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Cyclic permutations and crossing numbers of join products
of symmetric graph of order six

ŠTEFAN BEREŽNÝ and MICHAL STAŠ

ABSTRACT. In the paper, we extend known results concerning crossing numbers for join of graphs of order
six. We give the crossing number of the join productG+Dn, where the graphG consists of two leaves incident
with two opposite vertices of one 4-cycle, andDn consists on n isolated vertices. The proof is done with the help
of software that generates all cyclic permutations for a given number k, and creates a new graph COG for
a calculating the distances between all (k − 1)! vertices of the graph. Finally, by adding new edges to the graph
G, we are able to obtain the crossing number of the join product with the discrete graphDn for two other graphs.
The methods used in the paper are new, and they are based on combinatorial properties of cyclic permutations.

1. INTRODUCTION

Let G be a simple graph with the vertex set V (G) and the edge set E(G). The crossing
number cr(G) of the graph G is defined as the minimum possible number of edge crossings
in a drawing of G in the plane. A drawing with the minimum number of crossings (an
optimal drawing) must be a good drawing; that is, each two edges have at most one point
in common, which is either a common end-vertex a crossing. Moreover, no three edges
cross in a point. Let G1 and G2 be simple graphs with vertex sets V (G1) and V (G2), and
edge sets E(G1) and E(G2), respectively. The join product of two graphs G1 and G2,
denoted by G1 + G2, is obtained from the vertex-disjoint copies of G1 and G2 by adding
all edges between V (G1) and V (G2). For |V (G1)| = m and |V (G2)| = n, the edge set of
G1 +G2 is the union of disjoint edge sets of the graphs G1, G2, and the complete bipartite
graph Km,n.

Let D (D(G)) be a good drawing of the graph G. We denote the number of crossings
in D by crD(G). Let Gi and Gj be edge-disjoint subgraphs of G. We denote the number
of crossings between edges of Gi and edges of Gj by crD(Gi, Gj), and the number of
crossings among edges of Gi in D by crD(Gi). It is easy to see that for any three mutually
edge-disjoint subgraphs Gi, Gj , and Gk of G, the following equations hold:

crD(Gi ∪Gj) = crD(Gi) + crD(Gj) + crD(Gi, Gj) ,

crD(Gi ∪Gj , Gk) = crD(Gi, Gk) + crD(Gj , Gk) .

In the paper, some proofs are based on the Kleitman’s result on crossing numbers of
the complete bipartite graphs [4]. More precisely, he proved that

cr(Km,n) =
⌊m

2

⌋⌊m− 1

2

⌋⌊n
2

⌋⌊n− 1

2

⌋
, if m ≤ 6.

The purpose of this article is to extend the known results in [2], [5], [6], [7], [8], [9],
[10], and [11] for another two graphs. The methods used in the paper are new, and they
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are based on combinatorial properties of cyclic permutations. The similar methods were
partially used first time in the papers [3], and [10]. In [2], and [11], the properties of
cyclic permutations are also verified by the help of software. According to our opinion
the methods used in [5], [8], and [9], do not allow to establish the crossing number of
the join product G + Dn. Let G be the graph consisting of one 4-cycle and of two leaves
incident with two opposite vertices of the 4-cycle. We consider the join product of G with
the discrete graph on n vertices denoted by Dn. The graph G+Dn consists of one copy of
the graph G and of n vertices t1, t2, . . . , tn, where any vertex ti, i = 1, 2, . . . , n, is adjacent
to every vertex of G. Let T i, 1 ≤ i ≤ n, denote the subgraph induced by the six edges
incident with the vertex ti. Thus, T 1 ∪ · · · ∪ Tn is isomorphic with the complete bipartite
graph K6,n and

(1.1) G + Dn = G ∪K6,n = G ∪

(
n⋃

i=1

T i

)
.

2. CYCLIC PERMUTATIONS AND CONFIGURATIONS

Let D be a good drawing of the graph G + Dn. The rotation rotD(ti) of a vertex ti
in the drawing D is the cyclic permutation that records the (cyclic) counter-clockwise
order in which the edges leave ti, see [3]. We use the notation (123456) if the counter-
clockwise order the edges incident with the vertex ti is tiv1, tiv2, tiv3, tiv4, tit5, and tiv6.
We emphasize that a rotation is a cyclic permutation. Hence, for i, j ∈ {1, 2, . . . , n}, i 6= j,
every subgraph T i ∪ T j of the graph G + Dn is isomorphic with the graph K6,2. In the
paper, we will deal with the minimal necessary number of crossings among edges of a
subgraph isomorphic with K6,2 in a drawing of G + Dn in which no edge of K6,2 crosses
G, i.e. with the minimum of necessary number of crossings between the edges of T i and
the edges of T j in a subgraph T i ∪ T j induced by the drawing D of the graph G + Dn

depending on the rotations rotD(ti) and rotD(tj). Two vertices ti and tj of G + Dn are
antipodal in a drawing of G+Dn if the subdrawing of T i∪T j has no crossings. A drawing
is antipodal-free if it has no antipodal vertices.

As the complete bipartite graph K6,n is a subgraph of G + Dn, let us discuss some
properties of crossings among edges of its subgraph K6,2. Let D be a good drawing of
the graph K6,n. Woodall [12] proved that in the subdrawing of T i∪T j ∼= K6,2 induced by
D, crD(T i, T j) ≥ 6 if rotD(ti) = rotD(tj). Moreover, if Q(rotD(ti), rotD(tj)) denotes the
minimum number of interchanges of adjacent elements of rotD(ti) required to produce the
inverse cyclic permutation of rotD(tj), then Q(rotD(ti), rotD(tj)) ≤ crD(T i, T j). We will
separate the subgraphs T i, i = 1, . . . , n, of the graph G+Dn into three subsets depending
on how many considered T i crosses the edges of G in D. Let RD = {T i : crD(G,T i) = 0}
and SD = {T i : crD(G,T i) = 1}, for i ∈ {1, 2, . . . , n}. Hence, every other subgraph T i

crosses G at least twice in D. Moreover, let F i denote the subgraph G ∪ T i for T i ∈ RD,
where i ∈ {1, . . . , n}. Thus, for a given drawing of G, any F i is exactly represented by
rotD(ti). By D(F i) we will understand subdrawing of F i induced by D. The list with
the short names of 6!/6 = 120 cyclic permutations of six elements can be generated by
the algorithm, see [1]. They are collected in Table 1.
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Name Cyclic p. Name Cyclic p. Name Cyclic p. Name Cyclic p.
P1→ (1 2 3 4 5 6) P31 → (1 2 3 6 4 5) P61→ (1 2 5 6 3 4) P91→ (1 4 5 6 2 3)
P2→ (1 3 2 4 5 6) P32 → (1 3 2 6 4 5) P62→ (1 5 2 6 3 4) P92→ (1 5 4 6 2 3)
P3→ (1 2 4 3 5 6) P33 → (1 2 6 3 4 5) P63→ (1 2 6 5 3 4) P93→ (1 4 6 5 2 3)
P4→ (1 4 2 3 5 6) P34 → (1 6 2 3 4 5) P64→ (1 6 2 5 3 4) P94→ (1 6 4 5 2 3)
P5→ (1 3 4 2 5 6) P35 → (1 3 6 2 4 5) P65→ (1 5 6 2 3 4) P95→ (1 5 6 4 2 3)
P6→ (1 4 3 2 5 6) P36 → (1 6 3 2 4 5) P66→ (1 6 5 2 3 4) P96→ (1 6 5 4 2 3)
P7→ (1 2 3 5 4 6) P37 → (1 2 4 6 3 5) P67→ (1 3 5 6 2 4) P97→ (1 3 4 5 6 2)
P8→ (1 3 2 5 4 6) P38 → (1 4 2 6 3 5) P68→ (1 5 3 6 2 4) P98→ (1 4 3 5 6 2)
P9→ (1 2 5 3 4 6) P39 → (1 2 6 4 3 5) P69→ (1 3 6 5 2 4) P99→ (1 3 5 4 6 2)
P10 → (1 5 2 3 4 6) P40 → (1 6 2 4 3 5) P70→ (1 6 3 5 2 4) P100→ (1 5 3 4 6 2)
P11 → (1 3 5 2 4 6) P41 → (1 4 6 2 3 5) P71→ (1 5 6 3 2 4) P101→ (1 4 5 3 6 2)
P12 → (1 5 3 2 4 6) P42 → (1 6 4 2 3 5) P72→ (1 6 5 3 2 4) P102→ (1 5 4 3 6 2)
P13 → (1 2 4 5 3 6) P43 → (1 3 4 6 2 5) P73→ (1 2 4 5 6 3) P103→ (1 3 4 6 5 2)
P14 → (1 4 2 5 3 6) P44 → (1 4 3 6 2 5) P74→ (1 4 2 5 6 3) P104→ (1 4 3 6 5 2)
P15 → (1 2 5 4 3 6) P45 → (1 3 6 4 2 5) P75→ (1 2 5 4 6 3) P105→ (1 3 6 4 5 2)
P16 → (1 5 2 4 3 6) P46 → (1 6 3 4 2 5) P76→ (1 5 2 4 6 3) P106→ (1 6 3 4 5 2)
P17 → (1 4 5 2 3 6) P47 → (1 4 6 3 2 5) P77→ (1 4 5 2 6 3) P107→ (1 4 6 3 5 2)
P18 → (1 5 4 2 3 6) P48 → (1 6 4 3 2 5) P78→ (1 5 4 2 6 3) P108→ (1 6 4 3 5 2)
P19 → (1 3 4 5 2 6) P49 → (1 2 3 5 6 4) P79→ (1 2 4 6 5 3) P109→ (1 3 5 6 4 2)
P20 → (1 4 3 5 2 6) P50 → (1 3 2 5 6 4) P80→ (1 4 2 6 5 3) P110→ (1 5 3 6 4 2)
P21 → (1 3 5 4 2 6) P51 → (1 2 5 3 6 4) P81→ (1 2 6 4 5 3) P111→ (1 3 6 5 4 2)
P22 → (1 5 3 4 2 6) P52 → (1 5 2 3 6 4) P82→ (1 6 2 4 5 3) P112→ (1 6 3 5 4 2)
P23 → (1 4 5 3 2 6) P53 → (1 3 5 2 6 4) P83→ (1 4 6 2 5 3) P113→ (1 5 6 3 4 2)
P24 → (1 5 4 3 2 6) P54 → (1 5 3 2 6 4) P84→ (1 6 4 2 5 3) P114→ (1 6 5 3 4 2)
P25 → (1 2 3 4 6 5) P55 → (1 2 3 6 5 4) P85→ (1 2 5 6 4 3) P115→ (1 4 5 6 3 2)
P26 → (1 3 2 4 6 5) P56 → (1 3 2 6 5 4) P86→ (1 5 2 6 4 3) P116→ (1 5 4 6 3 2)
P27 → (1 2 4 3 6 5) P57 → (1 2 6 3 5 4) P87→ (1 2 6 5 4 3) P117→ (1 4 6 5 3 2)
P28 → (1 4 2 3 6 5) P58 → (1 6 2 3 5 4) P88→ (1 6 2 5 4 3) P118→ (1 6 4 5 3 2)
P29 → (1 3 4 2 6 5) P59 → (1 3 6 2 5 4) P89→ (1 5 6 2 4 3) P119→ (1 5 6 4 3 2)
P30 → (1 4 3 2 6 5) P60 → (1 6 3 2 5 4) P90→ (1 6 5 2 4 3) P120→ (1 6 5 4 3 2)

TABLE 1. Names of Cyclic Permutations of 6-elements set.

FIGURE 1. Drawings of the graph G with crD(G) = 0 and of G + D2.

In the paper, we will dealt with only drawings of the graph G with a possibility of an
existence of a subgraph T i ∈ RD because of mentioned arguments in the proof of the main
Theorem 3.1. Assume a good drawing D of the graph G + Dn in which the edges of G
do not cross each other. In this case, without loss of generality, we can choose the vertex
notations of the graph in such a way as shown in Fig. 1(a).
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Our aim is to list all possible rotations rotD(ti) which can appear in D if the edges of T i

do not cross the edges of G. Since there is only one subdrawing of F i\{v1, v3} represented
by the rotation (2546), we have four possibilities how to obtain the subdrawing of F i

depending on in which region the edges tiv1 and tiv3 are placed. Thus, there are four
different possible configurations of the subgraph F i denoted as A1, A2, A3, and A4, i.e.
rotD(ti) = Aj for j = 1, 2, 3, 4. As for our considerations does not play role which of the
regions is unbounded, assume the drawings shown in Fig. 2. In the rest of the paper, each
cyclic permutation will be represented by the permutation with 1 in the first position.
Thus, the configurations A1, A2, A3, and A4 are represented by the cyclic permutations
P116 = (154632), P44 = (143625), P102 = (154362), and P47 = (146325), respectively. In
a fixed drawing of the graph G + Dn, some configurations fromM do not must appear.
We denote by MD the set of all configurations that exist in the drawing D belonging
to the set M = {A1, A2, A3, A4}. The unique drawing of the subgraph F i contains six
regions with the vertex ti on their boundaries, e.g. if F i has the configuration A1, then let
us denote these six regions by ω1,2, ω2,3, ω3,6, ω3,6,4, ω1,4,5, and ω1,5 depending on which
of vertices of G are located on the boundary of the corresponding region. We will shortly
write tj ∈ ωx,y , if a vertex tj is placed in the region ωx,y .

FIGURE 2. Four drawings of possible configurations fromM of subgraph F i.

We remark that if two different subgraphs F i and F j with configurations from MD

cross in a drawing D of G + Dn, then only the edges of T i cross the edges of T j . Thus,
we will deal with the minimum numbers of crossings between two different subgraphs
F i and F j depending on their configurations. Let X , Y be the configurations fromMD.
We shortly denote by crD(X,Y ) the number of crossings in D between T i and T j for
different T i, T j ∈ RD such that F i, F j have configurations X , Y , respectively. Finally, let
cr(X,Y ) = min{crD(X,Y )} over all good drawings of the graph G+Dn with X,Y ∈MD.
Our aim is to establish cr(X,Y ) for all pairs X,Y ∈M. In the next statements we are able
to use the possibilities of the algorithm of the cyclic permutations of 6-elements set, see
[1]. By Pi we will understand the inverse cyclic permutation to the permutation Pi, for
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i = 1, . . . , 120. Woodall [12] defined the cyclic-ordered graph COG with the set of vertices
V = {P1, P2, . . . , P120}, and with the set of edges E, where two vertices are joined by
the edge if the vertices correspond to the permutations Pi and Pj , which are formed by
the exchange of exactly two adjacent elements of the 6-tuple (i. e. an ordered set with
6 elements). Hence, if dCOG(”rotD(ti)”, ”rotD(tj)”) denotes the distance between two
vertices correspond to the cyclic permutations rotD(ti) and rotD(tj) in the graph COG,
then

(2.2) dCOG(”rotD(ti)”, ”rotD(tj)”) = Q(rotD(ti), rotD(tj)) ≤ crD(T i, T j)

for any two different subgraphs T i and T j .
Let us show mentioned lower-bounds of number of crossing of two configurations.

The configurations A1 and A2 are represented by the cyclic permutations P116 = (154632)

and P44 = (143625), respectively. Since P116 = (123645) = P31, we have cr(A1, A2) ≥ 4
using of dCOG(”P31”, ”P44”) = 4. The same reason gives us cr(A1, A3) ≥ 5, cr(A1, A4) ≥ 5,
cr(A2, A3) ≥ 5, cr(A2, A4) ≥ 5, and cr(A3, A4) ≥ 4. Moreover, by a discussion of possible
subdrawings, we can verify that cr(A3, A4) ≥ 5. Let F i and F j be two different graphs
having the configuration A3, A4, respectively. We will consider two possibilities for a
placement of the vertex tj into the six regions of F i with the vertex ti on their boundaries.
Remark that rotD(tj) = A4 is represented by the cyclic permutation P47 = (146325),
and let us denote ω? = ω1,2 ∪ ω2,3,6 ∪ ω3,6 and ω?? = ω3,4 ∪ ω1,4,5 ∪ ω1,5. If tj ∈ ω?,
then the subdrawing D(F j) induced by the edges incident with the vertices v1, v4, and
v5 crosses the edges of T i on the boundary ω? at least twice, once, and once, respectively.
Since T j ∈ RD and rotD(tj) = A4, the edges of T j must cross the edges of the region ω2,3,6

at least once. If tj ∈ ω??, then the subdrawing D(F j) induced by the edges incident with
the vertices v3, v2, and v6 crosses the edges of T i on the boundary ω?? also at least twice,
once, and once, respectively. Similarly, the edges of T j must cross the edges of the region
ω1,4,5 also at least once. Thus, the edges of F j cross the edges of F i together at least five
times. Clearly, also cr(Ai, Ai) ≥ 6 for any i = 1, 2, 3, 4. Thus, all lower-bounds of number
of crossing of configurations fromM are summarized in Table 2.

− A1 A2 A3 A4

A1 6 4 5 5
A2 4 6 5 5
A3 5 5 6 5
A4 5 5 5 6

TABLE 2. The necessary number of crossings between T i and T j for
the configurations of F i and F j fromM.

3. THE CROSSING NUMBER OF G + Dn

In the proof of Theorem 3.1, the following lemmas related to some restricted drawings
of the graph G+Dn are needed. Let us note that if the edges of G do not cross each other,
in D, then crD(T i ∪ T j) ≥ 4 for any two different subgraphs T i, T j ∈ RD by Table 2.

Lemma 3.1. Let D be a good and antipodal-free drawing of G + Dn, n > 2. Let 2|RD|+ |SD| >
2n − 2

⌊
n
2

⌋
and let T i, T j ∈ RD be two different subgraphs with crD(T i ∪ T j) ≥ 4. If both

conditions

(3.3) crD(G ∪ T i ∪ T j , T l) ≥ 10 for any T l ∈ RD \ {T i, T j},
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(3.4) crD(G ∪ T i ∪ T j , T l) ≥ 7 for any T l ∈ SD

hold, then there are at least 6
⌊
n
2

⌋⌊
n−1
2

⌋
+ 2
⌊
n
2

⌋
crossings in D.

Proof. We denote by r = |RD| and s = |SD|. By the antipodal-free drawing D, any
subgraph T l 6∈ RD ∪ SD satisfies the condition crD(G ∪ T i ∪ T j , T l) ≥ 4, and the number
of T l that cross the graph G at least twice is equal to n − r − s. By fixing of the graph
G ∪ T i ∪ T j we have

crD(G + Dn) = crD(K6,n−2) + crD(K6,n−2, G ∪ T i ∪ T j) + crD(G ∪ T i ∪ T j)

≥ 6
⌊n− 2

2

⌋⌊n− 3

2

⌋
+ 10(r − 2) + 7s + 4(n− r − s) + 4 = 6

⌊n− 2

2

⌋⌊n− 3

2

⌋
+ 3(2r + s)

+4n− 16 ≥ 6
⌊n− 2

2

⌋⌊n− 3

2

⌋
+ 3
(

2n− 2
⌊n

2

⌋
+ 1
)

+ 4n− 16 ≥ 6
⌊n

2

⌋⌊n− 1

2

⌋
+ 2
⌊n

2

⌋
.

�
Remark that if D is a good and antipodal-free drawing of G + Dn, and T i ∈ RD such

that F i has configuration Aj ∈ MD, then crD(G ∪ T i, T l) ≥ 3 for any subgraph T l, l 6= i,
see Fig. 2. Moreover, there are possibilities of an existence of a subgraph T k ∈ SD with
crD(T i, T k) = 2 only for the cases of the configurations A1, and A2 of F i.

Lemma 3.2. Let D be a good and antipodal-free drawing of G + Dn, n > 2. Let T i ∈ RD be
a subgraph such that F i has configuration Aj ∈MD, j ∈ {1, 2}. If there is a subgraph T k ∈ SD

with crD(T i, T k) = 2, then
a) crD(T i ∪ T k, T l) ≥ 4 for any subgraph T l, l 6= i, k;
b) crD(G ∪ T i ∪ T k, T l) ≥ 7 for any subgraph T l ∈ SD, with crD(T i, T l) = 3;
c) crD(G ∪ T i ∪ T k, T l) ≥ 6 for any subgraph T l ∈ SD, with crD(T i, T l) = 4.

Proof. Let us assume the configuration A1 of F i, and remark that it is represented by
the cyclic permutation P116 = (154632).

a) The unique drawing of the subgraph F i contains six regions with the vertex ti
on their boundaries, see Fig. 2. If there is a T k ∈ SD with crD(T i, T k) = 2, then
the vertex tk must be placed in the quadrangular region with three vertices of
G on its boundary, i.e. tk ∈ ω3,6,4 or tk ∈ ω1,4,5. Thus, the subgraph F k has a
configuration which can be represented only by two possible cyclic permutations
P27 = (124365) or P28 = (142365), see Fig. 3. For example, with the help of the
algorithm [1], the reader can easy to verify there is no cyclic permutation Pm diffe-
rent from P116, P27, and P28 with dCOG(”P116”, ”Pm”) + dCOG(”P27”, ”Pm”) < 4,
or dCOG(”P116”, ”Pm”) + dCOG(”P28”, ”Pm”) < 4. Thus, Woodall’s result implies
that there is no subgraph T l with crD(T i ∪ T k, T l) < 4 for any l 6= i, k.

b) Let T l ∈ SD be a subgraph with crD(T i, T l) = 3. The reader can easy to verify by
a discussion that if tl ∈ ω1,2∪ω1,5∪ω2,3∪ω3,6, then crD(T i, T l) ≥ 4. Let the vertex
tl be placed in one of the region ω3,6,4, ω1,4,5. Then the subdrawing D(F l) indu-
ced by the edges incident with the vertices v4, v5, and v6 crosses the edges of T i

once. Since T l ∈ SD, the subdrawing D(F l) induced by the edges incident with
the vertices v1, and v2 crosses the edge of G at most once. Thus, the subgraph
F l has a configuration represented by cyclic permutations containing the cyclic
sub-permutation (546), but not containing the cyclic sub-permutations (4126) and
(4216). Hence, let us define

Perm = {Pl : (546) ⊂ Pl ∧ (4126) 6⊂ Pl ∧ (4216) 6⊂ Pl},
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where l ∈ {1, . . . , 120}. If there is a subgraph T k ∈ SD with crD(T k, T i) = 2, then
crD(G ∪ T i ∪ T k, T l) ≥ 1 + 3 + 3 = 7 for any T l ∈ SD with crD(T k, T l) ≥ 3.

Assume that there is a subgraph T l ∈ SD, l 6= k with crD(T k, T l) < 3. Since
P27 = P113, P28 = P71, and P116 = P31, let us define the following sets of the cyclic
permutations Perm27 = {Pl : dCOG(”Pl”, ”P113”) < 3 ∧ dCOG(”Pl”, ”P31”) ≤ 3},
and Perm28 = {Pl : dCOG(”Pl”, ”P71”) < 3 ∧ dCOG(”Pl”, ”P31”) ≤ 3}. Hence,
the subgraph F l has a configuration represented by a Pl ∈ Perm27 ∪ Perm28, see
[12]. By the help of the algorithm [1], we can verify that

Perm27 = {P36, P45, P46, P51, P61, P62, P63, P65, P68, P106, P109, P110, P112},
Perm28 = {P2, P12, P34, P35, P36, P46, P54, P61, P62, P65, P66, P68, P110}.

Since the sets Perm and Perm27 ∪ Perm28 are disjoint, then there is no subgraph
T l ∈ SD, l 6= k with crD(T k, T l) < 3.

c) If there is a subgraph T l ∈ SD with crD(T i, T l) = 4, then crD(G ∪ T i ∪ T k, T l) ≥
1 + 4 + 1 = 6 by the antipodal-free drawing D.

Due to symmetry of the configurations A1 and A2, let us define the function

Π : {1, 2, 3, 4, 5, 6} → {1, 2, 3, 4, 5, 6}, with 1↔ 3, 2↔ 4, and 5↔ 6.

Thus, the configuration A2 is obtained from A1 using the transformation Π, and this com-
pletes the proof of Lemma. �

Remark that the lower bound 6 in case c) of Lemma 3.2 can not be higher, see Fig. 3.

FIGURE 3. Two drawings of G∪T i∪T k∪T l with crD(G∪T i∪T k, T l) = 6
for T i ∈ RD with the configuration A1 of F i = G ∪ T i, and T k, T l ∈ SD.

Lemma 3.3. Let D be a good and antipodal-free drawing of G + Dn, n > 2, and let MD be
non-empty set with {A1, A2} ⊆ MD. If T i, T j ∈ RD are different subgraphs such that F i, F j

have configurations A1, A2, respectively, then

crD(G ∪ T i ∪ T j , T k) ≥ 7 for any T k ∈ SD.

Proof. Let us assume the configurations A1 of F i, and A2 of F j . If there is a T k ∈ SD

with crD(T i, T k) = 2, then the subgraph F k can be represented by one of the cyclic
permutations P27 = (124365), and P28 = (142365). Let us note that the configuration
A2 is represented by P44. Using P27 = (156342) = P113, P28 = (156324) = P71, and
dCOG(”P71”, ”P44”) = dCOG(”P113”, ”P44”) = 4 we obtain crD(T j , T k) ≥ 4. Hence,
crD(G ∪ T i ∪ T j , T k) ≥ 1 + 2 + 4 = 7. Due to symmetry, we can apply the same

Let τ , σ be two cyclic permutations. We will say that τ is a cyclic sub-permutation of σ, if each cycle of τ is
a sub-cycle of some cycle of σ in the obvious sense of preserving cyclic order. We denote this by τ ⊂ σ.
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idea for the case, if there is a T k ∈ SD with crD(T j , T k) = 2. If crD(T i, T k) ≥ 3, and
crD(T j , T k) ≥ 3 for any T k ∈ SD, then crD(G∪T i ∪T j , T k) ≥ 1 + 3 + 3 = 7 trivially holds
for any T k ∈ SD, and this completes the proof. �

The exact values of the crossing numbers of small graphs can be also computed using
the algorithm located on the website http://crossings.uos.de/. It uses an ILP for-
mulation, based on Kuratowski subgraphs, and solves it via branch-and-cut-and-price.
The system also generates verifiable formal proofs. So, we obtain the following result.

Lemma 3.4. cr(G + D2) = 2.

FIGURE 4. A good drawing of G + Dn.

Now we are able to prove the main results of the paper.

Theorem 3.1. cr(G + Dn) = 6
⌊
n
2

⌋⌊
n−1
2

⌋
+ 2
⌊
n
2

⌋
for n ≥ 1.

Proof. In Fig. 4 there is a drawing of G + Dn with 6
⌊
n
2

⌋⌊
n−1
2

⌋
+ 2
⌊
n
2

⌋
crossings. Thus,

cr(G + Dn) ≤ 6
⌊
n
2

⌋⌊
n−1
2

⌋
+ 2
⌊
n
2

⌋
. We prove the reverse inequality by induction on n.

The graph G + D1 is planar, hence cr(G + D1) = 0. By Lemma 3.4 the result is true for
n = 2. Suppose now that, for n ≥ 3, there is a drawing D with

(3.5) crD(G + Dn) < 6
⌊n

2

⌋⌊n− 1

2

⌋
+ 2
⌊n

2

⌋
,

and let

(3.6) cr(G + Dm) ≥ 6
⌊m

2

⌋⌊m− 1

2

⌋
+ 2
⌊m

2

⌋
for any integer m < n.

Let us first show that the considered drawing D must be antipodal-free. As a contra-
diction we can suppose that, without loss of generality, crD(Tn−1, Tn) = 0. One can easy
to verify that crD(G,Tn−1 ∪ Tn) ≥ 2. The known fact that cr(K6,3) = 6 implies that any
T k, k = 1, 2, . . . , n−2, crosses Tn−1∪Tn at least six times. So, for the number of crossings
in D we have

crD(G + Dn) = crD (G + Dn−2) + crD(Tn−1 ∪ Tn) + crD(K6,n−2, T
n−1 ∪ Tn)

+crD(G,Tn−1∪Tn) ≥ 6
⌊n− 2

2

⌋⌊n− 3

2

⌋
+2
⌊n− 2

2

⌋
+6(n−2)+2 = 6

⌊n
2

⌋⌊n− 1

2

⌋
+2
⌊n

2

⌋
.

This contradiction confirms that D is antipodal-free. Our assumption on D together with
cr(K6,n) = 6

⌊
n
2

⌋⌊
n−1
2

⌋
implies that

crD(G) + crD(G,K6,n) < 2
⌊n

2

⌋
.
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Thus, if we denote r = |RD| and s = |SD|, then

crD(G) + 0r + 1s + 2(n− r − s) < 2
⌊n

2

⌋
.

Hence, r ≥ 1, 2r + s > 2n − 2
⌊
n
2

⌋
, and r > n − r − s. For T i ∈ RD, we will discuss

the existence of possible configurations of F i in the drawing D in the following cases:
Case 1: crD(G) = 0.

Since r ≥ 1, i.e. there is a subgraph T i ∈ RD, we can choose the vertex notations of the
graph in such a way as shown in Fig. 1(a). Thus, we will deal with the set of configurations
belonging toMD.

a) Aj ∈MD for some j ∈ {3, 4}.
Without lost of generality, we can assume that Tn ∈ RD with Fn having configu-
ration Aj , j ∈ {3, 4}. The subdrawing of Fn induced by D can be obtained from
the drawings in Fig. 2. Thus, we can easy to verify that there is no T k ∈ SD with
crD(Tn, T k) ≤ 2. Moreover, crD(Tn, T i) ≥ 5 for any T i ∈ RD by Table 2. Hence,
by fixing of the graph G ∪ Tn we have

crD(G + Dn) = crD(K6,n−1) + crD(K6,n−1, G ∪ Tn) + crD(G ∪ Tn)

≥ 6
⌊n− 1

2

⌋⌊n− 2

2

⌋
+ 5(r − 1) + 4s + 3(n− r − s) = 6

⌊n− 1

2

⌋⌊n− 2

2

⌋
+ (2r + s)

+3n−5 ≥ 6
⌊n− 1

2

⌋⌊n− 2

2

⌋
+
(

2n− 2
⌊n

2

⌋
+ 1
)

+3n−5 ≥ 6
⌊n

2

⌋⌊n− 1

2

⌋
+2
⌊n

2

⌋
.

In addition, let us consider that A3 6∈ MD and A4 6∈ MD.
b) {A1, A2} ⊆ MD.

Without lost of generality, let us fix two Tn, Tn−1 ∈ RD such that Fn, Fn−1

have configurations A1, A2, respectively. Then condition (3.3) is true by summing
the values in all columns in the first two rows of Table 2, and condition (3.4) holds
by Lemma 3.3. Thus, all assumptions of Lemma 3.1 are fulfilled.

c) MD = {Aj} for only one j ∈ {1, 2}.
Without lost of generality, we can assume the configuration A1 of Fn. Let us
denote SD(Tn) = {T i ∈ SD : crD(Fn, T i) = 3}, and S′D(Tn) = {T i ∈ SD :
crD(Fn, T i) = 4}. We denote by s1 = |SD(Tn)| and s2 = |S′D(Tn)|. Remark that
SD(Tn) and S′D(Tn) are disjoint subsets of SD, and s1 + s2 ≤ s, i.e. s− s1− s2 ≥ 0.
Hence, we will discuss two possibilities:

1) If s1 ≤ s− s1 − s2, then by fixing of the graph G ∪ Tn we have

crD(G + Dn) = crD(K6,n−1) + crD(K6,n−1, G ∪ Tn) + crD(G ∪ Tn)

≥ 6
⌊n− 1

2

⌋⌊n− 2

2

⌋
+ 6(r − 1) + 3s1 + 4s2 + 5(s− s1 − s2) + 3(n− r − s)

≥ 6
⌊n− 1

2

⌋⌊n− 2

2

⌋
+ 6(r − 1) + 4s + 3(n− r − s) = 6

⌊n− 1

2

⌋⌊n− 2

2

⌋
+r + (2r + s) + 3n− 6 ≥ 6

⌊n
2

⌋⌊n− 1

2

⌋
+ 2
⌊n

2

⌋
.

2) Let us assume that s1 > s − s1 − s2, i.e. s1 − 1 ≥ s − s1 − s2. Let T k be
a subgraph from non-empty set SD(Tn). As we assume MD = {A1}, then
we have crD(G ∪ Tn ∪ T k, T i) ≥ 6 + 2 = 8 for any T i ∈ RD, i 6= n. In
the proof of Lemma 3.2, it was showed that the subgraph F k can have only
configuration represented by one of the cyclic permutations P27 = (124365),
and P28 = (142365). Using P28 = P71, and dCOG(”P27”, ”P71”) = 5 we obtain
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crD(G ∪ Tn ∪ T k, T i) ≥ 1 + 2 + 5 = 8 for any T i ∈ SD(Tn), i 6= k. Again by
Lemma 3.2, we can verify that crD(G∪Tn ∪T k, T i) ≥ 7 for any T i ∈ S′D(Tn),
and crD(G∪Tn∪T k, T i) ≥ 6 for any T i ∈ SD with crD(Fn, T i) ≥ 5. Moreover,
crD(G ∪ Tn ∪ T k, T i) ≥ 2 + 4 = 6 for any T i 6∈ RD ∪ SD. Thus, by fixing of
the graph G ∪ Tn ∪ T k we have

crD(G + Dn) = crD(K6,n−2) + crD(K6,n−2, G ∪ Tn ∪ T k) + crD(G ∪ Tn ∪ T k)

≥ 6
⌊n− 2

2

⌋⌊n− 3

2

⌋
+8(r−1)+8(s1−1)+7s2+6(s−s1−s2)+6(n−r−s)+3

≥ 6
⌊n− 2

2

⌋⌊n− 3

2

⌋
+8(r−1)+7(s−1)+6(n−r−s)+3 = 6

⌊n− 2

2

⌋⌊n− 3

2

⌋
+(2r + s) + 6n− 12 ≥ 6

⌊n
2

⌋⌊n− 1

2

⌋
+ 2
⌊n

2

⌋
.

Due to symmetry, the same arguments are used for the caseMD = {A2}.
Case 2: crD(G) = 1.

There are six drawings of G with one crossing among its edges, see Fig. 5. Since RD 6= ∅,
we will dealt with only two drawings of G, because there is a possibility of an existence
of a subgraph T i ∈ RD only for the drawing of G as in Fig. 5(a), (b).

FIGURE 5. Six possible drawings of the graph G with crD(G) = 1.

FIGURE 6. The vertex notations of the graph G with crD(G) = 1.

a) crD(G) = 1 as in Fig. 5(a).
Without loss of generality, we can choose the vertex notations of the graph G in
such a way as shown in Fig. 6(a). Thus, we can list all possible rotations rotD(ti)
which can appear in D if the edges of T i do not cross the edges of G. Let us start
with the subdrawing of D(F i) induced by the edges incident with the vertices v1,
and v3. These two edges together with the edges of G divide the plane into a few
regions, but the vertices v2, and v4, v6 must be placed in two different of them.
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Since there are two possibilities in which region the vertex v5 can be placed, we
obtain two different possible configurations of F i denoted as B1, and B2. They are
are represented by the cyclic permutations P48 = (164325) and P119 = (156432),
respectively.

FIGURE 7. Two drawings of possible configurations of subgraph F i.

The condition P119 = (123465) = P25 together with dCOG(”P48”, ”P25”) = 5 imply
cr(B1, B2) ≥ 5. Moreover, if we assume that Tn ∈ RD, then there is no T k ∈ SD

with crD(Tn, T k) ≤ 2. Hence, by fixing of the graph Fn we can use the same
inequalities as in Case 1a).

b) crD(G) = 1 as in Fig. 5(b).
Without loss of generality, we can choose the vertex notations of the graph G in
such a way as shown in Fig. 6(b). Again, our aim is to list all possible rotations
rotD(ti) which can appear in D if the edges of T i do not cross the edges of G. Since
there is only one subdrawing of F i\{v3, v4} represented by the rotation (1562), we
have four drawings of F i depending on in which region the vertices v3, and v4 are
placed. We denote by ND the set of all configurations that exist in the drawing D
belonging to the set N = {C1, C2, C3, C4}, see Fig. 8. Moreover, all lower-bounds
of number of crossing of configurations fromN are same like in Table 2, of course
with the corresponding indexes.

FIGURE 8. Four drawings of possible configurations from N of subgraph F i.
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It is easy to see, if a T i ∈ RD with the configuration C2 of F i, then crD(G ∪ T i, T j) ≥ 4
for any T j , j 6= i. Thus, we will consider two cases:

1) C2 ∈ ND.
Without lost of generality, we can assume the configuration C2 of Fn. Then, by
fixing of the graph G ∪ Tn we have

crD(G + Dn) = crD(K6,n−1) + crD(K6,n−1, G ∪ Tn) + crD(G ∪ Tn)

≥ 6
⌊n− 1

2

⌋⌊n− 2

2

⌋
+ 4(n− 1) + 1 ≥ 6

⌊n
2

⌋⌊n− 1

2

⌋
+ 2
⌊n

2

⌋
.

2) C2 6∈ ND.
Without lost of generality, let us assume Tn ∈ RD such that the subgraph Fn has
the configuration Cj ∈ ND, j 6= 2. By the drawings of the subgraph Fn in Fig. 8,
there is no T i ∈ SD with crD(G ∪ Tn, T i) ≤ 3. Using the lower-bounds of number
of crossings of configurations in Table 2, if we fix the graph G ∪ Tn, then

crD(G + Dn) = crD(K6,n−1) + crD(K6,n−1, G ∪ Tn) + crD(G ∪ Tn)

≥ 6
⌊n− 1

2

⌋⌊n− 2

2

⌋
+ 5(r − 1) + 4s + 3(n− r − s) + 1 ≥ 6

⌊n
2

⌋⌊n− 1

2

⌋
+ 2
⌊n

2

⌋
.

Case 3: crD(G) ≥ 2.
The reader can easy to verify over all possible drawings D with the non-empty set RD

that if a T i ∈ RD, then crD(G ∪ T i, T j) ≥ 4 for any subgraph T j , j 6= i. Thus, by fixing of
the graph G ∪ T i we have

crD(G + Dn) = crD(K6,n−1) + crD(K6,n−1, G ∪ T i) + crD(G ∪ T i)

≥ 6
⌊n− 1

2

⌋⌊n− 2

2

⌋
+ 4(n− 1) + 2 ≥ 6

⌊n
2

⌋⌊n− 1

2

⌋
+ 2
⌊n

2

⌋
.

Thus, it was shown that there is no good drawing D of the graph G+Dn with less than
6
⌊
n
2

⌋⌊
n−1
2

⌋
+ 2
⌊
n
2

⌋
crossings. This completes the proof of the main theorem. �

4. COROLLARIES

FIGURE 9. Two graphs G1 and G2 by adding new edges to the graph G.

In Fig. 4 we are able to add some edges to the graph G without additional crossings.
So the drawing of the graphs G1 + Dn and G2 + Dn with 6

⌊
n
2

⌋⌊
n−1
2

⌋
+ 2
⌊
n
2

⌋
crossings is

obtained. Thus, the next results are obvious.

Corollary 4.1. cr(Gi + Dn) = 6
⌊
n
2

⌋⌊
n−1
2

⌋
+ 2
⌊
n
2

⌋
for n ≥ 1, where i = 1, 2.

Remark that the crossing numbers of the graph G2 + Dn was obtained in [5] without
using the vertex rotation.
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[3] Hernández-Vélez, C., Medina, C. and Salazar, G., The optimal drawing of K5,n, Electron. J. Combin., 21
(2014), No. 4, ] P4.1, 29 pp.

[4] Kleitman, D. J., The crossing number of K5,n, J. Combinatorial Theory, 9 (2014), 315–323
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[8] Klešč, M. and Schrötter, Š., The crossing numbers of join of paths and cycles with two graphs of order five, Combi-

natorial Algorithms, Sprinder, LNCS, 7125 (2012), 160–167
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