Solution of the singular Cauchy problem for a general inhomogeneous Euler-Poisson-Darboux equation

Elina Shishkina

Abstract

In this paper, we solve Cauchy problem for a general form of an inhomogeneous Euler-PoissonDarboux equation, where Bessel operator acts instead of the each second derivative. In the classical formulation, the Cauchy problem for this equation is not correct. However, for a specially selected form of the initial conditions, the equation has a solution. The general form of the Euler-Poisson-Darboux equation with such conditions we will call the singular Cauchy problem.

1. Introduction

In this paper we give a solution of the singular Cauchy problem

$$
\begin{gather*}
L u(x, t)=\left[\frac{\partial^{2}}{\partial t^{2}}+\frac{k}{t} \frac{\partial}{\partial t}-\sum_{i=1}^{n}\left(\frac{\partial^{2}}{\partial x_{i}^{2}}+\frac{\gamma_{i}}{x_{i}} \frac{\partial}{\partial x_{i}}\right)\right] u(x, t)=f(x, t), \tag{1.1}\\
u(x, 0)=\varphi(x),\left.\quad t^{k} u_{t}(x, t)\right|_{t=0}=\psi(x) . \tag{1.2}
\end{gather*}
$$

where $x=\left(x_{1}, \ldots, x_{n}\right), k \in(0,1), \gamma_{i}>0, x_{i}>0, i=1,2, \ldots, n, t>0$. We will call the equation (1.1) general inhomogeneous Euler-Poisson-Darboux equation. It is complicated to mention all publications on the Cauchy problem for the equation (1.1) with initial conditions

$$
\begin{equation*}
u(x, 0)=\varphi(x), \quad u_{t}(x, 0)=0 \tag{1.3}
\end{equation*}
$$

when $\gamma_{i}=0$ for $i=1, \ldots, n$. We just mention that a solution to (1.1)-(1.3) when $f=0, \gamma_{i}=0$ for $i=1, \ldots, n$ in the classical sense was obtained in [30]-[33] and in [7]-[6] in the distributional sense. Solution to (1.1) when $u(x, 0)=0, u_{t}(x, 0)=0, k, \gamma_{i}=0$ for $i=1, \ldots, n$ in terms of Riezs potential have been established in [21]. When $f=0$ a solution to the equation (1.1) with conditions (1.3) was obtained in [9, 22]. This problem has been extended in [23] for the more general equation $L u=c^{2} u, c \in \mathbb{R}$. Solution to the equation $L u=0$ with conditions $u(x, 0)=\varphi(x), t^{k} u_{t}(x, 0)=\psi(x)$ was obtained in [24]. The abstract Euler-Poisson-Darboux equation (when in the right hand of (1.1) an arbitrary closed linear operator is presented) was studied in [11]-[13]. An equation of the form (1.1) is solved for the first time. It improves results obtaining in [21] when $u(x, 0)=0, u_{t}(x, 0)=0, k, \gamma_{i}=0$ for $i=1, \ldots, n$.

Throughout this paper we make extensive use of the techniques of transmutation operators developed for the Bessel operator $\left(B_{\nu}\right)_{t}=\frac{\partial^{2}}{\partial t^{2}}+\frac{\nu}{t} \frac{\partial}{\partial t}$ in [25]-[14].

2. BASIC DEFINITIONS

In this section, we give some basic definitions and notions needed for our further considerations.

We deal with the subset of the Euclidean space

$$
\mathbb{R}_{+}^{n+1}=\left\{(t, x)=\left(t, x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n+1}, t>0, x_{1}>0, \ldots, x_{n}>0\right\}
$$

Let $x=\left(x_{1}, \ldots, x_{n}\right),|x|=\sqrt{\sum_{i=1}^{n} x_{i}^{2}}$ and Ω be finite or infinite open set in \mathbb{R}^{n+1} symmetric with respect to each hyperplane $t=0, x_{i}=0, i=1, \ldots, n, \Omega_{+}=\Omega \cap \mathbb{R}_{+}^{n+1}$ and $\bar{\Omega}_{+}=\Omega \cap \overline{\mathbb{R}}_{+}^{n+1}$ where

$$
\overline{\mathbb{R}}_{+}^{n+1}=\left\{(t, x)=\left(t, x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n+1}, \quad t>0, x_{1} \geq 0, \ldots, x_{n} \geq 0\right\}
$$

Consider the class $C^{m}\left(\Omega_{+}\right)$consisting of m times differentiable on Ω_{+}functions and denote by $C^{m}\left(\bar{\Omega}_{+}\right)$the subset of functions from $C^{m}\left(\Omega_{+}\right)$such that all derivatives of these functions with respect to t and x_{i} for any $i=1, \ldots, n$ are continuous up to $t=0$ and $x_{i}=0$. Function $f \in C^{m}\left(\bar{\Omega}_{+}\right)$we will call even with respect to t and $x_{i}, i=1, \ldots, n$ if $\left.\frac{\partial^{2 k+1} f}{\partial t^{2 k+1}}\right|_{t=0, x=0}=0,\left.\frac{\partial^{2 k+1} f}{\partial x_{i}^{2 k+1}}\right|_{t=0, x=0}=0$ for all nonnegative integer $k \leq \frac{m-1}{2}$ (see [15], p. 21). Class $C_{e v}^{m}\left(\bar{\Omega}_{+}\right)$consists of functions from $C^{m}\left(\bar{\Omega}_{+}\right)$even with respect to each variable t and $x_{i}, i=1, \ldots, n$. In the following we will denote $C_{e v}^{m}\left(\overline{\mathbb{R}}_{+}^{n+1}\right)$ by $C_{e v}^{m}$. Let $\stackrel{\circ}{C}_{e v}^{m}\left(\bar{\Omega}_{+}\right)$ be the space of all functions $f \in C^{m}\left(\bar{\Omega}_{+}\right)$with a compact support. We set

$$
C_{e v}^{\infty}\left(\bar{\Omega}_{+}\right)=\bigcap C_{e v}^{m}\left(\bar{\Omega}_{+}\right)
$$

with intersection taken for all finite m and $C_{e v}^{\infty}\left(\overline{\mathbb{R}}_{+}^{n+1}\right)=C_{e v}^{\infty}$.
The space $S_{e v}$ is the subspace of the space of rapidly decreasing functions:

$$
S_{e v}=S_{e v}\left(\mathbb{R}_{+}^{n+1}\right)=\left\{f \in C_{e v}^{\infty}: \sup _{(t, x) \in \mathbb{R}_{+}^{n+1}}\left|t^{\alpha_{0}} x^{\alpha} D_{t}^{\beta_{0}} D^{\beta} f(x)\right|<\infty\right\}
$$

where $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right), \beta=\left(\beta_{1}, \ldots, \beta_{n}\right), \alpha_{0}, \alpha_{1}, \ldots, \alpha_{n}, \beta_{0}, \beta_{1}, \ldots, \beta_{n}$ are integer nonnegative numbers, $x^{\alpha}=x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \ldots x_{n}^{\alpha_{n}}, D^{\beta}=D_{x_{1}}^{\beta_{1}} \ldots D_{x_{n}}^{\beta_{n}}, D_{x_{j}}=\frac{\partial}{\partial x_{j}}$.

We will deal with the singular Bessel differential operator B_{ν} (see, for example, [15], p. 5):

$$
\left(B_{\nu}\right)_{t}=\frac{\partial^{2}}{\partial t^{2}}+\frac{\nu}{t} \frac{\partial}{\partial t}=\frac{1}{t^{\nu}} \frac{\partial}{\partial t} t^{\nu} \frac{\partial}{\partial t}, \quad t>0
$$

and the elliptical singular operator or the Laplace-Bessel operator \triangle_{γ} :

$$
\begin{equation*}
\triangle_{\gamma}=\left(\triangle_{\gamma}\right)_{x}=\sum_{i=1}^{n}\left(B_{\gamma_{i}}\right)_{x_{i}}=\sum_{i=1}^{n}\left(\frac{\partial^{2}}{\partial x_{i}^{2}}+\frac{\gamma_{i}}{x_{i}} \frac{\partial}{\partial x}\right)=\sum_{i=1}^{n} \frac{1}{x_{i}^{\gamma_{i}}} \frac{\partial}{\partial x_{i}} x_{i}^{\gamma_{i}} \frac{\partial}{\partial x_{i}} \tag{2.4}
\end{equation*}
$$

The operator (2.4) belongs to the class of $\mathbf{B}-$ elliptic operators by I. A. Kipriyanovs' classification (see [15]). Operator $\left(\square_{k, \gamma}\right)_{t, x}=\left(B_{k}\right)_{t}-\left(\Delta_{\gamma}\right)_{x}$ is B-hyperbolic by the same classifications.

The B-polyharmonic of order p function $f=f(x)$ is the function $f \in C_{e v}^{2 m}\left(\overline{\mathbb{R}}_{+}^{n}\right)$ such that

$$
\begin{equation*}
\Delta_{\gamma}^{m} f=0 \tag{2.5}
\end{equation*}
$$

where Δ_{γ} is operator (2.4). The operator (2.5) was considered in [15]. The B-polyharmonic of order 1 function we will call B-harmonic.

The symbol j_{ν} is used for the normalized Bessel function:

$$
j_{\nu}(t)=\frac{2^{\nu} \Gamma(\nu+1)}{t^{\nu}} J_{\nu}(t)
$$

where $J_{\nu}(t)$ is the Bessel function of the first kind of order ν (see [29]). The function $j_{\nu}(t)$ is even by t. Using formulas 9.1.27 from [1] we obtain

$$
\begin{equation*}
\left(B_{\nu}\right)_{t} j_{\frac{\nu-1}{2}}(\tau t)=-\tau^{2} j_{\frac{\nu-1}{2}}(\tau t) . \tag{2.6}
\end{equation*}
$$

We deal with multi-index $\gamma=\left(\gamma_{1}, \ldots, \gamma_{n}\right)$ which consists of positive fixed reals $\gamma_{i}>0$, $i=1, \ldots, n,|\gamma|=\gamma_{1}+\ldots+\gamma_{n}$.

The operator ${ }^{k} T_{t}^{\tau}$ for $k>0$ is generalized translation acts by a variable t defined by the next formula (see [16], p. 122, formula (5.19))

$$
\begin{equation*}
{ }^{k} T_{t}^{\tau} f(t, x)=\frac{\Gamma\left(\frac{k+1}{2}\right)}{\sqrt{\pi} \Gamma\left(\frac{k}{2}\right)} \int_{0}^{\pi} f\left(\sqrt{t^{2}+\tau^{2}-2 t \tau \cos \varphi}, x\right) \sin ^{k-1} \varphi d \varphi \tag{2.7}
\end{equation*}
$$

and ${ }^{\gamma} \mathbf{T}_{x}^{y}={ }^{\gamma_{1}} T_{x_{1}}^{y_{1}} \ldots{ }^{\gamma_{n}} T_{x_{n}}^{y_{n}}$ is multidimensional generalized translation, where each of the one-dimensional generalized translations ${ }^{\gamma_{i}} T_{x_{i}}^{y_{i}}$ acts by a variable x_{i} for $i=1, \ldots, n$ according to the formula (2.7).

Based on the multidimensional generalized translation ${ }^{\gamma} \mathbf{T}_{x}^{y}$ the weighted spherical mean $M_{r}^{\gamma}[f(x)]$ of a suitable function is constructed by the formula

$$
\begin{equation*}
M_{r}^{\gamma}[f(x)]=\frac{1}{\left|S_{1}^{+}(n)\right|_{\gamma}} \int_{S_{1}^{+}(n)}{ }^{\gamma} \mathbf{T}_{x}^{r \theta} f(x) \theta^{\gamma} d S \tag{2.8}
\end{equation*}
$$

where $\theta^{\gamma}=\prod_{i=1}^{n} \theta_{i}^{\gamma_{i}}, S_{1}^{+}(n)=\left\{\theta:|\theta|=1, \theta \in \mathbb{R}_{+}^{n}\right\}$ and $\left|S_{1}^{+}(n)\right|_{\gamma}=\frac{\prod_{i=1}^{n} \Gamma\left(\frac{\gamma_{i}+1}{2}\right)}{2^{n-1} \Gamma\left(\frac{n+|\gamma|}{2}\right)}$. It is easy to see that

$$
\begin{equation*}
\lim _{r \rightarrow 0} M_{r}^{\gamma}[f(x)]=f(x), \quad \lim _{r \rightarrow 0} \frac{\partial}{\partial r} M_{r}^{\gamma}[f(x)]=0 \tag{2.9}
\end{equation*}
$$

3. SOlution of the Cauchy problems for homogeneous EULER-POISSON-DARBOUX EQUATION

Here we give solutions to Cauchy problems for linear homogeneous Euler-PoissonDarboux equation and some auxiliary results.

In [22] the next basic lemma was proven.
Lemma 3.1. The weighted spherical mean $M_{r}^{\gamma}[f(x)]$ is the transmutation operator (see [25]) intertwining $\left(\Delta_{\gamma}\right)_{x}$ and $\left(B_{n+|\gamma|-1}\right)_{r}$ for the twice continuously differentiable function f even with respect to each of the independent variables:

$$
M_{r}^{\gamma}\left[\left(\Delta_{\gamma}\right)_{x} f(x)\right]=\left(B_{n+|\gamma|-1}\right)_{r} M_{r}^{\gamma}[f(x)]
$$

Using this lemma, the Hadamard descent method, B-polyharmonic functions and recurrence formulas, a solution to the Cauchy problem for the multidimensional Euler-Poisson-Darboux equation wherein the Bessel operator acts in each of the variables:

$$
\begin{equation*}
\left(\square_{k, \gamma}\right)_{t, x} u(t, x)=0, \quad-\infty<k<\infty, \quad u=u(t, x), \quad(t, x) \in \mathbb{R}_{+}^{n+1} \tag{3.10}
\end{equation*}
$$

was obtained. We will call (3.10) the general Euler-Poisson-Darboux equation.
The next theorem gives solution to the (3.10) with conditions $u(0, x)=\varphi(x), u_{t}(0, x)=0$ for any $k \in \mathbb{R}$ (see [22]).

Theorem 3.1. In the case $k>n+|\gamma|-1, \varphi(x) \in C_{e v}^{2}\left(\mathbb{R}_{+}^{n}\right)$ solution to

$$
\begin{equation*}
\left(\square_{k, \gamma}\right)_{t, x} u(t, x)=0, \tag{3.11}
\end{equation*}
$$

$$
\begin{equation*}
u(0, x)=\varphi(x), \quad u_{t}(0, x)=0 \tag{3.12}
\end{equation*}
$$

is

$$
\begin{equation*}
u(t, x)=A(n, \gamma, k) t^{1-k} \int_{0}^{t}\left(t^{2}-r^{2}\right)^{\frac{k-n-|\gamma|-1}{2}} r^{n+|\gamma|-1} M_{r}^{\gamma}[\varphi(x)] d r \tag{3.13}
\end{equation*}
$$

where

$$
A(n, \gamma, k)=\frac{2 \Gamma\left(\frac{k+1}{2}\right)}{\Gamma\left(\frac{n+|\gamma|}{2}\right) \Gamma\left(\frac{k-n-|\gamma|+1}{2}\right)} .
$$

Let $\varphi \in C_{e v}^{\left[\frac{n+|\gamma|-k}{2}\right]+2}\left(\mathbb{R}_{+}^{n}\right)$. Then the solution to (3.11)-(3.12) for $k<n+|\gamma|-1, k \neq-1,-3,-5, \ldots$ is

$$
\begin{equation*}
u(t, x)=t^{1-k}\left(\frac{\partial}{t \partial t}\right)^{m}\left(t^{k+2 m-1} v(t, x)\right) \tag{3.14}
\end{equation*}
$$

where m is a minimum integer such that $m \geq \frac{n+|\gamma|-k-1}{2}$ and $v(t, x)$ is the solution to the Cauchy problem

$$
\begin{equation*}
\left(B_{k+2 m}\right)_{t} v=\left(\Delta_{\gamma}\right)_{x} v, \tag{3.15}
\end{equation*}
$$

$$
\begin{equation*}
v(0, v)=\frac{\varphi(x)}{(k+1)(k+3) \ldots(k+2 m-1)}, \quad v_{t}(0, x)=0 \tag{3.16}
\end{equation*}
$$

If φ is B-polyharmonic of order $\frac{1-k}{2}$ and even with respect to each variable then one of the solutions of the Cauchy problem (3.11)-(3.12) for the $k=-1,-3,-5, \ldots$ is given by

$$
\begin{equation*}
u(t, x)=f(x), \quad k=-1, \tag{3.17}
\end{equation*}
$$

$$
\begin{equation*}
u(t, x)=\varphi(x)+\sum_{h=1}^{-\frac{k+1}{2}} \frac{\Delta_{\gamma}^{h} \varphi}{(k+1) \ldots(k+2 h-1)} \frac{t^{2 h}}{2 \cdot 4 \cdot \ldots \cdot 2 h}, \quad k=-3,-5, \ldots \tag{3.18}
\end{equation*}
$$

The solution to (3.11)-(3.12) is unique for $k \geq 0$.
The next theorem gives solution to the (3.10) with conditions $u(0, x)=0, t^{k} u_{t}(0, x)=\psi(x)$ for any $k<1$ (see [24]).

Theorem 3.2. If $\psi \in C_{e v}^{\left[\frac{n+|\gamma|+k-1}{2}\right]}\left(\mathbb{R}_{+}^{n}\right)$ then the solution $\left.u=u(t, x)\right)$ of

$$
\begin{equation*}
\left(\square_{k, \gamma}\right)_{t, x} u(t, x)=0, \tag{3.19}
\end{equation*}
$$

$$
\begin{equation*}
u(0, x)=0, \quad t^{k} u_{t}(0, x)=\psi(x) \tag{3.20}
\end{equation*}
$$

is given by

$$
u(t, x)=\frac{\Gamma\left(\frac{3-k+2 q}{2}\right) \Gamma\left(\frac{1-k}{2}\right)}{\Gamma\left(\frac{3-k+2 q-n-|\gamma|}{2}\right) \Gamma\left(\frac{n+|\gamma|}{2}\right)} \sum_{s=0}^{q} \frac{C_{q}^{s} t^{1-k+2 s}}{2^{s} \Gamma\left(\frac{3-k}{2}+s\right)} \times
$$

$$
\begin{equation*}
\times \int_{0}^{1}\left(1-r^{2}\right)^{\frac{1-k+2 q-n-|\gamma|}{2}} r^{n+|\gamma|-1}\left(\frac{1}{t} \frac{\partial}{\partial t}\right)^{s} M_{t r}^{\gamma}[\psi(x)] d r \tag{3.21}
\end{equation*}
$$

if $n+|\gamma|+k$ is not an odd integer and

$$
u(t, x)=\frac{2^{-q} \Gamma\left(\frac{3-k}{2}\right)}{(1-k) \Gamma\left(\frac{3-k+2 q}{2}\right)}\left(\frac{1}{t} \frac{\partial}{\partial t}\right)^{q}\left(t^{n+|\gamma|-2} M_{t}^{\gamma}[\psi(x)]\right) .
$$

if $n+|\gamma|+k$ is an odd integer, where $q \geq 0$ is the smallest positive integer number such that $2-k+2 q \geq n+|\gamma|-1$.

4. Riesz hyperbolic B-potential and the solution to the Cauchy problems FOR NONHOMOGENEOUS EULER-POISSON-DARBOUX EQUATION

In this section we deal with Riesz hyperbolic B-potential and its analytic continuations, associated with the operator

$$
\left(\square_{k, \gamma}\right)_{t, x}=\left(B_{k}\right)_{t}-\left(\Delta_{\gamma}\right)_{x}, \quad\left(B_{k}\right)_{t}=\frac{\partial^{2}}{\partial t^{2}}+\frac{k}{t} \frac{\partial}{\partial t}, \quad\left(\Delta_{\gamma}\right)_{x}=\sum_{i=1}^{n}\left(\frac{\partial^{2}}{\partial x_{i}^{2}}+\frac{\gamma_{i}}{x_{i}} \frac{\partial}{\partial x_{i}}\right) .
$$

Using hyperbolic Riesz B-potential we give the solution to the Cauchy problem for the inhomogeneous general Euler-Poisson-Darboux equation in a unique formula implying an analytic continuation with respect to the parameter α. The main difficulty concerning the analytic continuation was to prove that hyperbolic Riesz B-potential for $\alpha=0$ is the identity operator.

The negative real powers $\left(\square_{k, \gamma}\right)^{-\frac{\alpha}{2}}, \alpha>0$ will be Riesz potential $I_{\square_{k, \gamma}}^{\alpha}$ with Lorentz distance generated by generalized translation operator

$$
\begin{equation*}
\left(I_{\square_{k, \gamma}}^{\alpha} f\right)(t, x)=\frac{1}{H_{n, k, \gamma}(\alpha)} \int_{K^{+}}\left(\tau^{2}-|y|^{2}\right)^{\frac{\alpha-n-1-k-|\gamma|}{2}}\left({ }^{k} T_{t}^{\tau \gamma} \mathbf{T}_{x}^{y} f(t, x)\right) \tau^{k} y^{\gamma} d \tau d y \tag{4.22}
\end{equation*}
$$

where $y^{\gamma}=\prod_{i=1}^{n} y_{i}^{\gamma_{i}}$,

$$
H_{n, k, \gamma}(\alpha)=\frac{2^{\alpha-n-1}}{\pi} \sin \left(\frac{k+1}{2} \pi\right) \Gamma\left(\frac{k+1}{2}\right) \prod_{i=1}^{n} \Gamma\left(\frac{\gamma_{i}+1}{2}\right) \Gamma\left(\frac{\alpha}{2}\right) \Gamma\left(\frac{\alpha+1-n-k-|\gamma|}{2}\right),
$$

$K^{+}=\left\{(t, y) \in \mathbb{R}_{+}^{n+1}: t^{2} \geq|y|^{2}\right\}$. The potential (4.22) is called the hyperbolic Riesz Bpotential.

It is easy to see that when $f \in S_{e v}$ the integral in (4.22) converges absolutely for $\alpha>n+k+$ $|\gamma|-1$. (cf. [22]).
Lemma 4.2. Let $\lambda>0, p=1,2, \ldots,\left(t, x_{1}, \ldots, x_{n}\right) \in \mathbb{R}_{+}^{n+1}$ and $\left(\square_{k, \gamma}\right)_{t, x}=\left(B_{k}\right)_{t}-\left(\Delta_{\gamma}\right)_{x}$, then

$$
\begin{gather*}
\left(\left(\square_{k, \gamma}\right)_{t, x}\right)^{p}\left(t^{2}-|x|^{2}\right)^{\lambda+p}= \\
=4^{p}(\lambda+1) \ldots(\lambda+p)\left(\frac{n+|\gamma|+k+1}{2}+\lambda\right) \ldots\left(\frac{n+|\gamma|+k+1}{2}+\lambda+p-1\right)\left(t^{2}-|x|^{2}\right)^{\lambda} . \tag{4.23}
\end{gather*}
$$

Proof. Let verify the formula (4.23) for $p=1$:

$$
\begin{aligned}
& \left(\left(B_{k}\right)_{t}-\left(\Delta_{\gamma}\right)_{x}\right)\left(t^{2}-|x|^{2}\right)^{\lambda+1}=\left(B_{k}\right)_{t}\left(t^{2}-|x|^{2}\right)^{\lambda+1}-\left(\Delta_{\gamma}\right)_{x}\left(t^{2}-|x|^{2}\right)^{\lambda+1}= \\
& =\frac{1}{t^{k}} \frac{\partial}{\partial t} t^{k} \frac{\partial}{\partial t}\left(t^{2}-|x|^{2}\right)^{\lambda+1}-\sum_{i=1}^{n} \frac{1}{x_{i}^{\gamma_{i}}} \frac{\partial}{\partial x_{i}} x_{i}^{\gamma_{i}} \frac{\partial}{\partial x_{i}}\left(t^{2}-|x|^{2}\right)^{\lambda+1}= \\
& =2(\lambda+1) \frac{1}{t^{k}} \frac{\partial}{\partial t} t^{k+1}\left(t^{2}-|x|^{2}\right)^{\lambda}+\sum_{i=1}^{n} 2(\lambda+1) \frac{1}{x_{i}^{\gamma_{i}}} \frac{\partial}{\partial x_{i}} x_{i}^{\gamma_{i}+1}\left(t^{2}-|x|^{2}\right)^{\lambda}=
\end{aligned}
$$

$$
\begin{gathered}
=2(\lambda+1) \frac{1}{t^{k}}\left((k+1) t^{k}\left(t^{2}-|x|^{2}\right)^{\lambda}+2 \lambda t^{k+2}\left(t^{2}-|x|^{2}\right)^{\lambda-1}\right)+ \\
+\sum_{i=1}^{n} 2(\lambda+1) \frac{1}{x_{i}^{\gamma_{i}}}\left(\left(\gamma_{i}+1\right) x_{i}^{\gamma_{i}}\left(t^{2}-|x|^{2}\right)^{\lambda}-2 \lambda x_{i}^{\gamma_{i}+2}\left(t^{2}-|x|^{2}\right)^{\lambda-1}\right)= \\
=2(\lambda+1)\left[(k+1)\left(t^{2}-|x|^{2}\right)^{\lambda}+2 \lambda t^{2}\left(t^{2}-|x|^{2}\right)^{\lambda-1}+\right. \\
\left.\left.\quad+\sum_{i=1}^{n}\left(\gamma_{i}+1\right)\left(t^{2}-|x|^{2}\right)^{\lambda}-2 \lambda x_{i}^{2}\left(t^{2}-|x|^{2}\right)^{\lambda-1}\right)\right]= \\
=2(\lambda+1)\left[(k+1)\left(t^{2}-|x|^{2}\right)^{\lambda}+2 \lambda t^{2}\left(t^{2}-|x|^{2}\right)^{\lambda-1}+\right. \\
\left.\left.\quad+(n+|\gamma|)\left(t^{2}-|x|^{2}\right)^{\lambda}-2 \lambda|x|^{2}\left(t^{2}-|x|^{2}\right)^{\lambda-1}\right)\right]= \\
=2(\lambda+1)\left((n+|\gamma|+k+1+2 \lambda)\left(t^{2}-|x|^{2}\right)^{\lambda}\right) .
\end{gathered}
$$

So we get

$$
\begin{equation*}
\left(\left(B_{k}\right)_{t}-\left(\Delta_{\gamma}\right)_{x}\right)\left(t^{2}-|x|^{2}\right)^{\lambda+1}=4(\lambda+1)\left(\frac{n+|\gamma|+k+1}{2}+\lambda\right)\left(t^{2}-|x|^{2}\right)^{\lambda} \tag{4.24}
\end{equation*}
$$

Applying formula (4.24) p-times we obtain (4.23).
Lemma 4.3. If $n+|\gamma|-2<\alpha$ and $p \in \mathbb{N}$, then

$$
\begin{equation*}
I_{\square_{k, \gamma}}^{\alpha+2 p}\left(\square_{k, \gamma}\right)^{p} f=I_{\square_{k, \gamma}}^{\alpha} f, \tag{4.25}
\end{equation*}
$$

for any $f \in S_{\text {ev }}$, such that $\frac{\partial^{m} f}{\partial t^{m}}=0 \frac{\partial^{m} f}{\partial x_{i}^{m}}=0$ when $\left(t, x_{1}, \ldots, x_{n}\right)=(0,0, \ldots, 0), m=0, . ., 2 p$.
Proof. From the integral representation (4.22) using the formula 1.8.3 from [15] of the form ${ }^{\gamma_{i}} T_{x_{i}}^{y_{i}}\left(B_{\gamma_{i}}\right)_{x_{i}}=\left(B_{\gamma_{i}}\right)_{y_{i}}^{\gamma_{i}} T_{x_{i}}^{y_{i}}$ we obtain

$$
\begin{aligned}
& \quad\left(I_{\square_{k, \gamma}}^{\alpha+2 p}\left(\square_{k, \gamma}\right)^{p} f\right)(t, x)= \\
& =\frac{1}{H_{n, k, \gamma}(\alpha+2 p)} \int_{K^{+}}\left(\tau^{2}-|y|^{2}\right)^{\frac{\alpha+2 p-n-1-k-|\gamma|}{2}}\left({ }^{k} T_{t}^{\tau \gamma} \mathbf{T}_{x}^{y}\left(\square_{k, \gamma}\right)_{t, x}^{p} f(t, x)\right) \tau^{k} y^{\gamma} d \tau d y= \\
& =\frac{1}{H_{n, k, \gamma}(\alpha+2 p)} \int_{K^{+}}\left(\tau^{2}-|y|^{2}\right)^{\frac{\alpha+2 p-n-1-k-|\gamma|}{2}}\left[\left(\square_{k, \gamma}\right)_{\tau, y}^{p}\left({ }^{k} T_{t}^{\tau} \mathbf{T}_{x}^{y} f(t, x)\right)\right] \tau^{k} y^{\gamma} d \tau d y .
\end{aligned}
$$

Recall that $\frac{\partial^{m} f}{\partial t^{m}}=0 \frac{\partial^{m} f}{\partial x_{i}^{m}}=0$ when $\left(t, x_{1}, \ldots, x_{n}\right)=(0,0, \ldots, 0), m=0, . ., 2 p$. Then applying the integration by parts formula we find

$$
\begin{gathered}
\left(I_{\square_{k, \gamma}}^{\alpha+2 p}\left(\square_{k, \gamma}\right)^{p} f\right)(t, x)= \\
=\frac{1}{H_{n, k, \gamma}(\alpha+2 p)} \int_{K^{+}}\left[\left(\square_{k, \gamma}\right)_{\tau, y}^{p}\left(\tau^{2}-|y|^{2}\right)^{\frac{\alpha+2 p-n-1-k-|\gamma|}{2}}\right]\left({ }^{k} T_{t}^{\tau \gamma} \mathbf{T}_{x}^{y} f(t, x)\right) \tau^{k} y^{\gamma} d \tau d y .
\end{gathered}
$$

Applying (4.23) we get

$$
\begin{aligned}
& \left(\square_{k, \gamma}\right)_{\tau, y}^{p}\left(\tau^{2}-|y|^{2}\right)^{\frac{\alpha-n-1-k-|\gamma|}{2}+p}=4^{p}\left(\frac{\alpha-n-1-k-|\gamma|}{2}+1\right) \ldots \\
& \ldots\left(\frac{\alpha-n-1-k-|\gamma|}{2}+p\right)\left(\frac{\alpha}{2}\right) \ldots\left(\frac{\alpha}{2}+p-1\right)\left(t^{2}-r^{2}\right)^{\frac{\alpha-n-1-k-|\gamma|}{2}} .
\end{aligned}
$$

The result (4.25) follows from the

$$
\frac{4^{p}\left(\frac{\alpha-n-1-k-|\gamma|}{2}+1\right) \ldots\left(\frac{\alpha-n-1-k-|\gamma|}{2}+p\right)\left(\frac{\alpha}{2}\right) \ldots\left(\frac{\alpha}{2}+p-1\right)}{H_{n, k, \gamma}(\alpha+2 p)}=
$$

$=\frac{\pi 4^{p}\left(\frac{\alpha-n-1-k-|\gamma|}{2}+1\right) \ldots\left(\frac{\alpha-n-1-k-|\gamma|}{2}+p\right)\left(\frac{\alpha}{2}\right) \ldots\left(\frac{\alpha}{2}+p-1\right)}{2^{\alpha+2 p-n-1} \sin \left(\frac{k+1}{2} \pi\right) \Gamma\left(\frac{k+1}{2}\right) \prod_{i=1}^{n} \Gamma\left(\frac{\gamma_{i}+1}{2}\right) \Gamma\left(\frac{\alpha}{2}+p\right) \Gamma\left(\frac{\alpha+1-n-k-|\gamma|}{2}+p\right)}=\frac{1}{H_{n, k, \gamma}(\alpha)}$.

Now we prove that the integral $I_{\square}^{\square_{k, \gamma}}$, can be analytically continued to all values $\alpha>-1$ and that for these values it is a holomorphic function of α for $f \in S_{e v}$. Moreover we show that $I_{\square_{k, \gamma}}^{0}$ is the identity operator for $f \in S_{e v}$.

Theorem 4.3. Let $f \in S_{e v}, n+|\gamma|-k>0, k$ is not odd, then hyperbolic Riesz B-potential

$$
\left(I_{\square_{k, \gamma}}^{\alpha} f\right)(t, x)=\frac{1}{H_{n, k, \gamma}(\alpha)} \int_{K^{+}}\left(\tau^{2}-|y|^{2}\right)^{\frac{\alpha-n-1-k-|\gamma|}{2}}\left({ }^{k} T_{t}^{\tau \gamma} \mathbf{T}_{x}^{y} f(t, x)\right) \tau^{k} y^{\gamma} d \tau d y
$$

can be analytically continued to all values $\alpha>-1$ and $\left(I_{\square_{k, \gamma}}^{0} f\right)(t, x)=f(t, x)$.
Proof. Let $(\tau, y) \in \mathbb{R}_{+}^{n+1}, \delta>0$ and $\tau+|y|=\delta$ is a part of a cone with the vertex at $(\delta, 0, \ldots, 0)$. We denote K_{δ}^{+}the area bounded by a part of a cone $\tau+|y|=\delta$ from above by $\tau=|y|$ from below and by $\tau=0, y_{i}=0, i=1, \ldots n$, including boundary. Then $K^{+}=K_{\delta}^{+} \cup\left(K^{+} \backslash K_{\delta}^{+}\right)$.

Let consider first $\left(I_{\square_{k, \gamma}}^{\alpha} f\right)(O)$, where $O=(0, . ., 0) \in \overline{\mathbb{R}}_{+}^{n+1}$. Dividing domain K^{+}into two parts K_{δ}^{+}and $K^{+} \backslash K_{\delta}^{+}$we can write

$$
\left(I_{\square_{k, \gamma}}^{\alpha} f\right)(O)=\frac{1}{H_{n, k, \gamma}(\alpha)} \int_{K^{+}}\left(\tau^{2}-|y|^{2}\right)^{\frac{\alpha-n-1-k-|\gamma|}{2}} f(\tau, y) \tau^{k} y^{\gamma} d \tau d y=I_{1}^{\alpha}+I_{2}^{\alpha},
$$

where

$$
\begin{gathered}
I_{1}^{\alpha}=\frac{1}{H_{n, k, \gamma}(\alpha)} \int_{K_{\delta}^{+}}\left(\tau^{2}-|y|^{2}\right)^{\frac{\alpha-n-1-k-|\gamma|}{2}} f(\tau, y) \tau^{k} y^{\gamma} d \tau d y \\
I_{2}^{\alpha}=\frac{1}{H_{n, k, \gamma}(\alpha)} \int_{K^{+} \backslash K_{\delta}^{+}}\left(\tau^{2}-|y|^{2}\right)^{\frac{\alpha-n-1-k-|\gamma|}{2}} f(\tau, y) \tau^{k} y^{\gamma} d \tau d y
\end{gathered}
$$

We will show that I_{1}^{α} and I_{2}^{α} are holomorphic for $\alpha>-1$ and $I_{1}^{0}=f(O), I_{2}^{0}=0$ which gives that $\left(I_{\square_{k, \gamma}}^{\alpha} f\right)(O)=f(O)$.

Consider $I_{1}^{\alpha,}$. Expressing integral by y in spherical coordinates $y=\rho \theta$ we obtain

$$
I_{1}^{\alpha}=\frac{1}{H_{n, k, \gamma}(\alpha)} \int_{K_{\delta}^{+}} \rho^{n+|\gamma|-1}\left(\tau^{2}-\rho^{2}\right)^{\frac{\alpha-n-1-k-|\gamma|}{2}} f(\tau, \rho \theta) \tau^{k} \theta^{\gamma} d S d \rho d \tau
$$

Changing variables τ and ρ by formulas

$$
\begin{equation*}
\rho=\frac{1}{2} \sigma(1-\chi), \quad \tau=\frac{1}{2} \sigma(1+\chi) \tag{4.26}
\end{equation*}
$$

noticing that $\frac{\partial(\tau, \rho)}{\partial(\sigma, \chi)}=\frac{1}{2} \sigma$ and $(\tau, y)=(\tau, \rho \theta)=\sigma(b+\chi c)$, where $b, c \in \mathbb{R}_{+}^{n+1}$ we obtain

$$
I_{1}^{\alpha}=\frac{1}{2^{n+k+|\gamma|} H_{n, k, \gamma}(\alpha)} \int_{S_{1}^{+}(n)} \theta^{\gamma} d S \int_{0}^{\delta} \sigma^{\alpha-1} d \sigma \times
$$

$$
\times \int_{0}^{1} \chi^{\frac{\alpha-n-1-k-|\gamma|}{2}}(1+\chi)^{k}(1-\chi)^{n+|\gamma|-1} f(\sigma(b+\chi c)) d \chi
$$

We develop $f(\sigma(b+\chi c))$ by the Teylor formula in χ :

$$
f(y)=f(\sigma(b+\chi c))=\sum_{p=0}^{N-1} \frac{\chi^{p}}{p!} F_{p}(\sigma, \theta)+R_{N}(\chi)
$$

where

$$
F_{p}(\sigma, \theta)=\left.\frac{\partial^{p}}{\partial \chi^{p}} f(\sigma(b+\chi c))\right|_{\chi=0}
$$

and

$$
R_{N}(\chi)=\frac{1}{(N-1)!} \int_{0}^{\chi} \frac{\partial^{N}}{\partial \chi^{N}} f(\sigma(b+\widetilde{\chi} c))(\chi-\widetilde{\chi})^{N-1} d \widetilde{\chi}
$$

Then

$$
\begin{aligned}
& I_{1}^{\alpha}=\frac{1}{2^{n+k+|\gamma|} H_{n, k, \gamma}(\alpha)}\left(\sum_{p=0}^{N-1} \frac{1}{p!} \int_{S_{1}^{+}(n)} \theta^{\gamma} d S \int_{0}^{\delta} F_{p}(\sigma, \theta) \sigma^{\alpha-1} d \sigma \times\right. \\
& \quad \times \int_{0}^{1} \chi^{\frac{\alpha-n-1-k-|\gamma|}{2}+p}(1+\chi)^{k}(1-\chi)^{n+|\gamma|-1} d \chi+ \\
& \left.+\int_{S_{1}^{+}(n)} \theta^{\gamma} d S \int_{0}^{\delta} \sigma^{\alpha-1} d \sigma \int_{0}^{1} \chi^{\frac{\alpha-n-1-k-|\gamma|}{2}}(1+\chi)^{k}(1-\chi)^{n+|\gamma|-1} R_{N}(\chi) d \chi\right)
\end{aligned}
$$

Integral

$$
\int_{0}^{1} \chi^{\frac{\alpha-n-1-k-|\gamma|}{2}+p}(1+\chi)^{k}(1-\chi)^{n+|\gamma|-1} d \chi
$$

is integral representation of the Gauss hypergeometric function

$$
{ }_{2} F_{1}(a, b ; c ; z)=\frac{\Gamma(c)}{\Gamma(b) \Gamma(c-b)} \int_{0}^{1} t^{b-1}(1-t)^{c-b-1}(1-t z)^{-a} d t
$$

for $b=\frac{\alpha-n+1-k-|\gamma|}{2}+p>0, c-b=n+|\gamma|>0$. It is known that ${ }_{2} F_{1}(a, b ; c ; z)$ is defined for $z=-1$ when $c-a-b>0$. Since in our case $c-a-b=n+|\gamma|+k>0$ it can be analytically continued to $\frac{\alpha-n+1-k-|\gamma|}{2}+p \leq-1$ as the power series. So we have

$$
\begin{aligned}
& \int_{0}^{1} \chi^{\frac{\alpha-n-1-k-|\gamma|}{2}+p}(1+\chi)^{k}(1-\chi)^{n+|\gamma|-1} d \chi=\frac{\Gamma\left(\frac{\alpha-n+1-k-|\gamma|}{2}+p\right) \Gamma(n+|\gamma|)}{\Gamma\left(\frac{\alpha+n+1+|\gamma|-k}{2}+p\right)} \times \\
& \quad \times{ }_{2} F_{1}\left(-k, \frac{\alpha-n+1-k-|\gamma|}{2}+p ; \frac{\alpha+n+1+|\gamma|-k}{2}+p ;-1\right)
\end{aligned}
$$

It means that we have analytic continuation of I_{1}^{α} to all $\alpha>0$. Integrating by parts the integral by σ in (4.27) we obtain analytic continuation of I_{1}^{α} to all $\alpha>-1$.

Let

$$
\begin{gathered}
K_{p}(\alpha)=\frac{\pi}{2^{k+|\gamma|+\alpha-1} \sin \left(\frac{k+1}{2} \pi\right) \Gamma\left(\frac{k+1}{2}\right) \prod_{i=1}^{n} \Gamma\left(\frac{\gamma_{i}+1}{2}\right) \Gamma\left(\frac{\alpha+1-n-k-|\gamma|}{2}\right)} \times \\
\times \frac{\Gamma\left(\frac{\alpha-n+1-k-|\gamma|}{2}+p\right) \Gamma(n+|\gamma|)}{\Gamma\left(\frac{\alpha+n+1+|\gamma|-k}{2}+p\right)} \times F_{1}\left(-k, \frac{\alpha-n+1-k-|\gamma|}{2}+p ; \frac{\alpha+n+1+|\gamma|-k}{2}+p ;-1\right) .
\end{gathered}
$$

The most important term in (4.27) is the term with $p=0$ has the form

$$
\begin{equation*}
\frac{K_{0}(\alpha)}{\Gamma\left(\frac{\alpha}{2}\right)} \int_{S_{1}^{+}(n)} \theta^{\gamma} d S \int_{0}^{\delta} f(\sigma b) \sigma^{\alpha-1} d \sigma \tag{4.28}
\end{equation*}
$$

Using formula 15.1.21 from [1] of the form

$$
{ }_{2} F_{1}(a, b ; a-b+1 ;-1)=\frac{\sqrt{\pi} \Gamma(a-b+1)}{2^{a} \Gamma\left(1+\frac{a}{2}-b\right) \Gamma\left(\frac{a+1}{2}\right)}, \quad a-b+1 \neq 0,-1,-2, \ldots
$$

and taking into account the Euler's reflection formula

$$
\Gamma(1-z) \Gamma(z)=\frac{\pi}{\sin (\pi z)}, \quad z \notin \mathbb{Z}
$$

we get for $\frac{k+1}{2} \notin \mathbb{Z}$

$$
\begin{equation*}
K_{0}(0)=\frac{\sqrt{\pi} \Gamma(n+|\gamma|)}{2^{|\gamma|-1} \Gamma\left(\frac{n+|\gamma|+1}{2}\right) \prod_{i=1}^{n} \Gamma\left(\frac{\gamma_{i}+1}{2}\right)} . \tag{4.29}
\end{equation*}
$$

Now we carry out the analytic continuation of the expression (4.28). The factor $K_{0}(\alpha)$ has no singularity at $\alpha=0$ and for $\frac{k+1}{2} \notin \mathbb{Z}$ and the formula (4.29) is valid for $K_{0}(0)$. Integrating $\int_{0}^{\delta} f(\sigma b) \sigma^{\alpha-1} d \sigma$ by parts we get

$$
\begin{gathered}
\frac{1}{\Gamma\left(\frac{\alpha}{2}\right)} \int_{0}^{\delta} f(\sigma b) \sigma^{\alpha-1} d \sigma=\frac{1}{\alpha \Gamma\left(\frac{\alpha}{2}\right)}\left(\left.f(\sigma b) \sigma^{\alpha}\right|_{\sigma=0} ^{\delta}-\int_{0}^{\delta} f_{\sigma}^{\prime}(\sigma b) \sigma^{\alpha} d \sigma\right) \\
=\frac{1}{2 \Gamma\left(\frac{\alpha}{2}+1\right)}\left(f(\delta b) \delta^{\alpha}-\int_{0}^{\delta} f_{\sigma}^{\prime}(\sigma b) \sigma^{\alpha} d \sigma\right) .
\end{gathered}
$$

Then, since

$$
\int_{S_{1}^{+}(n)} \theta^{\gamma} d S=\frac{\prod_{i=1}^{n} \Gamma\left(\frac{\gamma_{i}+1}{2}\right)}{2^{n-1} \Gamma\left(\frac{n+|\gamma|}{2}\right)}
$$

using the formula

$$
\Gamma(z) \Gamma\left(z+\frac{1}{2}\right)=2^{1-2 z} \sqrt{\pi} \Gamma(2 z)
$$

we obtain

$$
\lim _{\alpha \rightarrow 0} \frac{K_{0}(\alpha)}{\Gamma\left(\frac{\alpha}{2}\right)} \int_{S_{1}^{+}(n)} \theta^{\gamma} d S \int_{0}^{\delta} f(\sigma b) \sigma^{\alpha-1} d \sigma=\frac{K_{0}(0)}{2}\left(f(\delta b)-\int_{0}^{\delta} f_{\sigma}^{\prime}(\sigma b) d \sigma\right) \int_{S_{1}^{+}(n)} \theta^{\gamma} d S=
$$

$$
=f(\delta b)-f(\delta b)+f(0)=f(0) .
$$

Now we show that for $p=1,2, \ldots$ all summands in (4.27) are equal to zero. Applying formula $\Gamma(z+m+1)=z(z+1) \cdots(z+m) \Gamma(z), m \in \mathbb{N}$ to $\Gamma\left(\frac{\alpha-n+1-k-|\gamma|}{2}+p\right)$ we obtain

$$
\begin{aligned}
K_{p}(\alpha)= & \frac{\pi \Gamma(n+|\gamma|)\left(1-\frac{n+1+k+|\gamma|-\alpha}{2}\right)\left(2-\frac{n+1+k+|\gamma|-\alpha}{2}\right) \ldots\left(p-\frac{n+1+k+|\gamma|-\alpha}{2}\right)}{2^{k+|\gamma|+\alpha-1} \sin \left(\frac{k+1}{2} \pi\right) \Gamma\left(\frac{k+1}{2}\right) \Gamma\left(\frac{\alpha+n+1+|\gamma|-k}{2}+p\right) \prod_{i=1}^{n} \Gamma\left(\frac{\gamma_{i}+1}{2}\right)} \times \\
& \times{ }_{2} F_{1}\left(-k, \frac{\alpha-n+1-k-|\gamma|}{2}+p ; \frac{\alpha+n+1+|\gamma|-k}{2}+p ;-1\right) .
\end{aligned}
$$

That means that $K_{p}(0)$ has no singularity at $\alpha=0$. For any positive integer p we have

$$
\begin{equation*}
\frac{\partial^{p}}{\partial \tau^{p}} f(\sigma(b+\tau c))=\sigma^{p}\left(\sum_{k=1}^{n} c^{k} \partial_{k}\right)^{p} f \tag{4.30}
\end{equation*}
$$

where $\partial_{k}=\frac{\partial}{\partial y_{k}}, y=\sigma(b+\tau c)$. Hence all intergals

$$
\int_{0}^{\delta} F_{p}(\sigma, \theta) \sigma^{\alpha-1} d \sigma, \quad \int_{0}^{\delta} \sigma^{\alpha-1} d \sigma \int_{0}^{1} \chi^{\frac{\alpha-n-1-k-|\gamma|}{2}}(1+\chi)^{k}(1-\chi)^{n+|\gamma|-1} R_{N}(\chi) d \chi
$$

converge for $\alpha>-1$ when $p=1,2, \ldots, K_{p}(0)$ is finite and $\lim _{\alpha \rightarrow 0} \frac{1}{\Gamma\left(\frac{\alpha}{2}\right)}=0$ we get that all summands in (4.27) for $p=1,2, \ldots$ are equal to zero.

Now we consider I_{2}^{α}. Expressing integral by y in spherical coordinates $y=\rho \theta$ we obtain

$$
I_{2}^{\alpha}=\frac{1}{H_{n, k, \gamma}(\alpha)} \int_{K^{+} \backslash K_{\delta}^{+}} \rho^{n+|\gamma|-1}\left(\tau^{2}-\rho^{2}\right)^{\frac{\alpha-n-1-k-|\gamma|}{2}} f(\tau, \rho \theta) \tau^{k} \theta^{\gamma} d S d \rho d \tau
$$

Making the change of variables (4.26) in the last expression we obtain

$$
\begin{gathered}
I_{2}^{\alpha}=\frac{1}{2^{n+k+|\gamma|} H_{n, k, \gamma}(\alpha)} \int_{S_{1}^{+}(n)} \theta^{\gamma} d S \times \\
\times \int_{0}^{1} \chi^{\frac{\alpha-n-1-k-|\gamma|}{2}}(1+\chi)^{k}(1-\chi)^{n+|\gamma|-1} d \chi \int_{\delta}^{\infty} \sigma^{\alpha-1} f(\sigma(b+\chi c)) d \sigma .
\end{gathered}
$$

Since $f \in S_{e v}$ and $\delta>0$ then the function $G(\chi, \theta, \alpha)=\int_{\delta}^{\infty} \sigma^{\alpha-1} f(\sigma(b+\chi c)) d \sigma$ is in $S_{e v}$ by χ as well as by θ and holomorphic in α. Assuming

$$
\frac{\pi}{2^{\alpha+k+|\gamma|-1} \sin \left(\frac{k+1}{2} \pi\right) \Gamma\left(\frac{k+1}{2}\right) \prod_{i=1}^{n} \Gamma\left(\frac{\gamma_{i}+1}{2}\right)}(1+\chi)^{k}(1-\chi)^{n+|\gamma|-1} G(\chi, \theta, \alpha)=W(\chi)
$$

we get

$$
I_{2}^{\alpha}=\frac{1}{\Gamma\left(\frac{\alpha}{2}\right) \Gamma\left(\frac{\alpha+1-n-k-|\gamma|}{2}\right)} \int_{S_{1}^{+}(n)} \theta^{\gamma} d S \int_{0}^{1} \chi^{\frac{\alpha-n-1-k-|\gamma|}{2}} W(\chi) d \chi
$$

The expression $\frac{1}{\Gamma\left(\frac{\alpha+1-n-k-|\gamma|}{2}\right)} \int_{0}^{1} \chi^{\frac{\alpha-n-1-k-|\gamma|}{2}} W(\chi) d \chi$ can be continued analytically as a holomorphic function of α to any $\alpha>\alpha_{0}$ by integrating by parts, where α_{0} is arbitrary. So

$$
\frac{1}{\Gamma\left(\frac{\alpha+1-n-k-|\gamma|}{2}\right)} \int_{S_{1}^{+}(n)} \theta^{\gamma} d S \int_{0}^{1} \chi^{\frac{\alpha-n-1-k-|\gamma|}{2}} W(\chi) d \chi
$$

is a holomorphic function for $\alpha>-1$ and since I_{2}^{α} contains a factor $\frac{1}{\Gamma\left(\frac{\alpha}{2}\right)}$ it vanishes when $\alpha \rightarrow 0$. This completes the proof of the fact that $\left(I_{\square_{k, \gamma}}^{\alpha} f\right)(0)=f(0)$. Taking $g(t, x)=$ $\left({ }^{k} T_{t}^{\tau \gamma} \mathbf{T}_{x}^{y} f(t, x)\right)$ instead of $f(t, x)$ we can write $\left(I_{\square_{k, \gamma}}^{\alpha} f\right)(t, x)=f(t, x)$ that means that $I_{\square_{k, \gamma}}^{0}$ is the identity operator.

Now consider the Cauchy problem when $n+|\gamma|-k>0, k$ is not odd

$$
\begin{equation*}
\left(\square_{k, \gamma}\right)_{t, x} u(t, x)=f(t, x), \quad f \in S_{e v}, \tag{4.31}
\end{equation*}
$$

Applying operator $I_{\square_{k, \gamma}}^{\alpha+2}$ to the (4.31), using Lemma 4.3 and Theorem 4.3 and passing to the limit with $\alpha \rightarrow 0$ we obtain that the solution to the problem (4.31)-(4.32) is

$$
u(t, x)=\left(I_{\square_{k, \gamma}}^{2} f\right)(t, x),
$$

where f is from the Lemma 4.3
So we can write next theorem.
Theorem 4.4. The solution $u \in S_{e v}$ of the problem

$$
\begin{gather*}
\left(\square_{k, \gamma}\right)_{t, x} u(t, x)=f(t, x), \tag{4.33}\\
u(x, 0)=\varphi(x), \quad t^{k} u_{t}(x, 0)=\psi(x), \tag{4.34}
\end{gather*}
$$

where $k \in(0,1),(t, x) \in \mathbb{R}_{+}^{n+1}$ and f is from the Lemma 4.3 is

$$
u(t, x)=u_{1}(t, x)+u_{2}(t, x)+\left(I_{\square_{k, \gamma}}^{2} f\right)(t, x)
$$

where $u_{1}(t, x)$ is given in Theorem 3.1, $u_{2}(t, x)$ is given in Theorem 3.2 and $I_{\square_{k, \gamma}}^{2}$ is hyperbolic Riesz B-potential (4.22) or its analytic continuation given by Theorem 4.3.

Example. Consider a Cauchy problem

$$
\begin{gather*}
\left(\frac{\partial^{2}}{\partial t^{2}}+\frac{2}{t} \frac{\partial^{2}}{\partial t^{2}}-\left(\Delta_{\gamma}\right)_{x}\right) u(t, x)=t^{2} e^{-t} \mathbf{j}_{\gamma}(x ; b), \tag{4.35}\\
u(0, x)=3 \mathbf{j}_{\gamma}(x ; b), \quad u_{t}(0, x)=0 \tag{4.36}
\end{gather*}
$$

where $n+|\gamma| \geq 2, \mathbf{j}_{\gamma}(x ; \xi)=\prod_{i=1}^{n} j_{\frac{\gamma_{i}-1}{2}}\left(x_{i} \xi_{i}\right) \gamma_{1}>0, \ldots, \gamma_{n}>0, b=\left(b_{1}, \ldots, b_{n}\right),|b|=1$.
A solution to (4.35)-(4.36) is

$$
u(t, x)=\frac{1}{2} e^{-t}\left(t^{2}+3 t+3\right) \mathbf{j}_{\gamma}(x ; b)
$$

Checking we have

$$
\begin{aligned}
\left(\Delta_{\gamma}\right)_{x} e^{-t}\left(t^{2}+3 t+3\right) \mathbf{j}_{\gamma}(x ; b) & =-\frac{1}{2} e^{-t}\left(t^{2}+3 t+3\right) \mathbf{j}_{\gamma}(x ; b) \\
\left(B_{2}\right)_{t} e^{-t}\left(t^{2}+3 t+3\right) \mathbf{j}_{\gamma}(x ; b) & =\frac{1}{2} e^{-t}\left(t^{2}-3 t-3\right) \mathbf{j}_{\gamma}(x ; b)
\end{aligned}
$$

and

$$
\begin{gathered}
\left(\left(B_{2}\right)_{t}-\left(\Delta_{\gamma}\right)_{x}\right) e^{-t}\left(t^{2}+3 t+3\right) \mathbf{j}_{\gamma}(x ; b)=t^{2} e^{-t} \mathbf{j}_{\gamma}(x ; b), \\
u(0, x)=3 \mathbf{j}_{\gamma}(x ; b), \quad u_{t}(0, x)=0
\end{gathered}
$$

References

[1] Abramowitz, M. and Stegun, I. A., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Applied Mathematics Series, New York, 1983
[2] Barabash, O. P. and Shishkina, E. L., Solution of the general Euler-Poisson-Darboux equation with Bessel operator acting by the all variables, Bulletin of the Tambov University, Series of natural sciences, 6 (2016) 2146-2151
[3] Bateman, H. and Erdélyi, A., Tables of Integral Transforms, Vol. 2. McGraw-Hill, New York, 1954
[4] Blum, E. K., The Euler-Poisson-Darboux equation in the exceptional cases, Proc. Amer. Math. Soc., 5 (1954), 511-520
[5] Bresters, D. W., On the equation of Euler-Poisson-Darboux, SIAM J. Math. Anal., 4 (1973), No. 1, 31-41
[6] Bresters, D. W., On a generalized Euler-Poisson-Darboux equation, SIAM J. Math. Anal., 9 (1978), No. 5, $924-$ 934
[7] Carroll, R. W. and Showalter, R. E., Singular and Degenerate Cauchy problems, Academic Press, New York, 1976
[8] Diaz, J. B. and Weinberger, H. F., A solution of the singular initial value problem for the Euler-Poisson-Darboux equation, Proc. Amer. Math. Soc., 4 (1953), 703-715
[9] Fox, D. N., The solution and Huygens principle for a singular Cauchy problem, J. Math. Mech., 8 (1959), 197-219
[10] Gel'fand, I. M. and Shilov, G. E., Generalized functions. Vol. I: Properties and operations, MA: Academic Press, Boston, 1964
[11] Glushak, A. V. and Pokruchin, O. A., Criterion for the solvability of the Cauchy problem for an abstract Euler-Poisson-Darboux equation, Translation of Differ. Uravn., 52 (2016), No. 1, 41 ?59. Differ. Equ., 52 (2016), No. 1, 39-57
[12] Glushak, A. V., Abstract Euler-Poisson-Darboux equation with nonlocal condition, Russian Mathematics 60 (2016), No. 6, 21-28
[13] Glushak, A. V. and Popova, V. A., Inverse problem for Euler-Poisson-Darboux abstract differential equation, Journal of Mathematical Sciences 149 (2008), No. 4, 1453-1468
[14] Katrakhov, V. V. and Sitnik, S. M., Composition method for constructing B-elliptic, B-hyperbolic, and B-parabolic transformation operators, Russ. Acad. Sci., Dokl. Math., 50 (1995), No. 1, 70-77
[15] Kipriyanov, I. A., Singular Elliptic Boundary Value Problems, Nauka, Moscow, 1997
[16] Levitan, B. M., Expansion in Fourier Series and Integrals with Bessel Functions, Uspehi Matem. Nauk (N.S.) 6 (1951), No. 2 (42), 102-143
[17] Levitan, B. M., Theory of generalised translations operators, Nauka, Moscow, 1973
[18] Lyakhov, L. N., Polovinkin, I. P., and Shishkina, E. L., Formulas for the solution of the Cauchy problem for a singular wave equation with Bessel time operator, Doklady Mathematics, 90 (2014), No. 3, 737-742
[19] Lyakhov, L. N., Polovinkin, I. P., and Shishkina, E. L., On a Kipriyanov problem for a singular ultrahyperbolic equation, Differ. Equ., 50 (2014), No. 4, 513-525
[20] Prudnikov, A. P., Brychkov, Yu. A., and Marichev, O. I., Integrals and Series, Vol. 2, Special Functions, Gordon \& Breach Sci. Publ., New York, 1990
[21] M. Riesz, L'integrale de Riemann-Liouville et le probleme de Cauchy, Acta Mathematica, 81 (1949) 1-223
[22] Shishkina, E. L. and Sitnik, S. M., General form of the Euler-Poisson-Darboux equation and application of the transmutation method, Electron. J. Differential Equations, 177 (2017), 1-20
[23] Shishkina, E. L., Generalized Euler-Poisson-Darboux equation and singular Klein-Gordon equation, Journal of Physics: Conference Series, 973 (2018), No. 1, 1-20
[24] Shishkina, E. L., Singular Cauchy problem for the general Euler-Poisson-Darboux equation, Open Mathematics, 16 (2018), 23-31
[25] Sitnik, S. M., Transmutations and applications: A survey, arXiv:1012.3741v1
[26] Sitnik, S. M., Transmutations and applications, Contemporary studies in mathematical analysis, Vladikavkaz, (2008) 226-293
[27] Sitnik, S. M., Factorization and estimates of the norms of Buschman-Erdelyi operators in weighted Lebesgue spaces, Soviet Mathematics Dokladi, 44 (1992), No. 2, 641-646
[28] Tersenov, S. A., An introduction in the theory of equations degenerating on a boundary, Novosibirsk state university, USSR, 1973
[29] Watson, G. N. A Treatise on the Theory of Bessel Functions, Cambridge University Press, 1922
[30] Weinstein, A., Sur le probléme de Cauchy pour l'équation de Poisson et l'équation des ondes, C. R. Acad. Sci. Paris, 234 (1952), 2584-2585
[31] Weinstein, A., On the wave equation and the equation of Euler-Poisson, Proceedings of Symposia in Applied Mathematics, Vol. V, Wave motion and vibration theory, McGraw-Hill Book Company, Inc., New York-Toronto-London, 137-147, 1954
[32] Weinstein, A., The generalized radiation problem and the Euler-Poisson-Darboux equation, Summa Brasiliensis Mathematicae, 3 (1955), 125-147
[33] Young, F. C., On a generalized EPD equation, J. Math. Mech., 18 (1969), 1167-1175
Voronezh State University
Faculty of Applied Mathematics
Informatics and Mechanics
UniVERSItetskaya pl., 1, 394000 Voronezh, Russia
E-mail address: ilina_dico@mail.ru

