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Existence of solutions of implicit integral equations via
Z-contraction

PRADIP R. PATLE and DEEPESH KUMAR PATEL

ABSTRACT. The main focus of this work is to assure that the sum of a compact operator with a Z-contraction
admits a fixed point. The concept of condensing mapping (in the sense of Hausdorff non-compactness measure)
is used to establish the concerned result which generalizes some of the existing state-of-art in the literature.
Presented result is used to verify the actuality of solutions of implicit integral equations.

1. INTRODUCTION AND BASIC CONCEPTS

Fixed point approach plays an incontestable role in developing many branches of mat-
hematical sciences. This theory has wide range of applications. The two most applied
results in this theory are Banach’s principle for contraction mappings and Schauder’s the-
orem for compact operators. Combining these two results, Krasnoselskii established a
fixed point result stated as follows:

Theorem 1.1. [14, 21] Let S 6= φ be a convex and closed set in a Banach space M . Suppose
A,B : S →M such that

(i) A is continuous and compact,
(ii) B is contraction,

(iii) Ax+By ∈ S ∀ x, y ∈ S.
Then A+B admits fixed point.

This celebrated result is readily used in theory of integral and differential equations.
However, a large number of improvements have been appeared in the literature over past
time modifying the assumptions. These improvements occurred in different directions.

The first direction in achieving improvement is to weaken the condition (iii) in Theo-
rem 1.1. A major breakthrough occurred when the condition A(S) +B(S) ⊂ S is replaced
by

(1.1) (A+B)(S) ⊂ S.
This was made possible due to use of non-compactness measure. Let us first recall the fol-
lowing famous notion, called Hausdorff non-compactness measure. Let B(x, r) denotes
closed ball with center at x ∈ X and radius r.

Definition 1.1. [2] A non-negative number

β(C) = inf{r > 0 : C ⊂ ∪Ni=1B(xi, r), xi ∈ X , i = 1, ..., N},
assigned with each bounded set C in a metric spaceX , is called Hausdorff non-compactness
measure (in short H-MNC).
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Some basic properties of H-MNC are given below:
(1) β(C) = 0 iff cl(C) is compact (i.e. C is relatively compact), where cl(C) denotes

closure of the set C,
(2) β(C) = β(cl(C)),
(3) if P and Q are bounded, then

(a) P ⊂ Q implies β(P) ≤ β(Q) and
(b) β(P +Q) ≤ β(P) + β(Q).

We use notation n.c.c.b for ‘nonempty convex closed and bounded’ in rest of the article.
The classical results using non-compactness measure are due to Darbo [9] and Sadovskii
[20] which can be stated as follows:

If T is a continuous self mapping on a n.c.c.b subset C of a Banach space X , satisfying
one of the following conditions:

(D) ∃ 0 ≤ λ < 1 such that for anyM⊂ C,

β(T (M)) ≤ λβ(M),

(S) for anyM⊂ C such that β(M) > 0,

β(T (M)) < β(M),

then T admits a fixed point.
Any mapping T satisfying condition (D) is called λ-set contraction (due to Darbo [9])

whereas satisfying (S) is called as β-condensing (due to Sadovskii [20]).
Another important aspect in improvement is weakening compactness of mapping A.

There are plenty of work being done in this direction (cf. [3, 10] and references therein).
The third important direction of improvement is generalizing the condition (ii) of The-

orem 1.1. In this direction, Burton [5] did some revolutionary work and successfully re-
placed the contraction mapping by large contractions which is defined as follows:

Definition 1.2. A self mapping T on a metric space (X ,m) is said to be large contraction
if ∀ ε > 0, ∃ δ < 1 such that m(y, x) ≥ ε implies m(Ty, Tx) ≤ δm(y, x), ∀y, x ∈ X .

Later, Przeradki [19] used the concept of H-MNC and β-condensing mapping to actu-
alize the fixed points for sum of compact operator and generalized contraction.

Definition 1.3. The self mapping T on (X ,m) is said to be a generalized contraction if
there exists a function γ : X × X → [0,∞) such that

sup
(a≤m(y,x)≤b)

γ(y, x) < 1 for all b ≥ a > 0

and ∀ x, y ∈ X
m(Ty, Tx) ≤ γ(y, x)m(y, x).

Przeradzki [19] also shown generalized contractions to be real generalizations of the large
contractions. This way he succeed in improving Krasnoselskii’s as well as Burton’s result.
Park [18] also contributed significantly in this direction. Very recently following the ana-
logy of [19], Wardowski [22] obtained another generalization of Krasnoselskii’s result for
ϕ-F -contraction instead of contraction. Further, Burton and C. Kirk [7] combined Schae-
fer’s theorem to the thesis of Krsnoselskii’s result. Some authors investigated the case of
set-valued mappings (see [4, 11, 16] and references therein). All these improvements and
generalizations make it easy to apply the obtained results.

On the other hand, recently Khojasteh et al. [13] bring a new concept called simulation
function into the doctrine of fixed points. The notion is described as:

Definition 1.4. A mapping Ξ : [0,∞)2 → R is called simulation function if it satisfies
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(KSR-1) Ξ(0, 0) = 0,
(KSR-2) Ξ(t1, t2) < t2 − t1 for all t1, t2 > 0,
(KSR-3) if {sn} and {tn} are two sequences in (0,∞) such that lim

n→∞
sn = lim

n→∞
tn > 0,

then lim
n→∞

supΞ(tn, sn) < 0.

However, de-Hierro and Samet [12] modified the above defined notion slightly and enlar-
ged the simulation functions family by replacing condition (KSR-3) with

(DS-3) if {sn} and {tn} are two sequences in (0,∞) such that lim
n→∞

sn = lim
n→∞

tn > 0

and tn < sn then lim
n→∞

supΞ(tn, sn) < 0.

In a parallel development, Argoubi et al. [1] found that the condition (KSR-1) is re-
dundant and can be deduced from (KSR-2) and (KSR-3) or (DS-3). They redefined the
simulation function by removing the condition (KSR-1) as:

Definition 1.5. [1] A simulation function is a mapping Ξ : [0,∞)2 → R satisfying the
following:

(ASV-1) Ξ(t1, t2) < t2 − t1 for all t1, t2 > 0,
(ASV-2) if {sn} and {tn} are two sequences in (0,∞) such that lim

n→∞
sn = lim

n→∞
tn > 0

and sn > tn, then lim
n→∞

supΞ(tn, sn) < 0.

Let ZASV denotes the class of all functions Ξ : [0,∞)2 → R satisfying (ASV-1) and
(ASV-2).

Example 1.1. A function Ξ1 : [0,∞)× [0,∞)→ R defined by

Ξ1(t, s) = δs− t, ∀s, t ∈ [0,∞)

where 0 ≤ δ < 1, then Ξ1 ∈ ZASV .

Example 1.2. If ϕ : [0,∞) → [0,∞) is a mapping satisfying lim sup
t→r+

ϕ(t) < 1, a function

Ξ2 : [0,∞)× [0,∞)→ R defined by

Ξ2(t, s) = ϕ(s)s− t, ∀s, t ∈ [0,∞)

then Ξ2 ∈ ZASV .

Example 1.3. If κ : [0,∞) → [0,∞) is an upper semi-continuous mapping satisfying
κ(t) < t, a function Ξ3 : [0,∞)× [0,∞)→ R defined by

Ξ3(t, s) = κ(s)− t, ∀s, t ∈ [0,∞)

then Ξ3 ∈ ZASV .

For more examples of simulation functions, refer to [8, 13] and references therein.

Definition 1.6. A self mapping T on (X , d) is called a Z-contraction if there exists Ξ ∈
ZASV such that

(1.2) Ξ(d(Ty, Tx), d(y, x)) ≥ 0

for all y, x ∈ X .

On a complete metric space, every Z-contraction has unique fixed point [13]. We wish
to show that Z-contraction is not a particular instance of a generalized contraction. For
this we give following example where mapping is Z-contraction but not later one.
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Example 1.4. Let X =
{
xn = n

√
2 + 21−n : n ∈ N

}
. Then (X, d) is complete metric space

with metric d(x, y) = |x− y|, x, y ∈ X . Consider the mapping T : X → X defined as

Txn =

 x1 if n = 1,

xn−1 if n 6= 1.

First to show that T fails to be generalized contraction. In fact, for any n ∈ N, we have

|xn+1 − xn| =
√

2− 2−n.

Hence
2
√

2− 1

2
≤ |xn+1 − xn| <

√
2, ∀ n ∈ N.

Assuming to the contrary, that T is generalized contraction, there exists a function γ sa-
tisfying second condition in Definition 1.3. Then for n ≥ 2, we get

γ(xn+1, xn) ≥ d(Txn+1, Txn)

d(xn+1, xn)
=
|xn − xn−1|
|xn+1 − xn|

=

√
2− 21−n√
2− 2−n

.

So by first condition of Definition 1.3, we get

1 > sup
( 2
√

2−1
2 <d(x,y)<

√
2)

γ(x, y) ≥ γ(xn+1, xn) ≥
√

2− 21−n√
2− 2−n

,

letting n → ∞, we get contradiction. Now to show T to be a Z-contraction, we need to
consider a mapping ϕ : [0,∞)→ [0,∞) defined as

ϕ(t) =


1 +

2−n − 2−m

t+ 1
if (n−m)

√
2− 1 < t < (n−m)

√
2, n > m ≥ 2,

1 +
2−n −

√
2

t+ 1
if (n− 1)

√
2− 1 < t < (n− 1)

√
2, n ≥ 3 and m = 1.

Then one can observe that lim sup
t→r+

ϕ(t) < 1 for any t ≥ 0. Now for any m,n ∈ N, n > m ≥

2, we have
|xm − xn| = (n−m)

√
2 + 21−n − 21−m

and
(n−m)

√
2− 1 < |xm − xn| < (n−m)

√
2.

Hence, we obtain

|Txm − Txn| =
(

1 +
21−n − 21−m

|xm − xn|

)
|xm − xn|

<

(
1 +

2−n − 2−m

|xm − xn|+ 1

)
|xm − xn|

= ϕ(|xm − xn|)|xm − xn|.

Also, for any n ≥ 3 we get

|xn − x1| = (n− 1)
√

2− 1 + 21−n

and
(n− 1)

√
2− 1 < |xn − x1| < (n− 1)

√
2,
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which returns us with

|Txn − Tx1| =
(

1 +
21−n −

√
2

|xn − x1|

)
|xn − x1|

<

(
1 +

2−n −
√

2

|xn − x1|
+ 1

)
|xn − x1|

< ϕ(|xn − x1|)|xn − x1|.

If we take Ξ(s, t) = ϕ(s)s − t then clearly Ξ is simulation function and hence T is a Z-
contraction.

In the present article, first we show that every Z-contraction is β-condensing. Then
using Sadovskii’s theorem we obtain a result concerning actuality of fixed points for sum
of a compact mappings with a Z-contractions. Later we apply the obtained result to verify
existence of solutions for implicit integral equations.

2. MAIN RESULTS

We enunciate with showing Z-contraction to be a β-condensing map.

Theorem 2.2. Every Z-contraction T on a metric space (X , d) is β-condensing.

Proof. Let φ 6= C ⊆ X such that β(C) > 0. Let {tn} and {sn} be two sequences defined by
tn = β(C) − εn > 0 and sn = β(C) + εn > 0 where {εn} is such that εn → 0 as n → ∞.
Then lim

n→∞
tn = lim

n→∞
sn = β(C) > 0 and tn < sn. Then by (ASV-2), we have

(2.3) lim sup
n→∞

Ξ(tn, sn) < 0.

Choosing ε = sup{εn} sufficiently small, from (2.3), ∃ ∆ < 0 such that

(2.4) Ξ(t, s) < ∆,

where t ∈ [β(C)− ε, β(C)) and s ∈ (β(C), β(C) + ε].
Let R = β(C) + ε. Assume that C has a R-net, i.e.

(2.5) C ⊂ ∪ki=1B(xi, R), x1, x2, ..., xk ∈ X .
Assume that R′ = β(C) − ε. We show that T (C) has a R′-net. For this, let y ∈ T (C). Let ∃
x ∈ C such that Tx = y. Then from (2.5), ∃ xi such that d(xi, x) < R.

Now if Tx = Txi, then d(Txi, Tx) < R′ (obviously).
Suppose Tx 6= Txi, then we have following two cases:
(1) If 0 < d(xi, x) < R′, then as T is Z-contraction we get 0 ≤ Ξ(d(Txi, Tx), d(xi, x)),

which in return by (ASV-1) yields us d(Txi, Tx) < d(xi, x) < R′.
(2) If R′ < d(xi, x) < R, then either d(Txi, Tx) < R′ or d(Txi, Tx) ≥ R′. Suppose

d(Txi, Tx) ≥ R′, then from (2.4), we have

Ξ(d(Txi, Tx), d(xi, x)) < ∆,

which is contrary to the truth (i.e. T is Z-contraction).
So d(Txi, Tx) < R′ holds in both cases. Thus T (C) has a R′-net, which implies that
β(T (C)) ≤ R′ < β(C). � �

Combining above result with Sadovskii’s theorem leads us to the following Krasnosel-
skii type result.

Theorem 2.3. Let C be an n.c.c.b subset of a Banach space X . If A : C → X is a Z-contraction
and B : C → X is a compact mapping such that (A+B)(C) ⊂ C, then A+B admits fixed point.
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Proof. Let K ⊂ C having nonzero H-MNC. Then we have

(2.6) β((A+B)(K)) ≤ β(A(K) +B(K)) ≤ β(A(K)) + β(B(K)).

Using the fact B is compact (i.e. β(B(K)) = 0) and conclusion of Theorem 2.2 in (2.6), we
get

β((A+B)(K)) ≤ β(A(K)) < β(K).

Thus A + B is β-condensing map. Therefore, Sadovskii’s theorem implies A + B has a
fixed point. � �

Following corollaries are some consequences of above theorem.

Corollary 2.1. Let C be an n.c.c.b subset of a Banach space X . If A,B : C → X are a contraction
and compact mapping, respectively, satisfying (A+B)(C) ⊂ C, then (A+B) admits fixed point.

Proof. If we take Ξ(t, s) = ks− t for k ∈ [0, 1) in Theorem 2.3, then proof follows. � �

Corollary 2.2. Let C be an n.c.c.b subset of a Banach space X . If A,B : C → X are a ϕ-
contraction and compact mapping, respectively, satisfying (A+B)(C) ⊂ C, then (A+B) admits
a fixed point.

3. APPLICATIONS

Consider the integral equation of implicit form given by

(3.7) V (t, x(t)) = F (t,

∫ t

0

G(t, s, x(s))ds),

where V, F : [−µ, µ]× [−µ, µ]→ R and G : [−µ, µ]× [−µ, µ]× [−µ, µ]→ R are continuous,
µ > 0. Our intension in this section is to apply the main theorem to verify the existence
of solutions for above equation. We wish to find the solution of (3.7) in a subset C of a
Banach space X of continuous function Ψ : [−ν, ν] → R, 0 < ν < µ endowed with the
supremum norm. Subset C can be described in the form

C = {Ψ ∈ X : Ψ(0) = 0, ‖Ψ‖ ≤ µ}.

Theorem 3.4. If F (0, 0) = V (t, 0) = 0 for all t ∈ [−µ, µ], µ > 0 and the operator (AΨ)(t) =
Ψ(t)− V (t, Ψ(t)) is a Z-contraction on C, then (3.7) has a solution in C.

Proof. We have A(0) = 0 − V (t, 0) = 0 for all t ∈ [−µ, µ]. Taking any Ψ ∈ C with AΨ 6= 0,
since A is Z-contraction, we have

‖AΨ‖ < ‖Ψ‖.
We claim that for any Ψ ∈ C
(3.8) ‖AΨ‖ ≤ γ < µ, for some γ > 0.

Suppose this does not hold, then there exists sequence {Ψn} in C such that {‖AΨn‖} is
increasing and lim

n→∞
‖AΨn‖ = µ. Since Ψn ∈ C, we have ‖AΨn‖ < ‖Ψn‖ ≤ µ and thus

lim
n→∞

‖Ψn‖ = µ. Then by (ASV-2) we have

0 ≤ lim sup
n→∞

Ξ(‖AΨn‖, ‖Ψn‖) < 0,

a contradiction. Thus our claim is true.
For rest of the proof, we follow Burton ( [5], Theorem 3). We define B : C → C by

(BΨ)(t) = F (t,
∫ t

0
G(t, s, Ψ(s))ds). Using continuity of F , the fact F (0, 0) = 0 and the

continuity of G on its compact domain one can show that there exists 0 < ν < µ such that
Ψ ∈ C and |t| < ν imply

(3.9) |(BΨ)(t)| ≤ µ− γ.
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Combining (3.8) and (3.9), we get

‖AΨ +BΨ‖ ≤ µ.
As (AΨ)(0) + (BΨ)(0) = 0 implies (A+B)(Ψ) ∈ C.
The compactness of B can be achieved by showing that B(C) is an equicontinuous set.

All the hypotheses of Theorem 2.3 are satisfied. Thus Ψ is a fixed point ofA+B. � �

As there may be difficulty in verifying Z-contractivity of operator A. This can be com-
fortably done if we restrict our search to nonnegative solutions. In light of the above proof
technique, we can easily prove the following analogue of the Theorem 3.4.

Theorem 3.5. If F (0, 0) = V (t, 0) = 0 for all t ∈ [−µ, µ] and the operator (AΨ)(t) = Ψ(t) −
V (t, Ψ(t)) is a Z-contraction on C+ = {Ψ ∈ C : Ψ ≥ 0}, then (3.7) has a solution in C+.

Example 3.5. Consider the differential equation of the form

(3.10) 2kt(t4 − 1)x+ (t4 + 1)(t4 − kt2 + 1)x′ = (2t+H(t, x))(t4 + 1)2,

where k ∈ [0, 1) and H : [−µ, µ] × [−µ, µ] → R+ is continuous, µ > 0. We will show the
existence of solution for this differential equation in C+. The eq. (3.10) can be expressed
as

2t+H(t, x) =
2kt(t4 − 1)x+ (t4 − kt2 + 1)(t4 + 1)x′

(t4 + 1)2

=
(2kt5 − 2kt)x+ (t4 − kt2 + 1)(t4 + 1)x′

(t4 + 1)2

=
(4t3 − 2kt+ 4t7 − 2kt5 − 4t3 − 4t7 + 4kt5)x+ (t4 + 1)(t4 − kt2 + 1)x′

(t4 + 1)2

=
(t4 + 1)(4t3 − 2kt)x− 4t3(t4 − kt2 + 1)x+ (t4 − kt2 + 1)(t4 + 1)x′

(t4 + 1)2
.(3.11)

Then (3.11) can be equivalently written as

(3.12)
(t4 − kt2 + 1)x

(t4 + 1)
= t2 +

∫ t

0

H(s, x)ds.

This is in the form of (3.7) for

V (t, x) =
(t4 − kt2 + 1)x

(t4 + 1)

and
F (t, z) = t2 + z.

In order to satisfy the assumptions of Theorem 3.4 we show that the operator A(t, x) =

x− V (t, x) =
kt2x

(t4 + 1)
is a Z-contraction on C+.

Let η(p) = δp where δ ∈ [0, 1). Then we can see that η(p) < p and η(p+ q) ≤ η(p)+η(q).
In addition η is increasing and non-convex on R+.

Now let ϕ,ψ ∈ C+ then

|Aϕ−Aψ| =
∣∣∣ kt2ϕ

(t4 + 1)
− kt2ψ

(t4 + 1)

∣∣∣
≤ kt2

(t4 + 1)
|ϕ− ψ|

≤ η(|ϕ− ψ|).
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If we choose Ξ(t, s) = η(s)− t for all s, t > 0, A is Z-contraction. Thus the solution exists
by Theorem 3.5.
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