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Kottman’s constant, packing constant and Riesz angle in
some classes of Köthe sequence spaces

BOYAN ZLATANOV

ABSTRACT. We have found a sufficient condition in order that the Kottman constant to be equal to the Riesz
angle for Köthe sequence spaces. We have found the ball packing constant in weighted Orlicz sequence spa-
ces, endowed with Luxemburg or p–Amemiya norm. We have calculated the Riesz angle for Musielak–Orlicz,
Nakano, weighted Orlicz, Orlicz, Orlicz–Lorentz, Lorentz and Cesaro sequence spaces.

1. INTRODUCTION

It is well known that only a finite number of spheres can be packed in the unit ballBX in
a finite dimensional space if the spheres are disjoint and have the same radius, no matter
how small the radius is. However, for an infinite dimensional Banach space X, there exists
a constant ΓX , such that an infinite number of disjoint spheres can be packed in a unit ball
BX if the radius is less than ΓX . Whereas, only a finite number of disjoint spheres can
be packed in the ball BX if the radius is larger than ΓX . This constant is referred to as
a packing sphere constant. From the 50’s of the previous century, researchers began to
investigate the packing spheres problem in Banach spaces [3, 40, 41]. In [28, 29] Kottman
finally determined the range of the packing sphere value ΓX , where Kottman’s constant
K(X) was introduced. It measures how big the separation of an inffnite subset of the unit
ball can be.

The packing constant is an important and interesting geometric parameter for studying
the geometric structure, isometric embedding, noncompactness, and reflexivity in Banach
spaces [3, 28, 41, 45].

In order to generalize the technique in [37] for c0 to a larger class of Banach lattices, J.
Borwein and B. Sims introduced in [2] the notion of a weakly orthogonal Banach lattice
and Riesz angle a(X). Deep results in investigation of fixed point property (FPP) and
weak fixed point property (w–FPP) in wide classes of Banach spaces were obtained by
using the Riesz angle concept in [2]. The above mentioned result was applied by Nezir
to prove that the Riesz angle of the space `0w,∞ with w = {1/np}, where p ∈ (0, 1) is less
than 2 and thus it has the w–FPP [39] and by Cui, Hudzik and Wisła to prove that every
reflexive Orlicz sequence space `M,p equipped with the p–Amemiya norm, has the w–FPP
and the FPP as well [11].

Therefore finding of formulas for the calculation or estimation of the Riesz angle, the
ball packing constant or Kottman’s constant are interesting problems.

Combining the known results about the Riesz angle [49, 53] and Kottman’s constant
[3, 6, 18] it seems that for a wide class of Köthe sequence spaces with unconditional basis
both constants are equal.
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2. PRELIMINARIES

We use the standard Banach space terminology from [32].
In what follows (X, ‖ · ‖) is a Banach space, SX and BX are the unit sphere and the unit

ball of X respectively. By N we denote the natural numbers and by R the real numbers.
By dim(X) we will denote the dimension of the space X .

The packing constant [28] of X is defined by

ΓX = sup{r > 0 : there are xk ∈ (1− r)BX with ‖xi − xj‖ ≥ 2r for i, j ∈ N, i 6= j},

i.e. if r ∈ (0,ΓX ], then BX contains infinitely many disjoint balls with radius r, and when
r > ΓX , then BX contains only finitely many such balls. The exact value of packing con-
stant Γ`p is found in [3], ΓLp

[0,1]
is found in [46], for Orlicz sequence spaces Γ`M equipped

with Luxemburg’s or Amemiya’s norm is found in [6], for Musielak–Orlicz sequence spa-
ces Γ`{Mi}

equipped with Luxemburg’s norm, for Nakano sequence spaces Γ`{pi} [18], for
Lorentz sequence spaces Γd(w,p) in [50], for an infinite dimensional Hilbert space [41] and
for Cesaro sequence spaces Γcesp in [10]. There are a lot of results, where estimation of the
packing constant is obtained for wide classes of spaces [16, 17, 41, 43, 48]

A well known result [6] is that ΓX ∈ [ 1
3 ,

1
2 ], provided that dim(X) =∞.

Let us denote sep({x(n)}) = inf
{
‖x(n) − x(m)‖ : n 6= m

}
.

Kottman’s constant of an infinite dimensional Banach space X is defined in [28] as

K(X) = sup
{

sep({x(n)}) : {x(n)}∞n=1 ⊂ SX
}
.

Clearly K(X) ∈ [1, 2]. The following relationship

(2.1) ΓX =
K(X)

2 +K(X)

is obtained in [28].
It is found in [17] that K(X) = 2, provided that X is a nonreflexive Banach lattice, and

consequently ΓX = 1
2 . We would like to mention that the ball packing constant is found

through the application of (2.1) in most articles.
Following [2] a Banach lattice is weakly orthogonal if limn→∞ ‖ |xn| ∧ |x| ‖ = 0 for all

x ∈ X , whenever {xn}∞n=1 is a weakly null sequence, where |x| ∧ |y| = min(|x|, |y|). The
Riesz angleα(X) of a Banach lattice (X, ‖·‖) isα(X) = sup{‖(|x|∨|y|)‖ : ‖x‖ ≤ 1, ‖y‖ ≤ 1},
where |x| ∨ |y| = max(|x|, |y|). Clearly 1 ≤ α(X) ≤ 2. If there exists a weakly orthogonal
Banach lattice Y such that d(X,Y ).α(Y ) < 2, where d(X,Y ) is the Banach-Mazur distance
between the Banach spaces X and Y , and α(Y ) is the Riesz angle of Y , then X has the
weak fixed point property.

A formula for computing the Riesz angle in Orlicz spaces equipped with Luxemburg’s
or Amemiya’s norm is obtained in [49] and in weighted Orlicz spaces equipped with
Luxemburg’s or Amemiya’s norm is obtained in [53].

Let `0 stand for the space of all real sequences i.e. x = {xi}∞i=1 ∈ `0. Let us denote the
unit vectors by {en}∞n=1.

Definition 2.1. ([10]) A Banach space (X, ‖ · ‖) is said to be a Köthe sequence space if X
is a subspace of `0 such that

(i) If x ∈ `0, y ∈ X and |xi| ≤ |yi| for all i ∈ N then x ∈ X and ‖x‖ ≤ ‖y‖;
(ii) There exists an element x ∈ X such that xi > 0 for all i ∈ N.

Lemma 2.1. ([49]) For a Köthe sequences space (X, ‖ · ‖) the Riesz angle a(X) can be expressed
as a(X) = sup{‖(|x| ∨ |y|)‖ : x, y ∈ SX , |x| ∧ |y| = 0}.
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Definition 2.2. ([10]) A Köthe sequence space (X, ‖ · ‖) is called order continuous if for
any sequence

{
x(n)

}∞
n=1

, such that x(n) ↘ 0 coordinatewise there holds
∥∥x(n)

∥∥↘ 0.

A Köthe sequence space (X, ‖ · ‖) is order continuous if and only if for any x ∈ X there
holds limn→∞ ‖(0, 0, . . . , 0, xn, xn+1, . . . )‖ = 0.

Definition 2.3. ([10]) A Köthe sequence space (X, ‖ · ‖) has the Fatou property if for any
sequence

{
x(n)

}∞
n=1
⊂ X with supn∈N

∥∥x(n)
∥∥ <∞ and any x ∈ `0, such x(n) ↑ x coordina-

tewise there hold x ∈ X and
∥∥x(n)

∥∥ ↑ ‖x‖.
Definition 2.4. ([32], p.9) Let (X, ‖ · ‖) be a Banach space. We say that {xn}∞n=1 is a
boundedly complete basis if

∑∞
i=1 aixi converges whenever there holds the inequality

sup
n∈N

∥∥∥∥∥
n∑
i=1

aixi

∥∥∥∥∥ <∞.

We will need the next fundamental result, where Kottman’s constant can be calculated
by using finitely supported norm one vectors in large classes of Köthe sequence spaces.
The case (i) is proven in [43] and the case (ii) is proven in [10].

Theorem 2.1. Let X be a Köthe sequence space. Let there hold one of the following:

(i) the unit vectors {en}∞n=1 form a boundedly complete basis of X ;
(ii) X be order continuous with the Fatou property.

Then K(X) = sup
{

sep
({
u(n)

}∞
n=1

)
: u(n) =

∑in
i=in−1+1 u

(n)
i ei ∈ SX , i0 < i1 < · · ·

}
.

Let us mention that three different formulas for calculation of K(X) are obtained in
[43], but we have stated only the one that coincides with the formula in [10].

Different conditions for a Köthe sequence space to be order continuous are obtained in
[12], which are relevant in the context of calculating Kottman’s constant by using finitely
supported norm one vectors.

Let us point out that Theorem 2.1 holds for any reflexive Köthe sequence space, because
reflexivity implies both order continuity and Fatou property of the space.

Definition 2.5. ([32], p.15) Let {xn}∞n=1 be a sequence of vectors in a Banach space X .
Then the series

∑∞
n=1 xn is said to converge unconditionally if for any permutation π of

the integers the series
∑∞
n=1 xπ(n) converges.

Proposition 2.1. ([32], p.15) Let {xn}∞n=1 be a sequence of vectors in a Banach space X . Then
the series

∑∞
n=1 xn converges unconditionally if and only if for every ε > 0 there exists an integer

N so that
∥∥∑

n∈σ xn
∥∥ < ε for every finite set of integers σ, which satisfies min{n ∈ σ} > N .

Definition 2.6. ([32], p.18) A basis {xn}∞n=1 of a Banach space X is called unconditional if
every x ∈ X its expansion

∑∞
n=1 anxn in terms of the basis converges unconditionally.

Definition 2.7. ([32], p.5) Two bases {xn}∞n=1 and {yn}∞n=1 of a Banach space X are called
equivalent, provided that a series

∑∞
n=1 anxn converges if and only if

∑∞
n=1 anyn conver-

ges.

Let X be a Banach space with a basis {xn}∞n=1. For x =
∑∞
n=1 anxn ∈ X we will denote

supp x = {n ∈ N : an 6= 0} and call it a support of x. If x, y ∈ X are two vectors with
bounded supports satisfy the inequality max{i ∈ supp x} < min{i ∈ supp y} we will
write x < y. If x ∈ X is a vector with bounded support, which satisfies the inequality
M < min{i ∈ supp x} ≤ max{i ∈ supp x} < N we will write M < x < N .
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3. MAIN RESULTS

Proposition 3.2. Let (X, ‖ ·‖) be a Banach Köthe sequence space, x, y ∈ X be such that supp x∩
supp y = ∅ and ‖x‖ ≥ ‖y‖. Then for any z ∈ X , such that supp z ∩ supp (x + y) = ∅ there
holds the inequality ‖z + x‖ ≥ ‖z + y‖.

Proof. Let us consider the closed ball B[‖z −
x‖] = {u ∈ X : ‖u‖ ≤ ‖z − x‖}. Let us
consider the subspaces Y ⊂ X , such that
Y = {x =

∑
n∈I xnen : I = supp (x + y)}

and let us denote the plane L = Y + z.
The intersection B[‖z − x‖] ∩ L = Bz[‖x‖]
is a ball in L, such that Bz[‖x‖] = {u =∑
n∈I xnen ∈ L : ‖z − u‖ ≤ ‖x‖}. The vec-

tor z + ‖x‖
‖y‖y is in the sphere Sz[‖x‖] = {u =∑

n∈I xnen ∈ L : ‖z − u‖ = ‖x‖}. Indeed∥∥∥z − (z + ‖x‖
‖y‖y)

∥∥∥ = ‖x‖. From the assump-
tion that X is a Köthe sequence space and
the inequalities ‖x‖‖y‖ |yi| ≥ |yi| it follows that
z + y is in the open ball Bz(‖x‖) = {u =∑
n∈I xnen ∈ L : ‖z − u‖ < ‖x‖} and the-

refore ‖z + x‖ ≥ ‖z + y‖. �

Figure 1.“Proposition 3.2”

It is easy to observe that if ‖x‖ = ‖y‖ in Proposition 3.2 then ‖z + x‖ = ‖z + y‖.

Theorem 3.2. Let (X, ‖ · ‖) be a Banach Köthe sequence space. Let there hold one of the following
(a) X be order continuous with the Fatou property;
(b) the unit vectors {en}∞n=1 form an unconditional and boundedly complete basis of X .
Then K(X) = α(X).

Proof. According to Lemma 2.1 and Theorem 2.1 it is enough to prove the equality

S1 = sup
{

sep({u(n)}) : u(n) =
∑in
i=in−1+1 u

(n)(i)ei ∈ SX , 0 = i0 < i1 < · · ·
}

= sup{‖(|x| ∨ |y|‖) : x, y ∈ SX , |x| ∧ |y| = 0}.

It is easy to see that K(X) ≤ α(X), because the sup{‖(|x| ∨ |y|‖)} is taken among all
vectors x, y ∈ SX , such that supp x∩supp y = ∅ including those with unbounded supports.

It remains to prove that α(X) ≤ K(X).
Let ε > 0 be arbitrary chosen. There are x, y ∈ SX , so that ‖(|x| ∨ |y|)‖ > α(X)− ε and

|x| ∧ |y| = 0.
Let us denote z =

∑∞
i=1 ziei = x+ y.

If X is order continuous or {en}∞n=1 is unconditional basis then there exists q ∈ N such
that ∥∥∥∥∥∥

∞∑
i=q+1

xiei

∥∥∥∥∥∥ < ε,

∥∥∥∥∥∥
∞∑

i=q+1

yiei

∥∥∥∥∥∥ < ε and

∥∥∥∥∥∥
∞∑

i=q+1

ziei

∥∥∥∥∥∥ < ε.

Let us denote u =
∑q
i=1 xiei, v =

∑q
i=1 yiei and w = u+ v. By |x| ∧ |y| = 0 it follows that

|u| ∧ |v| = 0. Then

1 ≥ ‖u‖ =

∥∥∥∥∥∥
∞∑
i=1

xiei −
∞∑

i=q+1

xiei

∥∥∥∥∥∥ ≥
∥∥∥∥∥
∞∑
i=1

xiei

∥∥∥∥∥−
∥∥∥∥∥∥
∞∑

i=q+1

xiei

∥∥∥∥∥∥ ≥ 1− ε,
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1 ≥ ‖v‖ =

∥∥∥∥∥∥
∞∑
i=1

yiei −
∞∑

i=q+1

yiei

∥∥∥∥∥∥ ≥
∥∥∥∥∥
∞∑
i=1

yiei

∥∥∥∥∥−
∥∥∥∥∥∥
∞∑

i=q+1

yiei

∥∥∥∥∥∥ ≥ 1− ε

and
α(X)− ε ≥ ‖w‖ =

∥∥∥∑∞i=1 ziei −
∑∞
i=q+1 ziei

∥∥∥
≥ ‖

∑∞
i=1 ziei‖ −

∥∥∥∑∞i=q+1 ziei

∥∥∥ ≥ α(X)− 2ε

For any vector x ∈ X with bounded support and any N ∈ N, such that supp x < N we
denote by xN a vector with bounded support such that N ≤ xN and ‖x‖ = ‖xN‖.

There are N,M ∈ N, such that supp (u+ v) ∩ supp uN = ∅, supp (u+ v) ∩ supp vM = ∅
and supp vM ∩ supp uN = ∅. Indeed we can choose N > supp (u+ v), then we choose uN ,
then we choose M > supp (u+ v + uN ) and finally we choose uM .

WLOG we may assume that ‖u‖ ≥ ‖v‖.
We will prove that max{‖u+ uN‖, ‖v + vM‖} ≥ ‖u+ v‖ − ε. From Proposition 3.2 and

the inequality ‖v‖ ≤ ‖uN‖ = ‖u‖ it follows that ‖u+ uN‖ ≥ ‖u+ v‖ and therefore

max{‖u+ uN‖, ‖v + vM‖} ≥ ‖u+ uN‖ ≥ ‖u+ v‖.
Consequently we may assume without loss of generality that there are N ∈ N and uN

such that ‖u+ uN‖ ≥ ‖u+ v‖.
There exist un, um with n,m > N such that supp u < supp uN < supp un < supp um.

We will show that the inequality ‖un− um‖ ≥ ‖u− v‖ holds. From Proposition 3.2 we get
‖un + um‖ ≥ ‖un + uN‖ ≥ ‖u+ uN‖ ≥ ‖u+ v‖ − ε. Consequently we get that

K(X) ≥ inf{‖un − um‖ : n,m ∈ N} ≥ ‖u− v‖ ≥ α(X)− 3ε

and by the arbitrary choice of ε > 0 it follows that K(X) ≥ α(X). �

Corollary 3.1. Let (X, ‖ · ‖) be a Köthe sequence space. Let there hold one of the following
(a) X be order continuous with the Fatou property;
(b) the unit vectors {en}∞n=1 form an unconditional and boundedly complete basis of X .

Then there holds the equality ΓX = α(X)
α(X)+2 .

The proof follows from the fact that for any Banach space X there holds the equality
ΓX = K(X)

K(X)+2 .

4. BALL PACKING CONSTANT IN WEIGHTED ORLICZ SEQUENCE SPACES

We recall that M is an Orlicz function if M is even, convex, M(0) = 0, M(t) > 0 for
t > 0. The Orlicz function M(t) is said to satisfy the∆2–condition at zero if there exists a
constant c such that M(2t) ≤ cM(t) for every t ∈ [0, 1]. To every Orlicz function M the
following number is associated (see [32], p. 143)

βM = inf{p : inf{M(uv)/upM(v) : u, v ∈ (0, 1]} > 0},
called an upper Matuszewska–Orlicz index and defined in [36]. An Orlicz function M
satisfies the ∆2–condition at zero iff βM < ∞, which implies of course M(uv) ≥ uqM(v),
u, v ∈ [0, 1] for some q ≥ βM (see [32] p.140). If M satisfies the ∆2–condition at zero we
will use the notation M ∈ ∆2.

Following [24] let us recall the definition of a Musielak–Orlicz sequenc space. A se-
quence Φ = {Φi}∞i=1 of Orlicz functions is called a Musielak–Orlicz function or MO
function in short.

Given an MO function Φ we define for any x = {xi}∞i=1 ∈ `0 the function Φ̃(x) =∑∞
i=1 Φi(xi). The Musielak–Orlicz sequence space `Φ or MO sequence space in short,



108 B. Zlatanov

generated by a MO function Φ is the set of all real sequences x ∈ `0 such that Φ̃(λx) =∑∞
i=1 Φi(λxi) <∞ for some λ > 0.

The space `Φ is a Banach space if endowed with norm ‖x‖Φ = inf
{
r > 0 : Φ̃(x/r) ≤ 1

}
,

called Luxemburg norm.
Following [8] for p ∈ [1,+∞] and any u ≥ 0 we define sM,p(x) = sp

(
Φ̃(x)

)
, where

sp(u) =

{
(1 + up)1/p, for 1 ≤ p <∞
max{1, u}, for p =∞.

For any x ∈ `Φ we define the p–Amemiya norm by |||x|||Φ,p = infk>0
sΦ,p(kx)

k . The 1–
Amemiya norm is called just Amemiya norm. It is known [8] that ‖x‖Φ = |||x|||Φ,∞. The
inequalities |||x|||Φ2 ≤ ‖x‖Φ ≤ |||x|||Φ,p ≤ 21/p‖x‖Φ ≤ 21/p|||x|||Φ hold for p ∈ [1,+∞).

Just to simplify the notations we will denote by ‖ · ‖ the Luxemburg norm and by ||| · |||
the Amemiya norm.

We denote by hΦ the closed linear subspace of `Φ, generated by all x = {xi}∞i=1 ∈ `Φ,
such that the inequality Φ̃(λx) <∞ holds for every λ > 0.

We will write `Φ, when the statement holds for the MO sequence space equipped with
both norms – Luxemburg or p–Amemiya.

Definition 4.8. ([21]) We say that the MO function Φ satisfies the δ2 condition at zero if
there exist constants K,β > 0 and a non–negative sequence {cn}∞n=1 ∈ `1 such that for
every n ∈ N holds the inequality

Φn(2t) ≤ KΦn(t) + cn,

provided t ∈ [0,Φ−1
n (β)].

The spaces `Φ and hΦ coincide iff Φ has δ2 condition at zero [26, 32, 47].
AnyMO sequence space is a Köthe sequence space with the Fatou property [27]. When

the condition δ2 at zero is satisfied [32], the unit vectors {en}∞n=1 form a boundedly com-
plete unconditional basis in `Φ and `Φ is order continuous.

If Φ satisfies the δ2 condition at zero we will use the notation M ∈ δ2.
An extensive study of Orlicz and MO spaces can be found in [32, 38, 42].
The exact value of Kottman’s constant in MO sequence spaces endowed with the Lux-

emburg norm is obtained in [18].

Definition 4.9. ([18]) We say that the MO function Φ satisfies condition (+) if for any c > 0
and any ε ∈ (0, c) there is δ > 0 such that Φn((1 + δ)t) ≤ c, whenever Φn(t) ≤ c − ε for
n = 1, 2, . . . and t > 0.

Definition 4.9 was defined first for c = 1 in [24].
Let Φ be a MO function. Let us denote

c(x,m, n) = inf

{
c > 0 :

n+m∑
i=n

Φi

(xi
c

)
≤ 1

2
: x = {xi} ∈ S`Φ , n,m ∈ N

}
,

d(x, n) = limm→∞ c(x,m, n), d(n) = sup{d(x, n) : x = {xi} ∈ SΦ}, n ∈ N, dΦ =
limn→∞ d(n).

Theorem 4.3. ([18]) Let Φ be a MO function, that satisfies the δ2 condition at zero and the
condition (+). Then K((`Φ, ‖ · ‖)) = dΦ and ΓX = dΦ

2+dΦ
.

If the MO function Φ consists of one and the same function M one obtains the Orlicz
sequence spaces `M and hM . A weight sequence w = {wi}∞i=1 is a sequence of positive
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reals. If Φi = wiM , where M is an Orlicz function and w = {wi}∞i=1 is a weight sequence
we get the weighted Orlicz sequence spaces `M (w) and hM (w).

Following [15] we say that w = {wi}∞i=1 is from the class Λ if there exists a subsequence
w = {wik}∞k=1 such that limk→∞ wik = 0 and

∑∞
k=1 wik = ∞. If the weight sequence w is

from the class Λ we will use the notation w ∈ Λ.
When the weight sequence w is the constant sequence wi = 1 for every i ∈ N we get

the Orlicz sequence spaces.
It is easy to observe that if M ∈ ∆2, then the MO function Φ, defined by Φi = wiM

satisfies the δ2 condition at zero and the condition (+). Therefore K((`M (w), ‖ · ‖)) = dΦ

and ΓX = dΦ

2+dΦ
.

We will present a formula, which is different from that in Theorem 4.3, for calculating
of Kottman’s constant and the ball packing constant in weighted Orlicz sequence spaces,
when the weighted sequence w belongs to the class Λ.

The next lemma is a direct corollary of Lemma 2 from [18] for weighted Orlicz sequence
spaces. As far as its proof is omitted in [18], just for completeness we will prove it.

Lemma 4.2. Let M ∈ ∆2 be an Orlicz function w ∈ Λ be a weight sequence. Then for any δ > 0

and any sequence x =
{
x(n)

}∞
n=1
⊂ S`M (w) there exist a subsequence y =

{
y(n)

}∞
n=1

of x and a
subsequence {pk}∞k=1 ⊂ N such that:

(1)
∑∞
i=pk+1 wiM

(
y

(k)
i

)
< δ for every k ∈ N;

(2)
∑pk−1

i=1 wiM
(
y

(n)
i − y(m)

i

)
< δ for every k ∈ N, m,n ≥ k;

(3)
∑pk
i=pk−1+1 wiM

(
y

(n)
i

)
< δ for every k ≥ 2, n ≥ k.

Proof. Since for any n, i ∈ N there holds the inequality
∣∣∣x(n)
i

∣∣∣ ≤ M−1(wi) we may assume

by the diagonal method, that there is a subsequence
{
x(nk)

}∞
k=1

, such that limk→∞ x
(nk)
i =

αi for every i ∈ N. Just to simplify the notation we will denote the subsequence
{
x(nk)

}∞
k=1

with
{
x(n)

}∞
n=1

. It is easy to observe that
∑∞
i=1 wiM(αi) ≤ limn→∞ M̃w

(
x(n)

)
= 1.

Let us put y(1) = x(1). We can choose p1 ∈ N such that
∑∞
i=p1+1 wiM

(
y(1)

)
< δ and∑∞

i=p1+1 wiM(αi) < δ.

From limn→∞ x
(n)
i = αi it follows that there exists N1 ∈ N so that for any n,m > N1 the

inequality
∑p1

i=1 wiM
(
x

(n)
i − x(m)

i

)
< δ holds.

Let us put y(2) = x(N1). Thereafter we choose a natural number p2 > p1 such that∑∞
i=p2+1 wiM

(
y

(2)
i

)
< δ. Since

p2∑
i=p1+1

wiM(αi) ≤
∞∑

i=p1+1

wiM(αi) < δ and lim
n→∞

x
(n)
i = αi

we can choose N2 ∈ N, so that N2 > N1 and for any n,m ≥ N2 to hold the inequalities∑p1

i=1 wiM
(
x

(n)
i − x(m)

i

)
< δ and

∑p2

i=p1+1 wiM
(
x

(n)
i

)
< δ.

Let us put y(3) = x(N2). There is a natural number p3 > p2 so that
∑∞
i=p3+1 wiM

(
y

(3)
i

)
<

δ. Since limn→∞ x
(n)
i = αi and

∑p3

i=p2+1 wiM(αi) ≤
∑∞
i=p2+1 wiM(αi) < δ we can choose

N3 ∈ N, so that N3 > N1 and for any n,m ≥ N3 to hold
∑p2

i=1 wiM
(
x

(n)
i − x(m)

i

)
< δ and∑p3

i=p2+1 wiM
(
x

(n)
i

)
< δ.
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We continue this process by induction to obtain the sequences
{
y(n)

}∞
n=1

and {pn}∞n=1.
�

Let `Φ be a MO sequence space, generated by a MO function Φ. For any x = {xi}∞i=1 ∈
`Φ we will use the notation Φ̃(x) =

∑∞
i=1 Φ(xi). If x ∈ `M (w) we will use the notation

M̃w(x) = Φ̃(x), where Φ = {Φi}∞i=1 is defined by Φi(t) = wiM(t).

Lemma 4.3. Let M ∈ ∆2 be an Orlicz function and w ∈ Λ be a weight sequence. Then for any
ε ∈ (0, 1) there exists δ ∈ (0, 1) such that ‖x‖ ≤ ε, provided that M̃w(x) ≤ δ .

Proof. By the assumption that M ∈ ∆2 it follows that M(uv) ≥ uqM(v) for u, v ∈ [0, 1]

and for some q ≥ βM . Let us put δ = εq . from the inequalitites 0 ≤ δε ≤ 1 and M̃w (x) ≤ δ
it follows that ‖x‖ ≤ 1. Using the inequalities

δ ≥ M̃w

(
‖x‖ x

‖x‖

)
=
∑∞
i=1 wiM

(
‖x‖ xi

‖x‖

)
≥
∑∞
i=1 wi‖x‖qM

(
xi

‖x‖

)
= ‖x‖qM̃w

(
x
‖x‖

)
= ‖x‖q

we get that ‖x‖ ≤ δ1/q = ε. �

The next lemma is a generalization of ([22], Lemma 5).

Lemma 4.4. Let M ∈ ∆2 be an Orlicz function and w ∈ Λ be a weight sequence. Then for any
L > 0 and any ε > 0 there exists δ > 0 so that the inequality |M̃w(u + v) − M̃w(u)| < ε holds
whenever there hold the inequalities M̃w(u) ≤ L and M̃w(v) ≤ δ.

A result more general than that of Lemma 4.4 is obtained in ([24], Proposition 10),
where the MO function Φ satisfies δ2 condition at zero and Definition 4.9 for c = 1. Lemma
4.4 is a particular case of ([9], Lemma 2.1), where it is proven for a modular ρ (M̃w is a par-
ticular case of a modular). Just for completeness and to skip the definitions of modulars
and modular spaces, which are not part of the present work, we will prove Lemma 4.4 as
stated above.

Proof. Let us put h = sup
{
M̃w(2u+ 2v) : M̃w(u) ≤ L, M̃w(v) ≤ 1

}
. From the assumpti-

ons M ∈ ∆2 and w ∈ Λ it follows that L < h < ∞. WLOG we may assume that L > 1
and ε < 1. Let us put β = ε

h . From Lemma 4.3 it follows that there exists δ > 0 so that

the inequality M̃w(v) ≤ δ implies the inequality ‖v‖ ≤ min
{
β
2 ,

ε
2

}
. Thus there holds

M̃w

(
2v
β

)
= M̃w

(
2‖v‖
β · v

‖v‖

)
≤ 2‖v‖

β M̃w

(
v
‖v‖

)
= 2‖v‖

β . Hence if there hold M̃w(u) ≤ L

and M̃w(v) ≤ δ then we can write the chain of inequalities

M̃w(u+ v) = M̃w

(
(1− β)u+ β

(
u+ v

β

))
≤ (1− β)M̃w (u) + βM̃w

(
u+ v

β

)
≤ (1− β)M̃w (u) + β

2

(
M̃w (2u) + M̃w

(
2v
β

))
≤ M̃w (u) + βh

2 + ‖v‖ ≤ M̃w (u) + ε.

Replacing u and v with u+ v and −v respectively in the above inequalities we get

M̃w(u) = M̃w(u+ v − v) = M̃w

(
(1− β)(u+ v) + β

(
u+ v − v

β

))
≤ (1− β)M̃w (u+ v) + βM̃w

(
u+ v − v

β

)
≤ (1− β)M̃w (u+ v) + β

2

(
M̃w (2u+ 2v) + M̃w

(
2v
β

))
≤ M̃w (u+ v) + βh

2 + ‖v‖ ≤ M̃w (u) + ε.

Thus there holds
∣∣∣M̃w(u+ v)− M̃w(v)

∣∣∣ < ε. �
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We will need the next lemma. Let us point out that it is stated in [51] for the case when
v = {vi}∞i=1 ∈ Λ is a subsequence of w = {wi}∞i=1 ∈ Λ. The proof when v = {vi}∞i=1 ∈ Λ is
an arbitrary sequence is literary the same.

Lemma 4.5. ([51]) Let w = {wi}∞i=1 and v = {vi}∞i=1 ∈ Λ. Then there exist sequences of

naturals
{
m

(s)
i

}∞
i=1

,
{
k

(s)
i

}∞
i=1

, s ∈ N, such that

1 ≤ m(1)
1 ≤ k(1)

1

k
(1)
n−1 < m

(n)
1 , m

(s)
i ≤ k

(s)
i , k

(s)
i < m

(s−1)
i+1 , for n, i, s ∈ N, n ≥ 2, i+ s = n+ 1

and for every i ∈ N there holds
∞∑
s=1

k
(s)
i∑

j=m
(s)
i

vj = wi.

Let M ∈ ∆2, w ∈ Λ and x ∈ S`M (w). Then for any n ∈ N there exists a unique

cx,n > 0, such that M̃w

(
x
cx,n

)
= 1

n . Following the notations from [6] let us denote dn =

sup
{
cx,n : x ∈ S`M (w)

}
. For each sequence x =

{
x(n)

}
⊂ S`M (w) we set

Dn(x) = inf
{∥∥∥x(1) + ε2x

(2) + · · ·+ εnx
(n)
∥∥∥ : x(1), x(2), . . . , x(n) ∈ x, εi = ±1

}
and Dn = sup

{
Dn(x) : x =

{
x(n)

}
∈ S`M (w)

}
.

Lemma 4.6. LetM ∈ ∆2 be an Orlicz function and w ∈ Λ be a weight sequence. Then dn = Dn.

Proof. Let ε ∈ (0, dm) be arbitrary. Let us choose y ∈ S`M (w), such that cy,m > dm − ε. It
is easy to observe that by using a diagonal argument any sequence w = {wi}∞i=1 ∈ Λ can
be split into countably many sequences u(j) = {wk}k∈Ij , so that u(j) ∈ Λ for any j ∈ N,
Ij ∩ Ik = ∅ for any k 6= j and ∪∞j=1I

j = N. From Lemma 4.5 there exist disjoint subsets{
Jjn
}∞
n=1
⊂ Ij for j ∈ N, such that

∑
k∈Jj

n
wk = wn.

We will define a sequence {x(n)} by
x(1) =

∑∞
s=1 ys

∑
k∈J1

s
ek, x

(2) =
∑∞
s=1 ys

∑
k∈J2

s
ek, . . . , x

(n) =
∑∞
s=1 ys

∑
k∈Jn

s
ek, . . .

From the construction of the sets Jjn it follows that M̃w

(
x(n)

)
= M̃w (y). By the con-

struction supp(x(i)) ∩ supp(x(j)) = ∅ for any i 6= j and x(i) ∈ S`M (w). Since

M̃w

(
x(k1) ± x(k2) ± · · · ± x(km)

dm − ε

)
= mM̃w

(
y

dm − ε

)
≥ mM̃w

(
y

cy,m

)
= 1

we get that for any x(k1), x(k2), . . . , x(km) there holds the inequality ‖x(k1) ± x(k2) ± · · · ±
x(km)‖ ≥ dm − ε, i.e. Dm(x) ≥ dm − ε. Consequently by the definition of Dm we get that
Dm ≥ Dm(x) ≥ dm − ε. From the arbitrary choice of ε ∈ (0, dm) it follows that Dm ≥ dm.

It remains to prove that Dm ≤ dm. We will consider the case m being an odd number.
The case when m is an even number can be proven in a similar fashion.

Let ε > 0 and x =
{
x(k)

}∞
k=1
∈ S`M (w). Let us denote ε1 = ε

dm+ε . Then for every k ∈ N
there holds

(4.2) M̃w

(
x(k)

dm + ε

)
≤ dm
dm + ε

M̃w

(
x(k)

dm

)
≤ 1− ε1

m
.

From Lemma 4.4 it follows that there exists δ > 0 such that the inequality∣∣∣∣∣∑
i∈I

wiM(αi + βi)−
∑
i∈I

wiM(αi)

∣∣∣∣∣ < ε1

m
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holds whenever there hold
∑
i∈I wiM(αi) < 1 and

∑
i∈I wiM(βi) < δ. By the assumption

M ∈ ∆2 it follows that there exists c > 0, such that M(mu) ≤ cM(u), provided that
0 ≤ u ≤M−1(1).

From Lemma 4.2 it follows that any sequence x =
{
x(k)

}∞
k=1
⊂ S`M (w) has a subse-

quence
{
y(k)

}∞
k=1

that satisfies

(1′)
∑∞
i=pk+1 wiM

(
y

(k)
i

)
< δ

c for every k ∈ N;

(2′)
∑pk−1

i=1 wiM
(
y

(n)
i − y(s)

i

)
< δ

c for every k ∈ N, s, n ≥ k;

(3′)
∑pk
i=pk−1+1 wiM

(
y

(n)
i

)
< δ

c for every k ≥ 2, n ≥ k.

We will prove that
∥∥y(1) +

∑m
k=2(−1)ky(k)

∥∥ ≤ dm + ε.
We will use the notation M̃w(z|mn ) =

∑m
i=n wiM(zi). Since

S2 = M̃w

(
y(2)−y(3)+···+y(m−1)−y(m)

dm+ε

∣∣∣p1

1

)
=
∑p1

i=1 wiM

(∑m
k=2(−1)ky

(k)
i

dm+ε

)
≤

∑p1

i=1 wiM
(∑m

k=2(−1)ky
(k)
i

)
=
∑p1

i=1 wiM
(∑m−1

2

k=1

(
y

(2k)
i − y(2k+1)

i

))
≤ 2

m−1

∑m−1
2

k=1

(∑p1

i=1 wiM
(
m−1

2

(
y

(2k)
i − y(2k+1)

i

)))
≤ 2c

m−1

(∑m−1
2

k=1

(∑p1

i=1 wiM
(
y

(2k)
i − y(2k+1)

i

)))
≤ 2c

m−1 ·
m−1

2 · δc = δ,

the choice of δ, recalling that
{
y(k)

}∞
k=1

is a subsequence of
{
x(k)

}∞
k=1

and (4.2) it follows
that

S3 = M̃w

(
y(1)+y(2)−y(3)+···+y(m−1)−y(m)

dm+ε

∣∣∣p1

1

)
≤

∑p1

i=1 wiM

(
y

(1)
i

dm+ε

)
+ ε1

m ≤
1−ε1
m + ε1

m = 1
m .

Continuing in the same fashion we get

S4 = M̃w

(
y(1)−y(3)+···+y(m−1)−y(m)

dm+ε

∣∣∣p2

1

)
=
∑p2

i=1 wiM

(
y

(1)
i +

∑m
k=3(−1)ky

(k)
i

dm+ε

)
≤ 1

m−1

(∑p2

i=1 wiM
(

(m− 1)
(
y

(1)
i

))
+
∑m
k=3

(∑p2

i=1 wiM
(

(m− 1)y
(k)
i

)))
≤ c

m−1

(∑p2

i=1 wiM
((
y

(1)
i

))
+
∑m
k=3

(∑p2

i=1 wiM
(
y

(k)
i

)))
≤ c

m−1 (m− 1) δc = δ.

From the last inequality, the choice of δ, recalling that
{
y(k)

}∞
k=1

is a subsequence of{
x(k)

}∞
k=1

and (4.2) it follows that

M̃w

(
y(1)+y(2)−y(3)+···+y(m−1)−y(m)

dm+ε

∣∣∣p2

1

)
≤
∑p2

i=1 wiM

(
y

(2)
i

dm+ε

)
+ ε1

m ≤
1−ε1
m + ε1

m = 1
m .

Similarly we get for k = 3, 4, . . . ,m− 1 the inequalities

M̃w

(
y(1)+y(2)−y(3)+···+y(m−1)−y(m)

dm+ε

∣∣∣pk
1

)
≤
∑pk
i=1 wiM

(
y

(k)
i

dm+ε

)
+ ε1

m ≤
1−ε1
m + ε1

m = 1
m .

From the inequality

M̃w

(
y(1)+y(2)−y(3)+···+y(m−1)

dm+ε

∣∣∣∞
pm−1+1

)
=
∑∞
i=pm−1+1 wiM

(
y

(1)
i +

∑m−1
k=2 (−1)ky

(k)
i

dm+ε

)
≤ δ
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it follows that

S5 = M̃w

(
y(1)+y(2)−y(3)+···+y(m−1)

dm+ε

∣∣∣∞
pm−1+1

)
≤

∑∞
i=pm−1+1 wiM

(
y

(m)
i

dm+ε

)
+ ε1

m ≤
1−ε1
m + ε1

m = 1
m .

Summing the above n inequalities we get

S6 = M̃w

(
y

(1)
i +

∑m
k=2(−1)ky

(k)
i

dm+ε

)
≤
∑m−1
k=1

∑pk
i=1 wiM

(
y

(1)
i +

∑m
k=2(−1)ky

(k)
i

dm+ε

)
+
∑∞
i=pm−1+1 wiM

(
y

(1)
i +

∑m
k=2(−1)ky

(k)
i

dm+ε

)
≤ 1,

i.e.
∥∥y(1) +

∑m
k=2(−1)ky(k)

∥∥ ≤ dm + ε. Since {y(k)}∞k=1 is a subsequence of {x(k)}∞k=1 it
follows that Dm(x) ≤ dm+ ε and by the arbitrary choice of ε we get that Dm(x) ≤ dm. �

Following ([6], p. 149) from Lemma 4.6 and (2.1) we get the next result.

Theorem 4.4. Let M ∈ ∆2 be an Orlicz function and w ∈ Λ be a weight sequence. Then
K((`M (w), ‖ · ‖)) = d2 and Γ(`M (w),‖·‖) = d2

2+d2
.

The next proposition seem to be well known but there is no proof known to the author.
It is well known that `Φ = hΦ if and only if Φ satisfies the δ2–condition at zero [20, 23], but
it is difficult to check that when w ∈ Λ and M ∈ ∆2 then the MO function Φ = {wnM}∞n=1

satisfies the δ2–condition at zero. It is possible for an Orlicz function M 6∈ ∆2 to choose a
suitable wighted sequence w so that the space `M (w) to have different properties [27, 51].

For the proof of the next proposition we will follow the technique from ([32], Proposi-
tion 4.a.4)

Proposition 4.3. Let M be an Orlicz function and w ∈ Λ. Then the following conditions are
equivalent.

(i) M satisfies the uniform ∆2–condition at zero;
(ii) `M (w) = hM (w);

Proof. If M satisfies the ∆2 condition at zero. Then following the proof in ([32], Proposi-
tion 4.a.4) we will get that `M (w) = hM (w).

Let us assume thatM does not satisfy the ∆2 condition at zero. Just for simplicity of the
notations let us denote the subsequence {wnk

}∞k=1, satisfying the conditions
∑∞
k=1 wnk

=
∞ and limk→∞ wnk

= 0 by {wn}∞n=1. From the assumption that M 6∈ ∆2 it follows that
there exists a convergent to zero sequence {αk}∞k=1, such that M(αn) ≤ 1

2n and the ine-
qualities M (2αn) > 2nM(αn) hold for every n ∈ N.

We can choose two sequences of natural numbers {pn}∞n=1 and {qn}∞n=1, such that 1 ≤
p1 < q1 < p2 < q2 < · · · < qn−1 < pn < qn . . . and 1

2n+1M(αn) <
∑qn
i=pn

wi ≤ 1
2nM(αn) .

Let us denote x(n) =
∑qn
i=pn

αnei and u =
∑∞
n=1 x

(n). Since

M̃w (u) =

∞∑
n=1

M(αn)

qn∑
i=pn

wi

 ≤ ∞∑
k=1

1

2n
= 1

it follows that u ∈ `M (w). From

M̃w (2u) =

∞∑
n=1

M(2αn)

qn∑
i=pn

wi

 ≥ ∞∑
n=1

2nM(αn)

qn∑
i=pn

wi

 ≥ ∞∑
k=1

1

2
=∞

it follows that u ∈ hM (w) and thus `M (w) 6= hM (w). �
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Theorem 4.5. If M 6∈ ∆2 and w ∈ Λ, then (`M (w), ‖ · ‖) has a subspace isometric to `∞.

Proof. From Proposition 4.3 it follows that the spaces `M (w) and hM (w) coincide if and
only if M ∈ ∆2 at zero. The MO sequence spaces `Φ and hΦ coincide if and only if Φ has
the δ2 conditon at zero [20, 26]. Thus if M 6∈ ∆2 and w ∈ Λ it follows from Proposition
4.3 that `M (w) 6= hM (w) and by [20, 26] we get that the MO function Φ = {Φk}∞k=1, where
Φk(t) = wkM(t), which generates the weighted Orlicz sequence space `M (w) does not
satisfy the δ2 condition at zero. Therefore according to ([23], Theorem 1.1) there is an
isometric copy of `∞ in `M (w). �

Theorem 4.5 can be proven also by using techniques that are very similar to that in [4].

Theorem 4.6. Let M 6∈ ∆2 be an Orlicz function and w ∈ Λ be a weight sequence. Then
K((`M (w), ‖ · ‖)) = 2 and Γ(`M (w),‖·‖) = 1

2 .

Proof. The proof follows by Theorem 4.5 and the well known fact [6] that K(`∞) = 2. �

For any positive measure space (Ω,Σ, µ) the Orlicz function space LM (µ) is defined
as the set of all equivalence classes of µ–measurable scalar functions x on Ω such that
for some λ > 0 there holds M̃(x/λ) =

∫
Ω
M(x(t)/λ)dµ(t) < ∞. For Ω = N and w =

{wj}∞j=1 = {µ(j)}∞j=1 we get the weighed Orlicz sequence space `M (w). Therefore when
investigating the sequence space `M (w) we can use the known results about the corre-
sponding Orlicz function spaces. As far as we are considering weighted Orlicz sequence
spaces `M (w) generated by a weight sequence w ∈ Λ then only the behavior of the Orlicz
function on small arguments matters [15].

Deep results about the geometry of p–Amemiya Orlicz spaces (LM (µ), ||| · |||M,p) are
obtained in [8].

To any Orlicz function the following function N(v) = sup{u|v| − M(u) : u ≥ 0}
is associated and is called complementary function to M . Following [8] let us denote

αp(x) =
(
M̃
)p−1

Ñ(p+(|x|))− 1, for p ∈ [1,+∞), where N is the complementary function
to M , and p+ is the right derivative of M . Let us denote k∗p = inf{k ≥ 0 : αp(kx) ≥ 0}
and k∗∗p = sup{k ≥ 0 : αp(kx) ≤ 0}. There holds the inequality k∗p ≤ k∗∗p . Let us denote
cM = sup{u ≥ 0 : M(u) < ∞}. If cM = ∞, then according to [8] k∗p < ∞ if and only if
M is not linear for p ∈ (1,+∞) and M does not have an asymptote at∞ for p = 1. When
considering the Orlicz sequence spaces `M or the MO sequence space `M (w), w ∈ Λ only
the behavior of M at zero is significant. Thus we get that if cM = ∞, then according to
[8] k∗p < ∞ in `M (w) if and only if M is not linear. If M is linear and w ∈ Λ then by
the equivalence of the p–Amemiya norm and the Luxemburg norm it follows that there is
an isomrophic copy of `1 in (`M (w), ||| · |||M,p). According to [19] X containes an almost
isometric copy `1 and thus K(`M (w), ||| · |||M,p) = K(`1) = 2 and Γ(`M (w),|||·|||M,p) = 1

2 .
If M ∈ ∆2 and w ∈ Λ then for any k > 1 and any p ∈ [1,∞) there is a unique dx,k,p > 0,

so that
(
M̃w

(
kx

dx,k,p

))p
= kp−1

2p . Let us denote dx,p = inf{dx,k,p : k > 1} and dp = sup{dx,p :

x ∈ S(`M (w),|||·|||M,p)}.
If M is not linear, M ∈ ∆2 and w ∈ Λ, then for every k ∈ [k∗p(x), k∗∗p ] there holds

|||x|||M,p = 1
k

(
1 +

(
M̃w(kx)

)p)1/p

. It is easy to observe that for every x ∈ S(`M (w),|||·|||M,p)

and any k ∈ [k∗p(x), k∗∗p ] there hold the inequality
(
M̃w

(
kx
2

))p
< 1

2p

(
M̃w(kx)

)p
= kp−1

2p

and therefore dx,p < 2. From the definition of |||·|||M,p we get that the inequality M̃w(kx) ≥
(kp−1)

1
p holds for every k > 0 and hence dx,p > 1. Combining these observation it follows

that dp ∈ (1, 2].
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IfM is linear and w ∈ Λ, then k∗p(x) =∞. Let x ∈ S(`M (w),|||·|||M,p). Then for every ε > 0

there exists Nε > 0 so that for every k > Nε there holds 1 + ε ≥ 1
k

(
1 +

(
M̃w(kx)

)p)1/p

.

Therefore the inequality
(
M̃w

(
kx
2

))p
= 1

2p

(
M̃w(kx)

)p
≤ kp(1+ε)p−1

2p holds for every k >
Nε. From continuity arguments it follows that there exists δε > 0 so that dx,p ≤ 2 + δε and
limε→0 δε = 0. By the arbitrary choice of ε > 0 it follows that and therefore dx,p ≤ 2.

From the definition of ||| · |||M,p we get that the inequality M̃w(kx) ≥ (kp − 1)
1
p holds

for every k > 0 and hence dx,p > 1.
Combining these observations it follows that dp ∈ (1, 2], provided that M ∈ ∆2 and

w ∈ Λ.

Theorem 4.7. Let M ∈ ∆2 be an Orlicz function, w ∈ Λ be a weight sequence and 1 ≤ p <∞.
Then there holds K((`M (w), ||| · |||M,p)) = dp and Γ(`M (w),|||·|||M,p) = dp

2+dp .

Proof. First we will show that K((`M (w), ||| · |||M,p)) ≥ dp. For any ε > 0 there exists
y ∈ S(`M (w),|||·|||M,p), such that dy,p > dp − ε and of course dy,k,p > dp − ε holds for all
k > 1.

It is easy to observe that by using a diagonal argument any sequence w = {wi}∞i=1 ∈ Λ

can be split into countably many sequences u(j) = {wk}k∈Ij , so that u(j) ∈ Λ for any
j ∈ N, Ij ∩Ik = ∅ for any j 6= k and ∪∞j=1I

j = N. By Lemma 4.5 there exist disjoint subsets{
Jjn
}∞
n=1
⊂ Ij for j ∈ N, such that

∑
k∈Jj

n
wk = wn.

We will define a sequence {x(n)} by
x(1) =

∑∞
s=1 ys

∑
k∈J1

s
ek, x

(2) =
∑∞
s=1 ys

∑
k∈J2

s
ek, . . . , x

(n) =
∑∞
s=1 ys

∑
k∈Jn

s
ek, . . .

From the construction of the sets Jjn it follows that M̃w

(
x(n)

)
= M̃w (y) and conse-

quently |||x(n)|||M,p = 1 for all n ∈ N. By the construction supp(x(i)) ∩ supp(x(j)) = ∅ for
any i 6= j. Let us consider the sequence x =

{
x(n)

}∞
n=1

. Then

S9 = 1
k

(
1 + M̃w

p
(
k x

(n)−x(m)

dp−ε

))1/p

= 1
k

(
1 + 2pM̃w

p
(
k x(n)

dp−ε

))1/p

> 1
k

(
1 + 2pM̃w

p
(
k x(n)

dy,k,p

))1/p

= (1+kp−1)1/p

k = 1.

Consequently |||x(n) − x(m)|||M,p > dp − ε and by the arbitrary choice of ε > 0 it follows
that K((`M (w), ||| · |||M,p)) ≥ dp.

For the proof thatK((`M (w), |||·|||M,p)) ≤ dp we start by choosing a sequence
{
x(n)

}
n
∈

S(`M (w),|||·|||M,p). For any ε > 0 there exists kn > 1, such that bn < dp + ε, where bn satisfies

M̃w

p
(
knx

(n)

bn

)
=

kpn−1
2p .

Case I) Let kn be an unbounded sequence. WLOG we may assume that limn→∞ kn =
∞. Let us assume that dp + ε < 2 then

S10 =
kpn−1

2p = M̃w

p
(
knx

(n)

bn

)
≥ M̃w

p
(
knx

(n)

dp+ε

)
>
(

2
dp+ε

)p
M̃w

p
(
knx

(n)

2

)
≥

(
2

dp+ε

)p(∣∣∣∣∣∣∣∣∣knx(n)

2

∣∣∣∣∣∣∣∣∣p
M,p
− 1

)
=
(

2
dp+ε

)p ((
kn
2

)p − 1
)
.

Letting n→∞we get 1 <
(

2
dp+ε

)p
≤ limn→∞

kpn−1
kpn−2p = 1, which is a contradiction.

Consequently dp + ε ≥ 2. Using the inequality K(X) ≤ 2, which holds for any Banach
space X it follows that K((`M (w), ||| · |||M,p)) ≤ 2 ≤ dp + ε.
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Case II) Let us assume that {kn}n is a bounded sequence. WLOG we may assume that
lims→∞ ks = k ≥ 1. Since M ∈ ∆2 there exists c > 1 such that the inequality

(4.3) M

(
k

dp + ε
u

)
≤ cM(u)

holds for every u ∈ [0, 1]. From Lemma 4.4 it follows that there exists δ ∈ (0, ε) so that the
inequality

(4.4) M̃w(x+ y) ≤ M̃w(x) + ε,

holds whenever M̃w(x) ≤ c and M̃w(y) ≤ δ. From Lemma 4.2 it follows that there is a
subsequence

{
x(nk)

}
k

of
{
x(n)

}
n

, which just for simplicity of the notations we will denote
again by

{
x(n)

}
n

, so that

(4.5)
∞∑

i=pk+1

wiM
(
x

(k)
i

)
< δ/c for every k ∈ N;

(4.6)
pk−1∑
i=1

wiM
(
x

(n)
i − x(m)

i

)
< δ/c for every 2 ≤ k ≤ n, m ≥ k;

(4.7)
pk∑

i=pk−1+1

wiM
(
x

(n)
i

)
< δ/c for every k ≥ 2, n ≥ k.

There are m,n ∈ N such that there hold

(4.8) |kn − k| < δ, |km − k| < δ.

By (4.3) and (4.6) it follows that

(4.9)
pn−1∑
i=1

wiM

(
k

dp + ε

(
x

(n)
i − x(m)

i

))
< c

pn−1∑
i=1

wiM
(
x

(n)
i − x(m)

i

)
< δ < ε.

By (4.3) and (4.7) we have
∑pn
i=pn−1+1 wiM

(
k

dp+εx
(m)
i

)
< c

∑pn
i=pn−1+1 wiM

(
x

(m)
i

)
< δ.

Thus from (4.4) we get

(4.10)
∑pn
i=pn−1+1 wiM

(
k
(
x

(n)
i −x

(m)
i

)
dp+ε

)
<
∑pn
i=pn−1+1 wiM

(
kx

(n)
i

dp+ε

)
+ ε.

From (4.8) we obtain the chain of inequalities
pn∑

i=pn−1+1

wiM

(
(k − kn)x

(n)
i

dp + ε

)
≤ |kn − k|

pn∑
i=pn−1+1

wiM

(
x

(n)
i

dp + ε

)
≤ δM̃w(x(n)) ≤ δ

and consequently using (4.4) we get
pn∑

i=pn−1+1

wiM

(
k

dp + ε
x

(n)
i

)
≤

pn∑
i=pn−1+1

wiM

(
kn

dp + ε
x

(n)
i

)
+ ε.

Combining the last inequality with (4.10) and bn < dp + ε we obtain

(4.11)

S11 =
∑pn
i=pn−1+1 wiM

(
k

dp+ε

(
x

(n)
i − x(m)

i

))
≤

∑pn
i=pn−1+1 wiM

(
kn
dp+εx

(n)
i

)
+ 2ε ≤

∑pn
i=pn−1+1 wiM

(
kn
bn
x

(n)
i

)
+ 2ε

≤ kn−1
2 + 2ε = k−1

2 + kn−k
2 + 2ε ≤ k−1

2 + 5ε
2 .
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Finally by (4.3), (4.7) and (4.4) we get

(4.12)
∞∑

i=pn+1

wiM

(
k

dp + ε

(
x

(n)
i − x(m)

i

))
≤

∞∑
i=pn+1

wiM

(
k

dp + ε
x

(m)
i

)
+ ε.

Thus we have

(4.13)
∑∞
i=pn+1 wiM

(
k

dp+ε

(
x

(n)
i − x(m)

i

))
≤ k−1

2 + 5ε
2 .

From (4.9), (4.11) and (4.12) we obtain

S12 =
∣∣∣∣∣∣∣∣∣x(n)−x(m)

dp+ε

∣∣∣∣∣∣∣∣∣
M,p
≤ 1

k

(
1 + M̃w

p
(

k
dp+ε

(
x(n) − x(m)

)))1/p

= 1
k (1 + [W1 +W2 +W3]

p
)
1/p ≤

(
1+

(
(kp−1)1/p

2 + 5ε
2 +

(kp−1)1/p

2 + 5ε
2 +ε

)p)1/p

k

=
(1+((kp−1)1/p+6ε)

p
)
1/p

k ,

where W1 =
∑pn−1

i=1 wiM

(
k
(
x

(n)
i −x

(m)
i

)
dp+ε

)
, W2 =

∑pn
i=pn−1+1 wiM

(
k
(
x

(n)
i −x

(m)
i

)
dp+ε

)
and

W3 =
∑∞
i=pn+1 wiM

(
k
(
x

(n)
i −x

(m)
i

)
dp+ε

)
.

We will prove that there exists ε0 > 0 such that the inequality(
1 +

(
(kp − 1)1/p + 6ε

)p)1/p

< k + 12ε

holds for any k, p ∈ [1,∞) and every ε ∈ (0, ε0). Let us consider the function F (ε) =(
1 +

(
(kp − 1)1/p + 6ε

)p)1/p

−k−12ε. Then F (0) =
(

1 +
(
(kp − 1)1/p

)p)1/p

−k = 0. After

a differentiation we get F ′(ε) = 6
(

1 +
(
(kp − 1)1/p + 6ε

)p) 1−p
p (

(kp − 1)1/p + 6ε
)p−1−12.

From the inequality

F ′(0) = 6
(

1 +
(

(kp − 1)1/p
)p) 1−p

p
(

(kp − 1)1/p
)p−1

− 12 = 6

(
1− 1

kp

) p−1
p

− 12 < 0

and the continuity of the function it follows that existence of ε0 > 0 such that F ′(ε) < 0
for every k, p ∈ [1,∞) and every ε ∈ (0, ε0). Therefore F is a decreasing function in the
interval (0, ε0) and consequently F (ε) ≤ F (ε0) = 0 for every k, p ∈ [1,∞) and every
ε ∈ (0, ε0).

Thus we get S15 ≤ 1 + 12ε
k whenever we have chosen ε ∈ (0, ε0). Consequently there

holds the inequality inf{|||x(n)−x(m)|||M,p : n 6= m} ≤ (1+12ε)(dp+ε). Since {x(n)}∞n=1 ⊂
S(`M (w),|||·|||M,p) and ε ∈ (0, ε0) be arbitrary it follows that K((`M (w), ||| · |||M,p)) ≤ dp.

The equality Γ(`M (w),|||·|||M,p) = dp

2+dp follows from (2.1). �

We say that an MO function Φ satisfies the uniform ∆2–condition at zero if there exists
a constant K < ∞ and an integer N ∈ N and a real t0 > 0 such that the inequality
Φn(2t)
Φn(t) ≤ K holds for every n ≥ N and every t ∈ (0, t0]. We say that an MO function Φ

satisfies the uniform ∆∗2–condition at zero if there exists a constant k > 0 and an integer
N ∈ N and a real t0 > 0 such that the inequality Φn(2t)

Φn(t) ≥ k holds for every n ≥ N

and every t ∈ (0, t0]. Recall that given MO functions Φ and Ψ the spaces `Φ and `Ψ
coincide with equivalence of norms [34] if and only if Φ is equivalent to Ψ, that is there
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exist constants K,β > 0 and a non–negative sequence {cn}∞n=1 ∈ `1, such that for every
n ∈ N the inequalities

Φn(Kt) ≤ Ψn(t) + cn and Ψn(Kt) ≤ Φn(t) + cn

hold for every t ∈ [0,min(Φ−1
n (β),Ψ−1

n (β))]. According to [47] `Φ = hΦ if and only if Φ
is equivalent to a function Ψ, which satisfies the uniform ∆2 condition. Let us recall [32]
that an MO sequence space `Φ is reflexive if and only if the MO function Φ is equivalent
to an MO function Ψ, for which uniform ∆2 and ∆∗2–conditions hold.

Theorem 4.8. Let M 6∈ ∆2 be an Orlicz function, w ∈ Λ be a weight sequence and 1 ≤ p <∞.
Then Γ(`M (w),|||·|||M,p) = 1

2 and K((`M (w), ||| · |||M,p)) = 2.

Proof. IfM 6∈ ∆2, then `M (w) 6= hM (w). If we suppose that `M (w) is a reflexive space then
there exists a MO function Ψ, which is equivalent to {wiM}∞i=1 and Ψ has the uniform ∆2

and ∆∗2–conditions. Consequently form Ψ satisfying the uniform ∆2 condition it follows
that `Ψ = hΨ and therefore `M (w) = hM (w), which is a contradiction. Thus `M (w) is not
a reflexive Banach space and according to [17] we get the equalities Γ(`M (w),|||·|||M,p) = 1

2

and K(`M (w), ||| · |||M,p) = 2. �

5. REISZ ANGLE IN KÖTHE SEQUENCE SPACES

Let us mention that the Orlicz sequence spaces `M , `M (w), w ∈ Λ, endowed with the
Luxemburg norm, provided that M ∈ ∆2 are order continuous Köthe sequence spaces
with the Fatou property and the unit vector basis {en}∞n=1 is unconditional and boun-
dedly complete [32]. From the equivalence of the Luxemburg and p–Amemiya norms it
follows that `M , `M (w), w ∈ Λ, endowed with p–Amemiya norms, provided that M ∈ ∆2

are order continuous Köthe sequence spaces and the unit vector basis {en}∞n=1 is uncon-
ditional and boundedly complete.

If M does not satisfy the ∆2–condition at zero, then the Orlicz sequence spaces `M ,
`M (w), w ∈ Λ, endowed with the Luxemburg or p–Amemiya norm are not order continu-
ous Köthe sequence spaces and the unit vector basis {en}∞n=1 is not boundedly complete.
Therefore we could not apply Theorem 3.2 for calculating of the Reisz angle in this case.

Definition 5.10. ([33], p.1) A partially ordered Banach space X over the reals is called a
Banach lattice provided

(i) x ≤ x implies x+ z ≤ y + z for every x, y, x ∈ X
(ii) ax ≥ 0 for every x ≥ 0 in X and every nonnegative real a

(iii) for all x, y ∈ X there exists a least upper bound x ∨ y and a greatest lower bound
x ∧ y

(iv) ‖x‖ ≤ ‖y‖ whenever |x| ≤ |y|, where the absolute value |x| of x ∈ X is defined by
|x| = x ∨ (−x).

The sequence spaces `M , `M (w), endowed with Luxemburg or p–Amemiya norms are
Banach lattices [32].

We will need the next lemma, which is similar to that proven in [17].
Let us first recall that we say that the Banach space X containes an almost isometric

copy of Y if for every ε > 0 there exists a linear operator P : Y → X such that the
inequality ‖y‖Y ≤ ‖Py‖X ≤ (1 + ε)‖y‖Y holds for every y ∈ Y .

Lemma 5.7. Let X and Y be two Köthe sequence spaces and let X contains an almost isometric
copy of Y . Then α(X) ≥ α(Y ).

Proof. Let ε > 0 be arbitrary chosen. There exist x, y ∈ SY such that α(Y )−ε < ‖(|x|∨|y|)‖
and |x| ∧ |y| = 0. Let P : Y → X be a linear operator that satisfies the inequality ‖y‖Y ≤
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‖Py‖X ≤ (1 + ε)‖y‖Y . Define x = Px
‖Px‖X and y = Py

‖Py‖X . We will need the fact, that if
|x| ∧ |y| = 0, then |Px| ∧ |Py| = 0. Indeed if we assume that |Px| ∧ |Py| 6= 0, then there
exist αi, βi, i ∈ N,

∑∞
i=1 α

2
i > 0,

∑∞
i=1 β

2
i > 0 such that P (

∑∞
i=1 αixi) +P (

∑∞
i=1 βiyi) = 0.

Consequently there holds the inequality

0 = ‖P (
∑∞
i=1 αixi + βiyi))‖X ≥ ‖

∑∞
i=1(αixi + βiyi)‖Y

= ‖(|
∑∞
i=1 αixi| ∨ |

∑∞
i=1 βiyi|)‖X > 0,

which is a contradiction and thus |Px| ∧ |Py| = 0.
Using the inequality

∣∣∣ 1
‖Px‖X −

1
‖Py‖X

∣∣∣ ≤ 1− 1
1+ε < ε we get the chain of inequalities

1
1+ε‖x− y‖Y − ε ≤

∥∥∥ x−y
‖P (x)‖X

∥∥∥
Y
−
∣∣∣ 1
‖Px‖X −

1
‖Py‖X

∣∣∣
≤

∥∥∥ x
‖Px‖X −

y
‖Py‖X

∥∥∥
Y
≤
∥∥∥P ( x

‖Px‖X

)
− P

(
y

‖Py‖X

)∥∥∥
X
.

Therefore for any two x, y ∈ SY such that α(Y ) − ε < ‖(|x| ∨ |y|)‖ and |x| ∧ |y| = 0 there
exists u = Px

‖Px‖X ∈ SX and v = Py
‖Py‖X ∈ SX , such that |u| ∧ |v| = 0 and ‖(|u| ∨ |v|)‖ >

1
1+ε‖(|x| ∨ |y|)‖ − ε ≥ α(Y )−ε

1+ε − ε. From the arbitrary choice of ε > 0 it follows that
α(X) ≥ α(Y ). �

Theorem 5.9. Any nonreflexive Banach lattice X has a Riesz angle equal to 2.

Proof. By assumption X contains an isomorphic copy of c0 or `1 [14]. According to [19]
X contains an almost isometric copy of c0 or `1, respectively. From Theorem 5.7 it follows
that α(X) ≥ α(c0) = 2 or α(X) ≥ α(`1) = 2 [2]. �

The MO sequence spaces, equipped with a p–Amemiya norm, p ∈ [1,+∞] are Banach
lattices.

From Theorem 5.7 and the fact that if an Orlicz function M 6∈ ∆2 or a MO function
Φ 6∈ δ2, then `M , `M (w) for w ∈ Λ and `Φ are not reflexive spaces for any p–Amemiya
norm, p ∈ [1,+∞] we get the next results.

Theorem 5.10. Let M 6∈ ∆2 be an Orlicz function and w ∈ Λ be a weight sequence. Then
a((`M (w), ||| · |||M,p) = 2.

Theorem 5.11. Let Φ 6∈ δ2 be an MO function. Then a((`Φ, ||| · |||M,p) = 2.

Thus from the equality ‖ · ‖Φ = ||| · |||Φ,∞ [8] it follows that a((`M , ‖ · ‖) = 2, a((`M , ||| ·
|||) = 2, a((`Φ, ‖ · ‖) = 2, a((`Φ, ||| · |||) = 2.

As corollaries of Theorem 3.2 and [6] we get the results from [49].

Theorem 5.12. ([49]) Let M ∈ ∆2 be an Orlicz function. Then the Riesz angle of (`M , ‖ · ‖) can
be expressed as:

a((`M , ‖ · ‖)) = sup

{
kx : M̃

(
x

kx

)
=

1

2
, x ∈ S`M

}
.

Theorem 5.13. ([49]) Let M ∈ ∆2 be an Orlicz function. Then the Riesz angle of (`M , ||| · |||)
can be expressed as:

a((`M , ||| · |||)) = sup
|||x|||=1

inf
k>1

{
dx,k : M̃

(
kx

dx,k

)
=
k − 1

2

}
.

As corollaries of Theorem 3.2 and [16] we get:
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Theorem 5.14. Let M ∈ ∆2 be an Orlicz function and 1 ≤ p < ∞. Then the Riesz angle of
(`M , ||| · |||M,p) can be expressed as:

a((`M , ||| · |||M,p)) = sup
|||x|||M,p=1

inf
k>1

{
dx,k : M̃p

(
kx

dx,k

)
=
kp − 1

2p

}
.

As corollaries of Theorem 3.2 and Theorem 4.4 we get the results from [53].

Theorem 5.15. ([53]) Let M ∈ ∆2 be an Orlicz function and w = {wi}∞i=1 ∈ Λ be a weight
sequence. Then the Riesz angle of (`M (w), ‖ · ‖) can be expressed as:

a((`M (w), ‖ · ‖)) = sup

{
kx : M̃w

(
x

kx

)
=

1

2
, x ∈ S`M (w)

}
.

As a corollary of Theorem 3.2 and Theorem 4.7 we get an expression of the Reisz angle
in (`M (w), ||| · |||M,p).

Theorem 5.16. Let M ∈ ∆2 be an Orlicz function, w = {wi}∞i=1 ∈ Λ be a weight sequence and
1 ≤ p <∞. Then the Riesz angle of (`M (w), ||| · |||M,p) can be expressed as:

a((`M (w), ||| · |||)) = sup
|||x|||=1

inf
k>1

{
dx,k : M̃w

p
(
kx

dx,k

)
=
kp − 1

2p

}
.

As a corollary of Theorem 5.16 for p = 1 we improve the result from [53].
As a corollary of Theorem 3.2 and [18] we get an expression of the Reisz angle in `Φ.

Theorem 5.17. Let Φ be an MO function with the δ2–condition at zero and condition (+). Then
the Riesz angle of (`Φ, ‖ · ‖) can be expressed as:

a((`Φ, ‖ · ‖)) = dΦ.

Following [1] let 1 ≤ pi, i ∈ N be a sequence of reals. The MO sequence space `Φ, where
Φ = {tpi}∞i=1 is called a Nakano sequence space and is denoted by `{pi}.

As a corollary of Theorem 3.2 and [18] we get an expression of the Reisz angle in `{pi},
when lim supi→∞ pi < +∞. As a corollary of Theorem 5.10 we get an expression of the
Reisz angle in `{pi}, when lim supi→∞ pi = +∞.

Theorem 5.18. Let `{pi} be a Nakano sequence space, where 1 ≤ pi, i ∈ N. Then the Riesz angle
of (`{pi}, ‖ · ‖) can be expressed as:

a((`{pi}, ‖ · ‖)) = 2 when lim sup
i→∞

pi = +∞

and
a((`{pi}, ‖ · ‖)) = 2

1
p when lim sup

i→∞
pi = p < +∞.

The concept of Orlicz-Lorentz space was first introduced by A.Kaminska in [25]. LetM
be an Orlicz function and w = {wn}∞n=1 be a non–increasing sequence of positive scalars
so that limn→∞ wn = 0. We denote by d(w,M) the Orlicz–Lorentz sequence space of all
sequences x = {xn}∞n=1 for which

(5.14) ‖x‖ = sup

{ ∞∑
n=1

wnM
(
xπ(n)

)}
<∞,

where the supremum is taken over all permutations π of the N [50]. From (5.14) we deduce
that there exists a sequence rearrangement of the natural numbers {π(n)}∞n=1 such that
‖x‖ =

{∑∞
n=1 wn|xπ(n)|p

}1/p. The space d(w,M) is a Banach space and the unit vector
basis {en}∞n=1 is a boundedly complete unconditional basis (see [32] p. 175).
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If
∑∞
n=1 wn < ∞ [25, 50] or M 6∈ ∆2 and

∑∞
n=1 wn = ∞ [30, 50] then d(w,M) is not a

reflexive space. If M(t) = |t|p we get the Lorentz sequence space d(w, p).
As a corollary of Theorem 3.2 and [50] we get the results.

Theorem 5.19. Let d(w, p) be a Lorentz sequence space. Then a(d(w, p)) = 2
1
p .

Theorem 5.20. Let d(w,M) be an Orlicz–Lorentz sequence space, such thatM ∈ ∆2,
∑∞
i=1 wi =

∞ and the function GM (u) = M−1(u)
M−1(2u) is increasing on the interval (0,M−1(1/2w1)]. Then

a(d(w,M)) = limu→0GM (u).

From Theorem 5.7 we get the next result.

Theorem 5.21. LetM be an Orlicz function. If
∑∞
n=1 wn <∞ orM 6∈ ∆2 and

∑∞
n=1 wn =∞.

Then α(d(w,M)) = 2.

Let p ∈ [1,+∞). Following [10] we denote by cesp the Cesaro sequence space of all
sequences x = {xn}∞n=1 for which

cesp =

x ∈ `0 :

( ∞∑
n=1

(∑n
i=1 |xi|
n

)p)1/p

<∞

 .

The Cesaro sequence space is a Banach space if endowed with the norm

‖x‖ =

( ∞∑
n=1

(∑n
i=1 |xi|
n

)p)1/p

and it is an order continuous Köthe sequence space with the Fatou property [10].
As a corollary of Theorem 3.2 and [10] we get the result.

Theorem 5.22. Let cesp be a Cesaro sequence space. Then α(d(w, p)) = 2
1
p .

6. CONCLUSION

There are many articles where upper or lower estimates are found for the value of
Kottman’s constant. As a corollary of Theorem 3.2 and these results we can get estimates
of the Reisz angle.

Following [13] let us define a modulus of asymptotic uniform convexity

δX(t) = inf
‖x‖=1

sup
Z ⊂ X

co− dimZ <∞

inf
z ∈ Z
‖x‖ ≥ t

{‖x+ z‖ − 1}

and a modulus of asymptotic uniform smoothness

ρX(t) = sup
‖x‖=1

inf
Z ⊂ X

co− dimZ <∞

sup
z ∈ Z
‖x‖ ≥ t

{‖x+ z‖ − 1}.

As a corollary of Theorem 3.2 and [13] we get the result.

Theorem 6.23. Let M ∈ ∆2 be an Orlicz function. Then 1 + δ(`M ,‖·‖)(1) ≤ a((`M , ‖ · ‖)) ≤
1 + ρ(`M ,‖·‖)(1).

Following [7] for ε ∈ [0, 2] we call a modulus of convexity of X the function

δX(ε) = inf

{
1− ‖x+ y‖

2
: x, y ∈ SX , ‖x− y‖ ≥ ε

}
.
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A space is called uniformly convex if δX(ε) > 0 for all ε > 0. We call [31] a modulus of
smoothness of X the function

ρX(τ) = inf

{
‖x+ y‖

2
+
‖x− y‖

2
− 1 : x ∈ SX , ‖y‖ = τ

}
.

For some properties of the two moduli just defined we refer to [33]. A space is called
uniformly smooth if limτ→0

ρX(τ)
τ = 0 for all ε > 0. Some generalizations of the moduli of

convexity and smoothness can be found in [5, 52].
As a corollary of Theorem 3.2 and [35] we get the results.

Theorem 6.24. Let (X, ‖ · ‖) be a uniformly convex Köthe sequence space. Let there hold one of
the following
(a) X is order continuous with the Fatou property;
(b) the unit vector basis {en}∞n=1 of X is unconditional and boundedly complete.
Then there hold the inequalities

max

1 +
1

2
δX(2/3),

1

1− δX(1)
,

1

1− δX(
√

2)
,

1

1− δX
(

2
α(X)

)
 ≤ a(X)

and
a(X) ≤ min {2− 2δX(1), 1 + 2ρX(1)} .

Let us denote α0
M = lim infu→0

M−1(u)
M−1(2u) , β0

M = lim supu→0
M−1(u)
M−1(2u) , where M is an Or-

licz function. Letw be a weight sequences. Let us denoteα′M,w = infk≥1

M−1

(
1∑2k

i=1
wi

)
M−1

(
1∑k

i=1
wi

)
,

α̃M,w = infu∈(0,1/2w1]
M−1(u)
M−1(2u) .

As a corollary of Theorem 3.2 and [50] we get the result.

Theorem 6.25. Let d(w,M) be an Orlicz–Lorentz sequence space, such that M ∈ ∆2 and∑∞
i=1 wi =∞. Then max

{
1
α0

M
, 1
α′M,w

}
≤ a(d(w,M)) ≤ 1

α̃M,w
.

As a corollary of Theorem 3.2 and [42] we get the result.

Theorem 6.26. Let `M be an Orlicz sequence space, such that M ∈ ∆2 and N ∈ ∆2 be its
complementary function. Then

max

{
1

α0
M

,
1

α′M

}
≤ a((`M , ‖ · ‖)) ≤

1

α̃M

and
max{2β0

N∗ , 2β
′
N} ≤ a((`M , ||| · |||)) ≤

1

α∗M
,

where α̃M = inf
{
M−1(u)
M−1(2u) : 0 < u ≤ 1

2

}
, α∗M = inf

{
M−1(u)
M−1(2u) : 0 < u ≤ 1

2 (k∗∗1 − 1)
}

and

α′M = inf

{
M−1( 1

2k )
M−1( 1

k )
: k ∈ N

}
.
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