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Proximal point algorithms involving fixed point iteration
for nonexpansive mappings in CAT(κ) spaces
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RAWEEROTE SUPARATULATORN4 and PARIN CHAIPUNYA1

ABSTRACT. In this paper, we propose a new modified proximal point algorithm involving fixed point itera-
tion for nonexpansive mappings in CAT(1) spaces. Under some mild conditions, we prove that the sequence
generated by our iterative algorithm ∆-converges to a common solution between certain convex optimization
and fixed point problems.

1. INTRODUCTION

One of the most major analytical problems is the fixed points problem for nonlinear
mappings. For a real number κ, a CAT(κ) space is defined by a geodesic space whose
geodesic triangle is sufficiently thinner than the corresponding comparison triangle in
a model space with curvature κ. The concept of such a space has been investigated by
lots of researchers. In 2003, Kirk [20, 21] first proved the existence of fixed points for
nonexpansive mappings in a CAT(κ) space for κ ≤ 0. Later on Espánola and Fernández-
León showed this result for κ > 0. In case of at least one fixed point exists, it is natural to
ask whether such a fixed point can be approximated by simple iteration processes. There
are many approximation methods of fixed points for nonexpansive mappings T . In 2012,
He et al. [10] using one of the most successive approximation method is Mann algorithm
[23] which is defined in CAT(κ) spaces by{

x1 ∈ X,
xn+1 = αnxn ⊕ (1− αn)Txn for alln ∈ N,

where {αn} is a real sequence in [0,1]. They proved ∆-convergence theorem for nonex-
pansive mapping in CAT(κ) spaces for κ > 0. Later on, there are many researchers have
shown convergence results in CAT(κ) with curvature bounded above (see, for examples
[14, 15, 16, 26]).

The proximal point algorithm has applications in various fields such as saddle point
problem, variational inequality problems, convex minimization problems and equilibrium
problems [28, 32, 4]. In 1970, this algorithm was first introduced by Martinet [24]. Later
in 1976, Rockafellar [29] studied the proximal point algorithm for solving maximal mo-
notone generalized equation, which can be reduced to solve for a minimizer of a certain
convex function. In this particular case, let g : X → (−∞,∞] be a proper lower semi-
continuos convex function in a Hilbert space H . The Proximal point algorithm is defined
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by  x1 ∈ H,
xn+1 = arg min

y∈H

[
g(y) + 1

2λn
‖y − xn‖2

]
,

for each n ∈ N, where λn > 0 for all n ∈ N.

In 2013, Bačák [3] introduced the proximal point algorithm in a CAT(κ) space for κ ≤ 0
so-called CAT(0) spaces (X, d) as follows:x1 ∈ X,

xn+1 = arg min
y∈X

[
g(y) + 1

2λn
d2(y, xn)

]
,

for each n ∈ N, where λn > 0 for all n ∈ N. He also proved that, if f has a minimizer and∑∞
n=1 λn = ∞, then the sequence {xn} ∆-converges to its minimizer (see also [1]). Later

on, in 2014, Bačák [2] extend the proximal point algorithm to split version for minimizing
a sum of convex functions in complete CAT(0) spaces. Some interesting results restricted
to Hadamard manifolds can be found in [9, 22]. The general proximal point algorithm
designed for variational inequalities and maximal monotone operators in CAT(0) spaces
are also investigated in [13, 6], respectively.

Recently, Kimura and Kohsaka [19] introduced the proximal point algorithm in a CAT(1)
space (X, d) as follows:x1 ∈ X,

xn+1 = arg min
y∈X

[
g(y) + 1

λn
tan d(y, xn) sin d(y, xn)

]
,

for each n ∈ N, where λn > 0 for all n ∈ N. They also proved that, if f has a minimizer
and

∑∞
n=1 λn =∞, then the sequence {xn} ∆-converges to its minimizer.

In this paper, motivated and inspired by above results of the previous works, we pro-
pose the modified proximal point algorithm using the Mann algorithm for nonexpansive
mappings in CAT(1) spaces for finding a common solution between a convex optimization
and a fixed point problem. We also show the ∆-convergence of the proposed algorithm
under some mild conditions.

2. PRELIMINARIES

In this section, we give some fundamental concepts, definitions, and useful lemmas
which will be used in the next section.

Let (X, d) be a metric space and x, y ∈ X with d(x, y) = l. A geodesic path from x
to y is an isometry γ : [0, l] → X such that γ(0) = x, γ(l) = y. The image of a geodesic
path is called geodesic segment. The space (X, d) is said to be a geodesic space if every
two points of X are joined by a geodesic, and X is a uniquely geodesic space if every two
points ofX are joined by only one geodesic segment. We write (1− t)x⊕ ty for the unique
point z in the geodesic segment joining x and y such that

d(x, z) = td(x, y) and d(y, z) = (1− t)d(x, y)

for t ∈ [0, 1]. A set E ⊂ X is said to be convex if E includes every geodesic segment
joining any two of its points. The set E is said to be bounded if

diam(E) := sup{d(x, y) : x, y ∈ E}.
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Now we introduce the model spaces Mn
κ . Let n ∈ N . We denote by En the metric space

Rn endowed with the usual Euclidean distance. We denote by (·|·) the Euclidean scalar
product in Rn such that

(x|y) = x1y1 + ...+ xnyn

where x = (x1, ..., xn), y = (y1, ..., yn).
Let Sn denote the n-dimensional sphere defined by

Sn = {x = (x1, ..., xn+1) ∈ Rn+1 : (x|x) = 1},
with metric dSn(x, y) = arccos(x|y), x, y ∈ Sn. See [30] for more details on these spaces.

LetD be a positive number. A metric space (X, d) is called aD-geodesic space if any two
points of X with the distance < D are joined by a geodesic path. If this holds in a convex
set E, then E is said to beD-convex. For a constant κ, we denoteMκ by the 2-dimensional,
complete, simply connected spaces of curvature κ.

In the following, for each positve real number κ and define the diameter Dκ of Mκ by
Dκ = π√

κ
for k > 0 and Dκ =∞ for κ = 0. It is well known that any ball in X with radius

< Dκ/2 is convex [5]. A geodesic triangle ∆(x, y, z) in the metric space (X, d) consists of
three points x, y, z inX (the vertices of ∆) and three geodesic segments between each pair
of vertices. For ∆(x, y, z) in a geodesic space X satisfying

(2.1) d(x, y) + d(y, z) + d(z, x) < 2Dκ,

there exist points x̄, ȳ, z̄ ∈M2
κ such that d(x, y) = dκ(x̄, ȳ), d(y, z) = dκ(ȳ, z̄), and d(z, x) =

dκ(z̄, x̄) where dκ is the metric of Mκ. The set ∆ and ∆̄ defined by
∆ = [x, y] ∪ [y, z] ∪ [z, x] and ∆̄ = [x̄, ȳ] ∪ [ȳ, z̄] ∪ [z̄, x̄]

are said to be a geodesic triangle having verticles x, y, z and a comparison triangle for
∆(x, y, z), respectively. A geodesic triangle of ∆(x, y, z) in X satisfying (2.1) is called to
satisfy the CAT(κ) inequality if, for any p, q ∈ ∆(x, y, z) and for their comparison points
p̄, q̄ ∈ ∆̄(x̄, ȳ, z̄), then we have

d(p, q) ≤ dκ(p̄, q̄).

Definition 2.1. A metric space (X, d) is called a CAT(κ) space if it is Dκ-geodesic and any
geodesic triangle ∆(x, y, z) in X with d(x, y) + d(y, z) + d(z, x) < 2Dκ satisfies the CAT(κ)
inequality.

For more detailed discussion on geodesic spaces. The interested reader can consult, for
instance, [5, 27, 7, 11, 31].

In the sequel, we denote by F (T ) the set of all fixed point of a self-mapping T of X .
Then a self-mapping T of X is said to be nonexpansive if

d(Tx, Ty) ≤ d(x, y) for all x, y ∈ X.

Since many results and basic concepts in CAT(κ) spaces can be deduced from those in
CAT(1) spaces, we now sufficiently state useful lemmas on CAT(1) spaces.

It is well known that if (X, d) is a CAT(1) space, x, y, z ∈ X satisfy (2.1) for κ = 1 and
α ∈ [0, 1], then we have

(2.2) cos d(αx⊕ (1− α)y, z) ≥ α cos d(x, z) + (1− α) cos d(y, z).

Let R ∈ (0, 2]. Recall that a geodesic space (X, d) is said to be R − convex for R (see
[25]) if any α ∈ [0, 1] and for any three points x, y, z ∈ X , we have
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(2.3) d2(x, (1− α)y ⊕ αz) ≤ (1− α)d2(x, y) + αd2(x, z)− R

2
(1− α)αd2(y, z).

Definition 2.2. A sequence {xn} in a CAT(1) space X is said to be ∆-convergent to a point
x ∈ X if x is the unique asymptotic center of {un} for every subsequence {un} of {xn}.
In this case, we write ∆ − limn→∞ xn = x of {xn} and denote W∆(xn) := ∪{A({un})},
where the union is sum over all subsequences {un} of {xn}.

Let g be a function of X into (−∞,∞]. We denote by domain of g the set of all x ∈ X
such that g(x) ∈ R. The function g is called proper if domain of g is nonempty. It is said to
be lower semi-continuous if the set

K = {x ∈ X : g(x) ≤ β}

is closed in X for all β ∈ R. We denote by arg miny∈X g(y) such that

g(u) ≤ lim inf
n→∞

g(xn)

whenever u is an element of X and {xn} is a sequence of X which is convergent to u.
The function g is said to be convex if

g(αx⊕ (1− α)y) ≤ αg(x) + (1 + α)g(y)

for all x, y ∈ X and α ∈ [0, 1]. See also [33, 12] for some interesting examples of convex
functions in CAT(1) spaces.

Let g : X → (−∞,∞] be a proper lower semi-continuous convex function. For all
λ > 0, define the resolvent of g in admissible CAT(1) spaces as

Rλ(x) = arg min
y∈X

[
g(y) +

1

λ
tan d(y, x) sin d(y, x)

]
for all x ∈ X . The mapping Rλ is well define for all λ > 0 (see [17]). In particular,
the set F (Rλ) of fixed points of the resolvent associated with g coincides with the set
arg miny∈X g(y) of minimizers of g.

For CAT(1) space (X, d) is admissible if d(v, v′) < π
2 for all v, v′ ∈ X . Moreover, the

sequence {xn} in a CAT(1) space is spherical bounded if

inf
y∈X

lim sup
n→∞

d(y, xn) <
π

2

Lemma 2.1. [19] Let (X, d) be an admissible complete CAT(1) space and g : X → (−∞,∞] be a
proper lower semi-continuous convex function. Then, for all x ∈ X , u ∈ arg minX g and λ > 0,
we have two inequalities
(2.4)

λ(g(Rλx)− g(u)) ≤ π

2

(
1

cos d2(Rλx, x)
+ 1

)
(cos d(Rλx, x) cos d(u,Rλx)− cos d(u, x))

and

(2.5) cos d(Rλx, x) cos d(u,Rλx) ≥ cos d(u, x).

Lemma 2.2. [14] Let (X,d) be a complete CAT(1) space and a sequence {xn} is spherical bounded
in X . If {d(xn, u)} is convergent for all u ∈W∆({xn}), then a sequence is ∆-convergent.

Lemma 2.3. [17] Let (X, d) be an admissible complete CAT(1) space and g : X → (−∞,∞] be
a proper lower semi-continuous convex function. Then g is ∆-lower semi-continuous.
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In 2014 Panyanak [26] proved demiclosedness principle for total asymptotically no-
nexpansive mapping in CAT(κ) spaces. We know that each nonexpansive mapping is in
turn a total asymptotically nonexapnsive mapping, then we obtain result immediately as
follows:

Corollary 2.1. Let C be a nonempty closed and convex subset of a complete CAT(1) space (X, d).
Let T : C → C be a nonexpansive mapping. If {xn} be a bounded sequence such that
limn→∞ d(xn, Txn) = 0 and ∆− limn→∞ xn = w, then w ∈ C and w = Tw.

3. MAIN RESULTS

To simplify the proof of our main theorem, we first develop the following lemma which
describes some boundedness properties and also the asymptotic regularity of the algo-
rithm.

Lemma 3.4. Let (X, d) be an admissible complete CAT(1) space and g : X → (−∞,∞] be a
proper lower semi-continuos convex function. Let T be a nonexpansive mapping on X such that
F (T )∩arg minXg 6= ∅.Assume that a sequence {αn} ⊆ [a, b] such that a, b ∈ (0, 1) for all n ≥ 1
and for some a, b and {λn} is a sequence such that λn ≥ λ > 0 for all n ≥ 1 and for some λ. Let
for each x1 ∈ X and the sequence {xn} be generated in the following manner:

(3.6)

{
zn := Rλn(xn),

xn+1 := (1− αn)xn ⊕ αnTzn, ∀n ≥ 1.

Then we have the following statements, for any p ∈ F (T ) ∩ arg minX g:
(s1) limn→∞ d(xn, p) exists.
(s2) limn→∞ d(xn, zn) = 0.
(s3) limn→∞ d(xn, Txn) = 0.

Proof. Procedure 1, we will show (s1) that {xn} is spherical bounded. Note that zn =
Rλnxn for all n ≥ 1. Let p ∈ F (T ) ∩ arg minXg. By inequality (2.5) of Lemma 2.1, then we
have

min{cos d(p, zn), cos d(zn, xn)} ≥ cos d(p, zn) cos d(zn, xn)

≥ cos d(p, xn),(3.7)

which implies

(3.8) max{d(p, zn), d(zn, xn)} ≤ d(p, xn).

It follows from (2.2), T is nonexpansive and assumption admissible of X that

cos d(p, xn+1) = cos d(p, (1− αn)xn ⊕ αnTzn)

≥ (1− αn) cos d(p, xn) + αn cos d(p, Tzn)

≥ (1− αn) cos d(p, xn) + αn cos d(p, zn)

≥ cos d(p, xn).(3.9)

This implies that

(3.10) d(p, xn+1) ≤ d(p, xn) ≤ d(p, x1) <
π

2
.

Hence, by (3.8) and (3.10), we see that

lim sup
n→∞

d(p, zn) ≤ lim sup
n→∞

d(p, xn) <
π

2
.
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Thus sequences {xn} and {zn} are spherically bounded. Moreover, supn d(xn, zn) <
π

2
and limn→∞ d(p, xn) <

π

2
exists for all p ∈ F (T ) ∩ arg minX g.

Procedure 2 Next, we claim that limn→∞ d(xn, zn) = 0.
From (3.7) and (3.9), we see that

cos d(p, xn+1) ≥ (1− αn) cos d(p, xn) + αn cos d(p, Tzn)

≥ (1− αn) cos d(p, xn) + αn cos d(p, zn)

≥ (1− αn) cos d(p, xn) + αn
cos d(p, xn)

cos d(zn, xn)

= cos d(p, xn) + αn cos d(p, xn)

[
1

cos d(zn, xn)
− 1

]
.

Therefore

αn

(
1

cos d(zn, xn)
− 1

)
≤ cos d(p, xn+1)

cos d(p, xn)
− 1

→ 0.

Since αn ≥ a > 0,

(3.11) lim
n→∞

d(zn, xn) = 0,

that is,
lim
n→∞

d(Rλn
xn, xn) = 0.

Procedure 3 Next, we show that limn→∞ d(xn, Txn) = 0.
It follows from (2.5), we see that

d2(p, xn+1) = d2(p, (1− αn)xn ⊕ αnTzn)

≤ (1− αn)d2(p, xn) + αnd
2(p, Tzn)− R

2
αn(1− αn)d2(xn, T zn)

≤ (1− αn)d2(p, xn) + αnd
2(p, zn)− R

2
abd2(xn, T zn)

≤ (1− αn)d2(p, xn) + αnd
2(p, xn)− R

2
abd2(xn, T zn)

= d2(p, xn)− R

2
abd2(xn, T zn),

which equivalent to

d2(xn, T zn) ≤ 2

Rab
[d2(p, xn)− d2(p, xn+1)].

Which yields

(3.12) lim
n→∞

d(xn, T zn) = 0.

By triangle inequality, (3.11) and (3.12), we have

d(zn, T zn) ≤ d(zn, xn) + d(xn, T zn)

→ 0(3.13)

as n→∞ and it

d(xn, Txn) ≤ d(xn, T zn) + d(Tzn, Txn)

≤ d(xn, T zn) + d(zn, xn)

→ 0(3.14)
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as n→∞ and therefore we prove (s3). This completes the proof. �

Now, we are ready to prove ∆-convergence theorem.

Theorem 3.1. Let (X, d) be an admissible complete CAT(κ) space and g : X → (−∞,∞] be a
proper lower semi-continuous convex function. Let T be a nonexpansive mapping on X such that
F (T ) ∩ arg minXg 6= ∅. Assume that a sequence {αn} ⊆ [a, b] such that a, b ∈ (0, 1) for all
n ≥ 1 and {λn} is a sequence such that λn > λ > 0 for all n ≥ 1 and for some λ. Let for each
x1 ∈ X and the sequence {xn} be generated by (3.6). Then the sequence {xn} ∆-converges to an
element in F (T ) ∩ arg minXg.

Proof. Let u ∈ F (T ) ∩ arg minXg. Then we have g(u) ≤ g(zn). By inequality (2.4) of
Lemma 2.1, we know that

λn(g(zn)− g(u)) ≤ π

2

(
1

cos2 d(zn, xn)
+ 1

)
(cos d(zn, xn) cos d(u, zn)− cos d(u, xn)),

which gives
(3.15)

0 ≤ g(zn)− g(u) ≤ π

2λn

(
1

cos2 d(zn, xn)
+ 1

)
(cos d(zn, xn) cos d(u, zn)− cos d(u, xn)).

Since λn > λ > 0 for all n ∈ N and by Lemma 3.4, we have

(3.16) d(zn, xn)→ 0, lim
n→∞

d(u, xn) and lim
n→∞

d(u, zn) exist.

Combining (3.15) with (3.16), we get

(3.17) lim
n→∞

g(zn) = inf g(X).

Next, we show thatW∆({xn}) ⊂ F (T )∩arg minXg. Let z ∈W∆({xn}), then there exists
a subsequence {xni} of {xn} which is ∆-convergent to z. Since limn→∞ d(zn, xn) = 0, we
can see by the definition of the ∆-convergence that the subsequence {zni} of {zn} is also
∆-convergent to z. Using Lemma 2.3 and (3.17), we obtain

g(z) ≤ lim inf
i→∞

g(zni
) = lim

n→∞
g(zn) = inf g(X).

Hence z ∈ arg minX g and thus W∆({xn}) ⊂ arg minX g. Moreover, since d(xn, Txn) → 0
and {xni

} is ∆-convergent to z, we obtain from Corollary 2.1 that z ∈ F (T ). We thus
conclude that W∆({xn}) ⊂ F (T ) ∩ arg minXg.

Now, by using (3.16) and W∆({xn}) ⊂ arg minXg ∩ F (T ), we can see that d(z, xn) is
convergent for all z ∈W∆({xn}). Apply Lemma 2.2, {xn} is ∆-convergence to an element
in F (T ) ∩ arg minX g. This completes the proof. �
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