
∫ ρ
0
L(u)udu

ρ(1− β
∫ ρ
0
L0(u)du)

+

√
2cβ2

∫ ρ
0
L0(u)du

ρ(1− β
∫ ρ
0
L0(u)du)

≤ 1.

Then GN is convergenct for all x0 ∈ U(p, ρ) and

‖xn+1 − p‖ ≤
β
∫
d(x0)

L(u)udu

d(x0)2(1− β
∫ d(x0)

0
L0(u)du)

‖xn − p‖2

+

√
2cβ2

∫ d(x0)

0
L0(u)du

d(x0)(1− β
∫ d(x0)

0
L0(u)du)

‖xn − p‖,(3.11)

where

(3.12) c = ‖F ′(x)‖, β = ‖[F ′(p)TF ′(p)]−1F ′(p)T ‖
and

q0(L0, L) = q0 =
β
∫ d(x0)

0
L(u)udu

d(x0)(1− β
∫ d(x0)

0
L0(u)du)

+

√
2cβ2

∫ d(x0)

0
L0(u)du

d(x0)(1− β
∫ d(x0)

0
L0(u)du)

< 1.,(3.13)
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Moreover, if c = 0, then

(3.14) ‖xn − p‖ ≤ q2
n−1

0 ‖x0 − p‖ for each n = 1, 2, . . . .

Proof. We first show that q0 ∈ [0, 1). Using monotonicity of L and Lemma 2.3, we have

q0 =
β
∫ d(x0)

0
L(u)udu

d(x0)2(1− β
∫ d(x0)

0
L0(u)du)

d(x0)

+

√
2cβ2

∫ d(x0)

0
L0(u)du

d(x0)2(1− β
∫ d(x0)

0
L0(u)du)

d(x0)

<
β
∫ ρ
0
L(u)udu

ρ2(1− β
∫ d(x0)

0
L0(u)du)

d(x0)

+

√
2cβ2

∫ d(x0)

0
L0(u)du

ρ2(1− β
∫ d(x0)

0
L0(u)du)

d(x0)

≤ ‖x0 − p‖
ρ

< 1.

and

‖[F ′(p)TF ′(p)]−1‖‖F ′(x)− F ′(p)‖ ≤ β

∫ d(x)

0

L0(u)du

≤ β

∫ ρ

0

L0(u)du < 1, for each x ∈ U(p, ρ).

By Lemma 2.1 and 2.2, we know that for each x ∈ U(p, ρ), F ′(x) has full rank and

‖[F ′(x)TF ′(x)]−1F ′(x)T ‖ ≤ β

1− β
∫ d(x)
0

L0(u)du
,

for each x ∈ U(p, ρ),

‖[F ′(x)TF ′(x)]−1F ′(x)T − [F ′(p)TF ′(p)]−1F ′(p)T ‖ ≤
√

2β2
∫ d(x)
0

L0(u)du

d(x0)(1− β
∫ d(x)
0

L0(u)du)
,

for each x ∈ U(p, ρ).

If xn ∈ U(p, ρ), we have by (1.2)

xn+1 − p = xn − p− [F ′(xn)TF ′(xn)]−1F ′(xn)TF (xn)

= [F ′(xn)TF ′(xn)]−1F ′(p)T [F ′(xn)(xn − p)− F (xn) + F (p)]

+[F ′(xn)TF ′(xn)]−1F ′(p)TF ′(p)− [F ′(xn)TF ′(xn)]−1F ′(xn)TF (p).
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That is

‖xn+1 − p‖ ≤ ‖[F ′(xn)TF ′(xn)]−1F ′(p)T ‖‖
∫ 1

0

[F ′(xn)− F ′(p+ t(xn − p))](p− xn)dt‖

+‖[F ′(xn)TF ′(xn)]−1F ′(p)TF ′(p)− [F ′(xn)TF ′(xn)]−1F ′(xn)T ‖‖F (p)‖

≤ β

1− β
∫ d(xn)

0
L0(u)du

∫ 1

0

∫ d(xn)

td(xn)

L(u)dud(xn)dt

+

√
2cβ2

∫ d(xn)

0
L0(u)du

1− β
∫ d(xn)

0
L0(u)du

≤
β
∫ d(xn)

0
L(u)du

1− β
∫ d(xn)

0
L0(u)du

+

√
2cβ2

∫ d(xn)

0
L0(u)du

1− β
∫ d(xn)

0
L0(u)du

.

Setting n = 0 above, we get ‖x1 − p‖ ≤ q0‖x0 − p‖. Hence, x1 ∈ U(p, ρ), this shows that
(1.1) is well defined and by induction xn ∈ U(p, ρ) for all n. Further d(x) = ‖xn − p‖ is
decreasing monotonically. Therefore, we have

‖xn+1 − p‖ ≤
β
∫ d(xn)

0
L(u)udu

d(xn)2(1− β
∫ d(xn)

0
L0(u)du)

d(xn)2

+

√
2cβ2

∫ d(x0)

0
L0(u)du

d(xn)(1− β
∫ d(x0)

0
L0(u)du)

d(xn)

≤
β
∫ d(x0)

0
L(u)du

d(x0)2(1− β
∫ d(x0)

0
L0(u)du)

d(xn)2 +

√
2cβ2

∫ d(x0)

0
L0(u)du

d(x0)(1− β
∫ d(x0)

0
L0(u)du)

d(xn).

In particular, if c = 0, we obtain

‖xn+1 − p‖ ≤
β
∫ d(x0)

0
L(u)du

d(x0)2(1− β
∫ d(x0)

0
L0(u)du)

d(xn)2 =
q0

d(x0)
‖xn − p‖2.

�

Concerning the uniqueness of the solution p we can show:

Proposition 3.1. Suppose p satisfies (1.1), F has a continuous derivative in U(p, ρ), F ′(p) has
full rank and F ′ satisfies the center Lipschitz condition with L0 average. Let ρ > 0 satisfy

(3.15) µ(L0) =
β

ρ

∫ ρ

0

L0(u)(ρ− u)du+
cβ0
ρ

∫ ρ

0

L0(u)du ≤ 1,

where c, β are given in (3.12) and

(3.16) β0 = ‖[F ′(p)TF ′(p)]−1‖.

Then, problem (1.1) has a unique solution p in U(p, ρ).

Proof. Let x0 ∈ U(p, ρ), x0 6= p is also a solution of (1.1). Then we have

(3.17) [F ′(p)TF ′(p)]−1F ′(x0)TF (x0) = 0.
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Hence,

x0 − p = x0 − p− [F ′(p)TF ′(p)]−1F ′(x0)TF (x0)

= [F ′(p)TF ′(p)]−1F ′(x0)T [F ′(p)(x0 − p)− F (x0) + F (p)]

+[F ′(p)TF ′(p)]−1(F ′(x0)T − F ′(x0)T )F (x0)

= [F ′(p)TF ′(p)]−1F ′(x0)T
∫ t

0

[F ′(p)− F ′(p+ t(x0 − p)](x0 − p)dt

+[F ′(p)TF ′(p)]−1(F ′(x0)T − F ′(x0)T )F (x0),

where 0 ≤ t ≤ 1. So, we have

‖x0 − p‖ ≤ ‖[F ′(p)TF ′(p)]−1F ′(x0)T ‖
∫ t

0

‖[F ′(p)− F ′(p+ t(x0 − p)]‖‖(x0 − p)‖dt

+‖[F ′(p)TF ′(p)]−1‖‖F ′(x0)T − F ′(x0)T ‖‖F (x0)‖

≤ β

∫ 1

0

∫ td(x0)

0

L0(u)dud(x0)dt+ cβ0

∫ d(x0)

0

L0(u)du

= β

∫ d(x0)

0

L0(u)(d(x0)− u)du+ cβ0

∫ d(x0)

0

L0(u)du.

From L(u) > 0 and Lemma 2.4, we have 1
t

∫ t
0
L0(u)du is increasing monotonically with

respect to t. Therefore, by (3.15) we obtain

‖x0 − p‖ ≤ β

∫ d(x0)

0

L0(u)(d(x0)− u)du+ cβ0

∫ d(x0)

0

L0(u)du

≤ βd(x0)

d(x0)

∫ d(x0)

0

L0(u)(d(x0)− u)du+
cβ0d(x0)

d(x0)

∫ d(x0)

0

L0(u)du

<
βd(x0)

ρ

∫ ρ

0

L0(u)(ρ− u)du+
cβ0d(x0)

ρ

∫ ρ

0

L0(u)du

≤ ‖x0 − p‖.
�

The optimality of radius

Theorem 3.2. Suppose that the equality sign holds in the inequality (3.10) in the Theorem 3.1.
Then the value ρ of the convergence ball is the best possible, provided that L0 = L.

Proof. The value of ρ is specified by equation

(3.18)
β
∫ ρ
0
L(u)udu

ρ(1− β
∫ ρ
0
L0(u)du)

+

√
2cβ2

∫ ρ
0
L0(u)udu

ρ(1− β
∫ ρ
0
L0(u)du)

= 1,

there exists F satisfying (3.5) in U(p, ρ) and x0 on the boundary of the closed ball such
that GN fails. In fact, the following is an example on the scaled case:

(3.19) F (x) =

{
p− x+ β

∫ x−p
0

(x− p− u)L(u)du, p ≤ x < p+ ρ′

p− x+ β
∫ x−p
0

(x− p+ u)L(u)du, p− ρ ≤ x < p,

and x0 = p+ ρ, xn = p+ (−1)nρ.
�

Theorem 3.3. Suppose that the equality sign holds in the inequality (3.15) in the Proposition 3.1.
Then the value of the convergence ball is the best possible.
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Proof. Note that when ρ is given by

(3.20)
β

ρ

∫ ρ

0

L0(u)(ρ− u)du+
cβ0
ρ

∫ ρ

0

L0(u)du = 1

there exist F satifying Definition 3.1 in U(p, ρ) and x′ on the boundary of the closed ball
such that F ′(x′) = min{ 12F

′(x)T , F ′(x)}. For example consider (3.19) with x′ = p+ ρ. �

Remark 3.1. If L0 = L = L1, we obtain the results in [7] which in turn generalized earlier
results in [11, 13, 14] when these functions are constants or not. Moreover, if L = L1, then
the results reduce to the ones obtained by us in [4–6]. Otherwise, i.e., if L0 < L < L1 (or
L < L0 < L1) (see [4–6] for examples), then we obtain a larger radius of convergence,
tighter error bounds on the distances ‖xn − p‖ and an at least as precise information on
the location of the solution p, since

λ(L0, L) < λ(L0, L1) < λ(L1, L1)

q0(L0, L) < q0(L0, L1) < q0(L1, L1)

and
µ(L0) < µ(L) < µ(L1).

These advantages are obtained under the same computational cost, since in practice the
computation of functionL1 requires the computation of functionL0 andL as special cases.
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