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Kottman'’s constant, packing constant and Riesz angle in
some classes of Kothe sequence spaces

BOYAN ZLATANOV

ABSTRACT. We have found a sufficient condition in order that the Kottman constant to be equal to the Riesz
angle for Kothe sequence spaces. We have found the ball packing constant in weighted Orlicz sequence spa-
ces, endowed with Luxemburg or p-Amemiya norm. We have calculated the Riesz angle for Musielak—Orlicz,
Nakano, weighted Orlicz, Orlicz, Orlicz-Lorentz, Lorentz and Cesaro sequence spaces.

1. INTRODUCTION

It is well known that only a finite number of spheres can be packed in the unit ball By in
a finite dimensional space if the spheres are disjoint and have the same radius, no matter
how small the radius is. However, for an infinite dimensional Banach space X, there exists
a constant I"x, such that an infinite number of disjoint spheres can be packed in a unit ball
Bx if the radius is less than I'x. Whereas, only a finite number of disjoint spheres can
be packed in the ball By if the radius is larger than I'x. This constant is referred to as
a packing sphere constant. From the 50’s of the previous century, researchers began to
investigate the packing spheres problem in Banach spaces [3, 40, 41]. In [28, 29] Kottman
finally determined the range of the packing sphere value I'x, where Kottman’s constant
K (X) was introduced. It measures how big the separation of an inffnite subset of the unit
ball can be.

The packing constant is an important and interesting geometric parameter for studying
the geometric structure, isometric embedding, noncompactness, and reflexivity in Banach
spaces [3, 28, 41, 45].

In order to generalize the technique in [37] for ¢ to a larger class of Banach lattices, ].
Borwein and B. Sims introduced in [2] the notion of a weakly orthogonal Banach lattice
and Riesz angle a(X). Deep results in investigation of fixed point property (FPP) and
weak fixed point property (w-FPP) in wide classes of Banach spaces were obtained by
using the Riesz angle concept in [2]. The above mentioned result was applied by Nezir
to prove that the Riesz angle of the space £, ., with w = {1/n”}, where p € (0,1) is less
than 2 and thus it has the w—FPP [39] and by Cui, Hudzik and Wista to prove that every
reflexive Orlicz sequence space £, , equipped with the p-Amemiya norm, has the w—FPP
and the FPP as well [11].

Therefore finding of formulas for the calculation or estimation of the Riesz angle, the
ball packing constant or Kottman'’s constant are interesting problems.

Combining the known results about the Riesz angle [49, 53] and Kottman's constant
[3, 6, 18] it seems that for a wide class of Kéthe sequence spaces with unconditional basis
both constants are equal.
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2. PRELIMINARIES

We use the standard Banach space terminology from [32].

In what follows (X, || - ||) is a Banach space, Sx and By are the unit sphere and the unit
ball of X respectively. By N we denote the natural numbers and by R the real numbers.
By dim(X) we will denote the dimension of the space X.

The packing constant [28] of X is defined by

I'x = sup{r > 0: there are ), € (1 —r)Bx with |z; — z;|| > 2r for¢,j € N,i # j},

ie. if r € (0,I'x], then By contains infinitely many disjoint balls with radius r, and when
r > I'x, then Bx contains only finitely many such balls. The exact value of packing con-
stant I'y, is found in [3], T IE. is found in [46], for Orlicz sequence spaces I';,, equipped

with Luxemburg’s or Amemiya’s norm is found in [6], for Musielak-Orlicz sequence spa-
ces 'y, equipped with Luxemburg’s norm, for Nakano sequence spaces I, (o3} [18], for
Lorentz sequence spaces I'j(,, ) in [50], for an infinite dimensional Hilbert space [41] and
for Cesaro sequence spaces I'.., in [10]. There are a lot of results, where estimation of the
packing constant is obtained for wide classes of spaces [16, 17, 41, 43, 48]

A well known result [6] is that I'x € [3, 1], provided that dim(X) = oco.

Let us denote sep({z(™}) = inf {{|z(™) — 2™ || : n # m}.

Kottman’s constant of an infinite dimensional Banach space X is defined in [28] as

K(X) =sup {sep({x(")}) Az ¢ SX} .

Clearly K (X) € [1, 2]. The following relationship

K(X)

@.1) X = 5k

is obtained in [28].

It is found in [17] that K (X ) = 2, provided that X is a nonreflexive Banach lattice, and
consequently I'y = 1. We would like to mention that the ball packing constant is found
through the application of (2.1) in most articles.

Following [2] a Banach lattice is weakly orthogonal if lim,,_,« || |zn| A |z| || = O for all
xz € X, whenever {z,}22, is a weakly null sequence, where |z| A |y| = min(|z|, |y|). The
Riesz angle a(X) of a Banach lattice (X, ||-||) is a(X) = sup{||(|z|V |y : =] <1, ly|| < 1},
where |z| V |y| = max(|z|, |y|). Clearly 1 < a(X) < 2. If there exists a weakly orthogonal
Banach lattice Y such that d(X,Y).a(Y) < 2, where d(X,Y) is the Banach-Mazur distance
between the Banach spaces X and Y, and a(Y') is the Riesz angle of Y, then X has the
weak fixed point property.

A formula for computing the Riesz angle in Orlicz spaces equipped with Luxemburg’s
or Amemiya’s norm is obtained in [49] and in weighted Orlicz spaces equipped with
Luxemburg’s or Amemiya’s norm is obtained in [53].

Let ¢° stand for the space of all real sequences i.e. z = {z;}:°, € (°. Let us denote the
unit vectors by {e, }52 ;.

Definition 2.1. ([10]) A Banach space (X, || - ||) is said to be a Kothe sequence space if X
is a subspace of ¢ such that

(i) Ifz €,y e X and |z;| < |y;| foralli € Nthenz € X and ||z|| < ||y];
(ii) There exists an element x € X such that x; > 0 for all i € N.

Lemma 2.1. ([49]) For a Kithe sequences space (X, || - ||) the Riesz angle a(X) can be expressed
as a(X) = sup{[|(jz| v [y - 2,y € Sx, 2| Aly| = O}
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Definition 2.2. ([10]) A K&the sequence space (X, || - ||) is called order continuous if for
any sequence {z(™}"”_, such that (") \, 0 coordinatewise there holds [|z(™]| \, 0.

A Kothe sequence space (X, || - ||) is order continuous if and only if for any « € X there
holds lim,, 00 [|(0,0,...,0, 2y, Zpt1,...)]| = 0.

Definition 2.3. ([10]) A K6the sequence space (X, || - ||) has the Fatou property if for any
sequence {z("}™ € X withsup,,cy ||| < coand any z € ¢°, such (™ 1 z coordina-
tewise there hold z € X and ||z™|| 1 ||z|.

Definition 2.4. ([32], p.9) Let (X,| - ||) be a Banach space. We say that {z,}32, is a
boundedly complete basis if > ;- a;z; converges whenever there holds the inequality

n
E ;T4

i=1

sup < 00.

neN

We will need the next fundamental result, where Kottman’s constant can be calculated
by using finitely supported norm one vectors in large classes of Kothe sequence spaces.
The case (i) is proven in [43] and the case (ii) is proven in [10].

Theorem 2.1. Let X be a Kothe sequence space. Let there hold one of the following:

(i) the unit vectors {e,, }22, form a boundedly complete basis of X;
(ii) X be order continuous with the Fatou property.
Then K(X) = sup {sep ({U(")}Zozl) cu™) = > i 41 uz(-")ei € Sx,ip <ip <--- }

Let us mention that three different formulas for calculation of K(X) are obtained in
[43], but we have stated only the one that coincides with the formula in [10].

Different conditions for a Kéthe sequence space to be order continuous are obtained in
[12], which are relevant in the context of calculating Kottman’s constant by using finitely
supported norm one vectors.

Let us point out that Theorem 2.1 holds for any reflexive Kéthe sequence space, because
reflexivity implies both order continuity and Fatou property of the space.

Definition 2.5. ([32], p.15) Let {z,}52, be a sequence of vectors in a Banach space X.
Then the series Y -, z,, is said to converge unconditionally if for any permutation 7 of
the integers the series )" | z(,) converges.

Proposition 2.1. ([32], p.15) Let {x,,}52; be a sequence of vectors in a Banach space X. Then
the series Y | x,, converges unconditionally if and only if for every e > 0 there exists an integer
N so that ||,,c, @n|| < € for every finite set of integers o, which satisfies min{n € o} > N.

neo

Definition 2.6. ([32], p.18) A basis {z,,}>2, of a Banach space X is called unconditional if
every x € X its expansion Zle any in terms of the basis converges unconditionally.

Definition 2.7. ([32], p.5) Two bases {z,,}32; and {y,}°2; of a Banach space X are called
equivalent, provided that a series >, a,x, converges if and only if >~ | a,y, conver-
ges.

Let X be a Banach space with a basis {2, }22,. Forz = > 7 | a,z,, € X we will denote
supp ¢ = {n € N:a, # 0} and call it a support of z. If z,y € X are two vectors with
bounded supports satisfy the inequality max{i € supp z} < min{i € supp y} we will
write ¢ < y. If ¢ € X is a vector with bounded support, which satisfies the inequality
M < min{i € supp 2} < max{i € supp z} < N we will write M < z < N.



106 B. Zlatanov

3. MAIN RESULTS

Proposition 3.2. Let (X, || -||) be a Banach Kothe sequence space, x,y € X be such that supp x N
supp y = O and ||z|| > ||y||. Then for any z € X, such that supp z N supp (z + y) = 0 there
holds the inequality ||z + z|| > ||z + v

Proof. Let us consider the closed ball B[||z —

z|] = {u € X : Ju| < ||z — «|}. Letus

consider the subspaces ¥ C X, such that

Y ={z=3,c/%nen : I = supp (z+y)} Sl f Y
and let us denote the plane L = Y + z. ! = L
The intersection B[||z — z||] N L = B,[||z] \ o
is a ball in L, such that B.[|z|] = {u L

S es@nen € Lt 2 —ul| < |lz]]}. The vec- T
tor z + HxHy is in the sphere S, [||z|] = {v = ';‘_;,-:L:‘\ - =l
Znela:nen € L:|z—ul| = |z} Indeed . i

_ llz| i -~ :
z—(z+ HyHy = ||z||. From the assump

tion that X is a Kothe sequence space and
the inequalities H|y7| > |y;| it follows that
z + y is in the open ball B, (||z||) = {v =
YomerTnen € L ¢ ||z —ul| < [|z][} and the-
refore ||z + z|| > ||z + v O

Figure 1.“Proposition 3.2”

It is easy to observe that if ||z|| = ||y|| in Proposition 3.2 then ||z + z| = ||z + ||

Theorem 3.2. Let (X, || - ||) be a Banach Kothe sequence space. Let there hold one of the following
(a) X be order continuous with the Fatou property;

(b) the unit vectors {e,, }>2, form an unconditional and boundedly complete basis of X.

Then K(X) = a(X).

Proof. According to Lemma 2.1 and Theorem 2.1 it is enough to prove the equality

S = sup {sep({u(”)}) cu(™) = Zi 141 u™ (i)e; € Sx,0 =ip < iy < }
= sup{[|(|z| V [yll]) : z,y € Sx, |z| Aly| = 0}

It is easy to see that K (X) < a(X), because the sup{||(|z| V |y|||)} is taken among all
vectors z,y € Sx, such that supp zNsupp y = 0 including those with unbounded supports.

It remains to prove that a(X) < K(X).

Let € > 0 be arbitrary chosen. There are z,y € Sx, so that ||(|z] V |y|)|| > a(X) — ¢ and
|z Ayl = 0.

Letusdenote z = ) .0 zie; =z + .

If X is order continuous or {e,, }>2, is unconditional basis then there exists ¢ € N such
that

oo oo oo
E rie; |l < e, E yieill < e and E zie;i|| < e.
1=q+1 1=q+1 1=q+1

Letus denote u = Y7, wie;, v =Y ¢, ye; and w = u+ v. By |z| A |y| = 0 it follows that
|u| A Ju] = 0. Then

oo oo
1> |lu|l = inei - Z e
i=1

i=q+1

o
— chiei Z].*E,

i=q+1

i€
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oo o0 oo oo
12 [l = Zyiei - Z yiei|| = Zyiei - Z yiei|| 21 —e¢
i=1 i=1

i=g+1 1=q+1

and
a(X)—e > |w| = |32, ziei — 22,40 zie
1252 zieill = {| 252 g 21| 2 a(X) — 22

For any vector « € X with bounded support and any N € N, such that supp 2 < N we
denote by T a vector with bounded support such that N < Zy and ||z|| = ||Zn~]-

There are N, M € N, such that supp (v + v) Nsupp Uy = 0, supp (u +v) Nsupp vy = 0
and supp v Nsupp Uy = (. Indeed we can choose N > supp (u + v), then we choose uy,
then we choose M > supp (u + v + @y ) and finally we choose ;.

WLOG we may assume that [ju| > ||v]|.

We will prove that max{||u + uyl||, ||[v + Tam||} > |Ju + v|| — €. From Proposition 3.2 and
the inequality ||v|| < ||an|| = ||u|| it follows that ||u + un|| > |Ju + v|| and therefore

Y

max{|u+unl), [v+oam} = [lu+an| > [Ju+of.

Consequently we may assume without loss of generality that there are N € N and uy
such that ||u + @y || > ||u+ v]|.

There exist @, U,, with n,m > N such that supp u < supp Uy < supp U, < Supp Um.
We will show that the inequality ||@,, — %] > ||u — v|| holds. From Proposition 3.2 we get
[@n, + Uml|l > |Tn +Tn || > |Ju+Tn]| > ||u+ v| — e. Consequently we get that

K(X) > inf{|[t, —um| : n,m e N} > |lu —v| > a(X) — 3¢
and by the arbitrary choice of ¢ > 0 it follows that K (X) > «a(X). O

Corollary 3.1. Let (X, || - ||) be a Kothe sequence space. Let there hold one of the following

(a) X be order continuous with the Fatou property;
(b) the unit vectors {e,, }>2, form an unconditional and boundedly complete basis of X.

Then there holds the equality T x = a((x)(())<~|)»2'

The proof follows from the fact that for any Banach space X there holds the equality

K(X
Ix = K()(()-i)-Q'

4. BALL PACKING CONSTANT IN WEIGHTED ORLICZ SEQUENCE SPACES

We recall that M is an Orlicz function if M is even, convex, M (0) = 0, M(t) > 0 for
t > 0. The Orlicz function M (t) is said to satisfy theAs—condition at zero if there exists a
constant ¢ such that M (2t) < cM(t) for every ¢t € [0, 1]. To every Orlicz function M the
following number is associated (see [32], p. 143)

By = inf{p : inf{ M (uwv)/uP M (v) : u,v € (0,1]} > 0},

called an upper Matuszewska—Orlicz index and defined in [36]. An Orlicz function M
satisfies the Ay—condition at zero iff By < oo, which implies of course M (uv) > uIM (v),
u,v € [0,1] for some g > B (see [32] p.140). If M satisfies the Ay—condition at zero we
will use the notation M € As.

Following [24] let us recall the definition of a Musielak-Orlicz sequenc space. A se-
quence & = {®;}2, of Orlicz functions is called a Musielak-Orlicz function or MO
function in short. B

Given an MO function ® we define for any z = {z,}32; € (° the function ®(z) =
Yooy ®i(z;). The Musielak-Orlicz sequence space £ or MO sequence space in short,
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generated by a MO function @ is the set of all real sequences = € ¢° such that d(\z) =
oo, ®i(Ax;) < oo for some A > 0.

The space {4 is a Banach space if endowed with norm ||z|/¢ = inf {r >0:P(z/r) < 1},
called Luxemburg norm.

Following [8] for p € [1, +o0] and any u > 0 we define sy ,(z) = sp (&)(x)), where

5 (1) = (1+uP)/P, for1<p< oo
PR max{1,u}, forp=oo.

For any z € (g we define the p-Amemiya norm by |||z|||¢, = infrso 22 P(km) . The 1-
Amemiya norm is called just Amemiya norm. It is known [8] that ||z||¢ = \||x| \ |q> - The
inequalities U112 < |2]lg < ||lal||a., < 2'/7lz]lo < 21/7|[[z]|[s hold for p € [1,+00).

Just to simplify the notations we will denote by || - || the Luxemburg norm and by ||| - |||
the Amemiya norm.

We denote by hq the closed linear subspace of (4, generated by all x = {z;}52, € {q,
such that the inequality ®(\z) < oo holds for every A > 0.

We will write {5, when the statement holds for the MO sequence space equipped with
both norms — Luxemburg or p-Amemiya.

Definition 4.8. ([21]) We say that the MO function ¢ satisfies the J; condition at zero if
there exist constants K, 5 > 0 and a non-negative sequence {c,}>2; € ¢; such that for
every n € N holds the inequality

B, (2) < KDy (£) + e,
provided ¢ € [0, ®,1(5)].

The spaces {3 and hg coincide iff ® has d2 condition at zero [26, 32, 47].

Any MO sequence space is a Kothe sequence space with the Fatou property [27]. When
the condition d; at zero is satisfied [32], the unit vectors {e,, }7%; form a boundedly com-
plete unconditional basis in ¢4 and {4 is order continuous.

If @ satisfies the d, condition at zero we will use the notation M € 6.

An extensive study of Orlicz and MO spaces can be found in [32, 38, 42].

The exact value of Kottman’s constant in MO sequence spaces endowed with the Lux-
emburg norm is obtained in [18].

Definition 4.9. ([18]) We say that the MO function ® satisfies condition (+) if for any ¢ > 0
and any ¢ € (0, c) there is 6 > 0 such that ®,((1 + 9)t) < ¢, whenever ®,(t) < ¢ — ¢ for
n=12,...and t > 0.

Definition 4.9 was defined first for ¢ = 1 in [24].
Let ® be a MO function. Let us denote

n+m
i 1
clx,m,n) = 1nf{c>0 g (x)§2:x:{xi}65&),n,meN},
c

d(z,n) = limy, e c(x,m,n), din) = sup{d(z,n) : * = {z;} € Se}, n € N, dp =
lim,, o d(n).

Theorem 4.3. ([18]) Let ® be a MO function, that satisfies the J» condition at zero and the
condition (+). Then K ((¢s,|| - ||)) =ds and T'x =

do
2+dg *

If the MO function ® consists of one and the same function M one obtains the Orlicz
sequence spaces £y and hyr. A weight sequence w = {w;}$2, is a sequence of positive
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reals. If &; = w; M, where M is an Orlicz function and w = {w;}{2; is a weight sequence
we get the weighted Orlicz sequence spaces Oy (w) and hps(w).

Following [15] we say that w = {w;}$°, is from the class A if there exists a subsequence
w = {w;, }72; such that limy_, o w;, = 0 and > e wi, = oc. If the weight sequence w is
from the class A we will use the notation w € A.

When the weight sequence w is the constant sequence w; = 1 for every i € N we get
the Orlicz sequence spaces.

It is easy to observe that if M € A,, then the MO function ®, defined by ®; = w; M
satisfies the J; condition at zero and the condition (+). Therefore K ((¢ar(w), || - 1)) = do
and 'y = ﬁ.

We will present a formula, which is different from that in Theorem 4.3, for calculating
of Kottman'’s constant and the ball packing constant in weighted Orlicz sequence spaces,
when the weighted sequence w belongs to the class A.

The next lemma is a direct corollary of Lemma 2 from [18] for weighted Orlicz sequence
spaces. As far as its proof is omitted in [18], just for completeness we will prove it.

Lemma 4.2. Let M € Ay be an Orlicz function w € A be a weight sequence. Then for any § > 0
and any sequence v = {x(™ } " C Sy, ) there exist a subsequence y = {y™ 1} of x and a
subsequence {py,}3>; C Nsuch that

(1) 3=, i wiM (y(k)> < ¢ forevery k € N;

(2) Ep"llwz (yfn) —y(m) < dforeveryk € N, m,n > k;
3) >k, 1Jrlsz(yf )<<Sforeveryk:22,n2k:.

2™ < M~(w;) we may assume

(nk) _

Proof. Since for any n,i € N there holds the inequality |z

by the diagonal method, that there is a subsequence {x(”k) } v such that limj_, o0 x;
a; for every i € N. Just to simplify the notation we will denote the subsequence {x("k) }zil
with {z(™ } Itis easy to observe that Yo, w; M () < limy,—00 M, (zM) =1

Let us put y(D = (1), We can choose p; € Nsuch that 3372 w;M (y™)) < § and
Z;’ipﬁl w;M (o) < 0.

From lim,,_, o x(”) = q; it follows that there exists N; € N so that for any n, m > N; the
inequality > %! _1 wZM (xE”) (m)) < § holds.

Let us put y?) = z(N1)_ Thereafter we choose a natural number p, > p; such that
D e py1 Wi (yfz)) < 4. Since

D2 ']
) . ) (n) _ .
Z wiM () < Z w; M (e;) < 6 and nll)ngox =q;
i=p1+1 i=p1+1

we can choose Ny € N, so that N, > N; and for any n,m > N, to hold the inequalities
pll w; M (:L'En) — :L'Em)> < ¢ and szp 4 wiM ( (n)) < 0.
Letus puty® = x(N2), There is a natural number p3 > p, so that ZfimH w; M (yl(s))

(n)

d. Since lim,,_,c x; ~ = a; and Zf?’p pwiM (o) < Z‘-’ipzﬂ w; M (a;) < § we can choose

N3 € N, so that N3 > N; and for any n,m > N3 to hold Y2 w; M (3:5”) - xgm)) < dand
72 a1 Wil (xg ) < 4.
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We continue this process by induction to obtain the sequences {y™ }:;1 and {p,}72;.

Let (g be a MO sequence space, generated by a MO function ®. For any = = {z;}2, €
(s we will use the notation ®(z) = ooy ®(xz;). If & € £y(w) we will use the notation
m(x) = &(z), where ® = {®;}°°, is defined by ®,(t) = w; M(t).

Lemma 4.3. Let M € Ay be an Orlicz function and w € A be a weight sequence. Then for any
e € (0,1) there exists & € (0,1) such that ||x|| < ¢, provided that m(x) <94.
Proof. By the assumption that M € A, it follows that M (uv) > u?M(v) for u,v € [0,

1]
and for some g > fys. Let us put 0 = ¢%. from the inequalitites 0 < de < 1 and M () <6
it follows that ||z|| < 1. Using the inequalities

5 > My, (”x“ﬁ) = wiM <||x|| ”m”) > 32 will@]| 1M ( \m”>
= el (%) = el
we get that ||z|| < 6Y/7 =e. O

The next lemma is a generalization of ([22], Lemma 5).

Lemma 4.4. Let M € Ay be an Orlicz function and w € A be a weight sequence. Then for any
L > 0and any € > 0 there exists § > 0 so that the inequality |M,,(u + v) — M, (u)| < € holds
whenever there hold the inequalities M,,(u) < L and M,,(v) < 4.

A result more general than that of Lemma 4.4 is obtained in ([24], Proposition 10),
where the MO function ® satisfies J; condition at zero and Definition 4.9 for ¢ = 1. Lemma
4.4 is a particular case of ([9], Lemma 2.1), where it is proven for a modular p (M,, is a par-
ticular case of a modular). Just for completeness and to skip the definitions of modulars
and modular spaces, which are not part of the present work, we will prove Lemma 4.4 as
stated above.

Proof. Let us put h = sup {]\7;(21& +20): ]\A/[;(u) <L, ]\AJ;(v) < 1}. From the assumpti-

ons M € Az and w € A it follows that L < h < co. WLOG we may assume that L > 1
and ¢ < 1. Let us put 8 = ;. From Lemma 4.3 it follows that there exists 6 > 0 so that

the inequality J\Al;(v) < 1mp11es the inequality |jv|| < min {g ;} Thus there holds

A (20) — a7 (2l v 2HUH — 2IIvH

M, (,E) = M, ( 5 Hvll) M, ( M) = Hence if there hold Mw(u) <L
and M, (v) < § then we can write the chain of 1nequaht1es

My (1= Bpu+ B (u+3)) < (1= B)My (u)+ 8M, (u+3)

(1= B)My, (u) + 5 (M (2u) + M, (%))

My (u) + 5 + o]l < Mu (u) +e.

Replacing u and v with u 4 v and —wv respectively in the above inequalities we get

My(u) = ]f\]/w(U‘FU*U):M;((1*,8)(U+U)+/8(u+1}7%))

My (u+v)

INIA

< (U= B)May (utv) + By (u+v - )
< (1—6)m(u+v)+§(E(2u+2v)+m(%))
< My (utv)+ 5+ ol < My, (u) +<.

Thus there holds m(u +v) — Mw(v)‘ <e. O
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We will need the next lemma. Let us point out that it is stated in [51] for the case when
v ={v;}32, € Ais asubsequence of w = {w;}2; € A. The proof when v = {v;};2, € Ais
an arbitrary sequence is literary the same.
Lemma 4.5. ([51]) Let w = {w;}2, and v = {v;}°, € A. Then there exist sequences of

naturals {m(S)}:l' {k;f) }C')Ol, s € N, such that

i i
1 1
1<m{ <kM
(n)

k;lll <my’, mES) < k;s), kz(s) < mgi_ll), for n,i,s e Nyn>2i+s=n+1
and for every i € N there holds
Z Z ’Uj = W;.
szlj:mgs)

Let M € Az, w € Aand x € Sy, (v). Then for any n € N there exists a unique

_x
Caon

¢z n > 0, such that Mw ( ) = % Following the notations from [6] let us denote d,, =

sup {¢z,n 1 ¢ € Spy,(w) }- For each sequence z = {z(™} C Sy, () We set

D, (z) = inf{Hx(l) + e 4 4 g™

s 2@ 2 e g = il}

and D,, = sup { Dy, (z) 1 2 = {z™} € S¢,, (u) }-
Lemma 4.6. Let M € Ay be an Orlicz function and w € A be a weight sequence. Then d,, = D,,.

Proof. Let e € (0,d,,) be arbitrary. Let us choose y € Sy, (v), such that ¢, ,, > d,, — €. It
is easy to observe that by using a diagonal argument any sequence w = {w; }$2; € A can
be split into countably many sequences u'/) = {wy.}es, so that ul) € A for any j € N,
INI" = forany k # j and U2, I’ = N. From Lemma 4.5 there exist disjoint subsets
{J{;}:il C I’ for j € N, such that > kesi Wk = W

We will define a sequence {z(™} by
M =3"% y, Dkess €k e® =37y, D ke Chy - 2™ =32 s Dkery Chs -

From the construction of the sets JJ it follows that M, (M) = M, (y). By the con-
struction supp(z(V) Nsupp(z)) = 0 for any i # j and 2() € S, (.. Since

i (I(kl)ix(:)i...iz(km)> il (d y ) il (y) _,
m — €

m — € Cy,m

we get that for any z(¥1) x(k2) . 2(km) there holds the inequality ||z(F1) + x(*k2) 4+ ... £
x(km) | > dm —¢,ie. Dy (x) > dp, —e. Consequently by the definition of D,, we get that
D,, > Dy,(z) > d,, — €. From the arbitrary choice of ¢ € (0, d,,,) it follows that D,,, > d,»,.
It remains to prove that D,,, < d,,,. We will consider the case m being an odd number.
The case when m is an even number can be proven in a similar fashion.
Lete > 0and 2 = {«®}” € S, (). Let us denote e; = ;<. Then for every k € N
there holds

— (k) d, — (z® 1—
T m T €1
4.2 M < My | — ] < .
42 w(dm+€>_dm+€ w(dm)_ m
From Lemma 4.4 it follows that there exists 6 > 0 such that the inequality
€1
ZwiM(ai +Bi) — ZwiM(ai) <
iel iel
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holds whenever there hold } ;. ; w;M(c;) < 1and } ;. ; w;M(f;) < 6. By the assumption
M € A, it follows that there exists ¢ > 0, such that M(mu) < cM(u), provided that
0<u< M)

From Lemma 4.2 it follows that any sequence z = {z(®)}~ C Sy, (. has a subse-
quence {y®} * | that satisfies
1) X2, qwiM (ygk)) < S forevery k € N;
) St wM (yfn) - yfs)) < Sforeveryk €N, s,n > k;
@) X, wiM (yl(”)) < Sforeveryk >2,n > k.

We will prove that ||y + + 3 hea (=1 Fy®| < dp + e

We will use the notation M, (= |y = Zm w; M (z;). Since

= XhywM (ZZL:?(_I)kyz(k)) - Zf; w; M (Z::;; ( z(%) Z(%H)))
< 2 Z,?jil (Z?il w; M (M (y(?k) _ y§2k+1))>>

the choice of J, recalling that {y(* } 4, s a subsequence of {z® } , and (4.2) it follows

that
)

T (1)+ (2) _ (3)+ + (m=1) _, (m)
53 — M’u) Y Yy m+sy Yy

M
P1 Yi € 1—¢
2z wiM (d +a> s

Continuing in the same fashion we get

IN

m’

(D) (8 (m—1) _, (m) P2 y P 43m (—1)Fy )
S, = M, (y y Oty Yy : ) =302 wg M Lk
k
S ﬁ iz wiM ((m 1)( )) + 33 (Zz L wiM (( - 1)y, ( ))>>

—

< 55 iy wiM (yz )) + s ( img wiM (yz(k)>)) < ps(m-1)2 =4

From the last inequality, the choice of §, recalling that {y*)}~ is a subsequence of
{z® }Zil and (4.2) it follows that

— (1) (2) (3) (m—1) (m) |P2 (2)
y 4yl —y ety -y D2 ) Yi 1 1—ey €1 — 1
Mw ( dm+e 1 ) < Zi:l wZM (dm+a + m < m + m - m’
Similarly we get for k = 3,4,..., m — 1 the inequalities
— (D) () (B (m=1) _, (m) [Pk (k) _
M y 'ty y o4ty y < m M Y; 1« l-e g1 1
w dm+e 1 — =1 Wi dm+e + m = m + —m-

From the inequality

]WJ y D 4y () gy (m—1) 0
w dm—+e
Pm—1+1

(1) m—1 k, (k)
_ o . Y, +Zk:2 (71) Y;
> = Zi:pm_l—i-l w; M ( dmte <4é
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o0
Pm— 1+1
(m)
o0 . €1 1— 81 51 J— i
§ Zi:pm,l-‘rl wiM (d +e) + m S + m°

Summing the above n inequalities we get

it follows that

(1) (2) (3) (m—1)
— y 4ty oy ety
S5 = My ( dm+te

— (1) m k, (k) (1) m k, (k)
_ Y; +Z = (_1) Y; m—1 p Y; +Z = (_1) Y;
S = My < - > < Dkmr 2ty wiM ( e )
(1) m k, (k)
o0 Y Ao (=D%y;
+Zi:pm,1+1 sz ( (]Iclmz-'re? > S 1’
ie. [|ly® + YL, (-1)kFy®| < dy, + €. Since {1}, is a subsequence of {x(M}%°, it

(k)
follows that D, (z) < d + ¢ and by the arbitrary choice of € we get that D,,,(z) < d,,,. O
Following ([6], p. 149) from Lemma 4.6 and (2.1) we get the next result.

Theorem 4.4. Let M € Ay be an Orlicz function and w € A be a weight sequence. Then
K((Car(w), || - 1) = d2 and T gy, w11 = 5555

The next proposition seem to be well known but there is no proof known to the author.
It is well known that {5 = hg if and only if ® satisfies the d,—condition at zero [20, 23], but
it is difficult to check that when w € A and M € A, then the MO function ® = {w,, M }22
satisfies the d,—condition at zero. It is possible for an Orlicz function M ¢ A, to choose a
suitable wighted sequence w so that the space ¢;(w) to have different properties [27, 51].

For the proof of the next proposition we will follow the technique from ([32], Proposi-
tion 4.a.4)

Proposition 4.3. Let M be an Orlicz function and w € A. Then the following conditions are
equivalent.

(i) M satisfies the uniform Agy—condition at zero;
(ii) Lpr(w) = hpr(w);

Proof. If M satisfies the A, condition at zero. Then following the proof in ([32], Proposi-
tion 4.a.4) we will get that £, (w) = has(w).

Let us assume that M does not satisfy the A, condition at zero. Just for simplicity of the
notations let us denote the subsequence {wy, }72, satisfying the conditions > -, w,, =
oo and limg_,00 wy,, = 0 by {w, }32,. From the assumption that M ¢ A, it follows that
there exists a convergent to zero sequence {4 }7 , such that M(a,,) < 5~ and the ine-
qualities M (2cv,) > 2" M (ov,) hold for every n € N.

We can choose two sequences of natural numbers {p, }°>; and {¢,}72,, such that 1 <
p1<q1<p2<q2<--~<qn,1<pn<qn...andm<zq" igm.

= ape;and u =300 2. Since

Let us denote (") = i

qn

Moy ()= 3 [ M) S wi| <3 o =1

n=1 i=pn k=1

it follows that u € £j;(w). From

i In 0 qn )
M, (2u) = Zl M(2an) 37 wi | > Zl 2'M(an) Y i | 2 kzlé .
n= 1=Pn n= i=pn =

it follows that u € hps(w) and thus € (w) # har(w). O
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Theorem 4.5. If M ¢ Ag and w € A, then (Lpr(w), || - ||) has a subspace isometric to £

Proof. From Proposition 4.3 it follows that the spaces ¢;;(w) and has(w) coincide if and
only if M € A, at zero. The MO sequence spaces {5 and he coincide if and only if ® has
the 02 conditon at zero [20, 26]. Thus if M ¢ A, and w € A it follows from Proposition
4.3 that £j;(w) # ha(w) and by [20, 26] we get that the MO function & = {®;}%2 ,, where
@y (t) = wiM(t), which generates the weighted Orlicz sequence space ¢,s(w) does not
satisfy the do condition at zero. Therefore according to ([23], Theorem 1.1) there is an
isometric copy of {o in £ps(w). O

Theorem 4.5 can be proven also by using techniques that are very similar to that in [4].

Theorem 4.6. Let M & Ay be an Orlicz function and w € A be a weight sequence. Then
E((ta(w), |- 1)) = 2and T ¢, ), )11 = 3-
Proof. The proof follows by Theorem 4.5 and the well known fact [6] that K ({,) =2. O

For any positive measure space (€2, %, u) the Orlicz function space Ljs(u) is defined
as the set of all equivalence classes of u—measurable scalar functions x on € such that
for some A > 0 there holds M(z/\) = Jo M (z(t)/N)du(t) < co. For @ = Nand w =
{w; 52, = {n(j)}52, we get the weighed Orhcz sequence space {j;(w). Therefore when
investigating the sequence space ¢;;(w) we can use the known results about the corre-
sponding Orlicz function spaces. As far as we are considering weighted Orlicz sequence
spaces /s (w) generated by a weight sequence w € A then only the behavior of the Orlicz
function on small arguments matters [15].

Deep results about the geometry of p—-Amemiya Orlicz spaces (Las(1), ||| - |||az,p) are
obtained in [8].

To any Orlicz function the following function N(v) = sup{ul|v] — M(u) : u > 0}
is associated and is called complementary function to M. Following [8] let us denote

ap(z) = (M)p ' N(p4(|z])) =1, for p € [1,+00), where N is the complementary function
to M, and p, is the right derivative of M. Let us denote k; = inf{k > 0 : a,(kz) > 0}
and k;* = sup{k > 0 : a;(kx) < 0}. There holds the inequality k; < k;*. Let us denote
em = sup{u > 0 : M(u) < oo}. If cpr = o0, then according to [8] k, < oo if and only if
M is not linear for p € (1,+o00) and M does not have an asymptote at co for p = 1. When
considering the Orlicz sequence spaces ¢, or the MO sequence space ¢, (w), w € A only
the behavior of M at zero is significant. Thus we get that if cps = oo, then according to
[8] k; < oo in £y (w) if and only if M is not linear. If M is linear and w € A then by
the equivalence of the p-Amemiya norm and the Luxemburg norm it follows that there is
an isomrophic copy of ¢ in (¢ar(w), ||| - |||amr,p). According to [19] X containes an almost
isometric copy 51 and thus K(EM(U)), ||| . |||M,p) = K(ﬁl) = 2 and F(éM(w)y\H'H\M,p) =3

If M € Ay and w € A then for any k > 1 and any p € [1, c0) there is a unique d**? > 0,

p p
so that ( (2 )) = 2 =1 Letusdenote d®? = inf{d®*P : k > 1} and d? = sup{d®? :

dz.k.p

T € S(a (w)[[|ll|ar ) -
If M is not linear, M € A and w € A, then for every k € [k;(x),k;*] there holds

— P\ 1/P
2|l = £ (1 + (Mw(kx)> ) . Itis easy to observe that for every = € Sy, (w),|||-/l121.0)
— P — P »
and any k € [k (z), k3*] there hold the inequality (Mw (’“—"”)) < % (Mw(kx)) = -1

2 2p
and therefore d*? < 2. From the definition of |||-||| »s, we get that the inequality M., (kx) >

(kP—1) » holds for every k > 0 and hence d*? > 1. Combining these observation it follows
that d € (1,2).
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If M is linear and w € A, then & (x) = oo. Letx € S, (w),|||||ar.,)- Lhen for every e >/0
— 1/p

there exists N, > 0 so that for every & > N, there holds 1 + ¢ > % (1 + (Mw(kx))p) .
Therefore the inequality (M\; (’zi))p = = (M\;(kx))p < HULL Kolds for every k >

2p
N.. From continuity arguments it follows that there exists §. > 0 so that d*? < 24 4. and
lim._,¢ dc = 0. By the arbitrary choice of € > 0 it follows that and therefore d*» < 2.
From the definition of ||| - |||, We get that the inequality m(km) > (kP — 1)% holds
for every k > 0 and hence d*? > 1.
Combining these observations it follows that d? € (1,2], provided that M € A, and
w e A.

Theorem 4.7. Let M € Ay be an Orlicz function, w € A be a weight sequence and 1 < p < oo.
Then there olds 1 (€1 (w), ||| - ||a1.5)) = 47 @nd Dg, 0y 110, = 55

Proof. First we will show that K ((¢ar(w), || - |||arp)) > dP. For any ¢ > 0 there exists
Y € S(eas (w),|l|-lllar), SUch that d¥? > dP — ¢ and of course d¥*? > dP — ¢ holds for all
k> 1.

It is easy to observe that by using a diagonal argument any sequence w = {w;}2; € A
can be split into countably many sequences u?) = {wj}cs, so that u¥) € A for any
jeN, I'nI* = (forany j # kand U52, I = N. By Lemma 4.5 there exist disjoint subsets
{JJ} ,CliforjeN, suchthatzkeﬂ Wy = Wy,

We w1ll define a sequence {z(™} by
o =37 s 2ket €k v =32 s Dkesz Chy o 2™ =377 s 2kerp Gy e

From the construction of the sets JJ it follows that M, (1:(")) = M, (y) and conse-
quently |||z(™|||ar, = 1 for all n € N. By the construction supp(z?) N supp(z\?)) = 0 for
any i # j. Let us consider the sequence z = {#("}"" . Then

—p [ m P —p () \\ /P
Sy = (1+Mw (kT)) :E(1+2PMU, (kdp ))

1
k
1 =P (o \\ P (1qkp_1)l/r
R TR (- ) R Uy

dy:k.p

Consequently |||z — 2(™)|||5r,, > dP — ¢ and by the arbitrary choice of ¢ > 0 it follows
that K ((¢ar(w), [[| - [l[a1,p)) = dP.
For the proof that K ((£as(w), |[|*]||ar,p)) < dP we start by choosing a sequence {z("} €
Senr(w),|I]- HI ) FOrany € > 0 there exists k;,, > 1, such that b,, < d” +¢, where b, satisfies
=D (o () kP —1
M (Rt ) = H2L
Case I) Let k,, be an unbounded sequence. WLOG we may assume that lim,,_, &k, =
00. Let us assume that d” + ¢ < 2 then

KE—1 2P () (n) 2 \P 7P kna™
S = Bt =M (5BER) = M (42 ) > (a22) M (Bs)
p (n) p
2 knz _ — 2 En\P _
() (=51, 1) = ()" (¢ ).

Letting n — cowe get 1 < ( dpi ) < limy, 00 kkp _21,, = 1, which is a contradiction.

v

Consequently dP + ¢ > 2. Using the inequality K (X) < 2, which holds for any Banach
space X it follows that K ((£ar(w), ||| - [lmp)) <2 < dP +e.
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Case II) Let us assume that {k, },, is a bounded sequence. WLOG we may assume that
lims o0 ks = k > 1. Since M € A, there exists ¢ > 1 such that the inequality

k
(4.3) M (dp " gu) < eM(u)

holds for every u € [0, 1]. From Lemma 4.4 it follows that there exists § € (0, ¢) so that the
inequality

(4.4) My(z +y) < My() +¢,

holds whenever M, (z) < ¢ and M,(y) < 6. From Lemma 4.2 it follows that there is a
subsequence {z(")} of {z("}  which just for simplicity of the notations we will denote

again by {z(™}  so that

4.5) Z w; M (xz(-k)) < ¢/cforevery k € N;
i=pr+1
Pk—1
(4.6) ZwiM (xl(-n)— (m) < d/cforevery2 <k <n, m>k;
(4.7) Z w; M ( ) < d/cforevery k >2,n > k.
i=pr—1+1
There are m,n € N such that there hold
4.8) \k — k| < 6, |kem — k| < 6.
By (4.3) and (4.6) it follows that
Pn—1 Pn—1

(n) _ ,(m) , () _ plm)
4.9) Zw, (dp+5( x; >><clz:sz(xl x; )<5<6.
By (4.3) and (4.7) we have 0" w,M (dp’isw/” ) coeXtwM (x5m>> -5
Thus from (4.4) we get

o))

(4.10) i1 Wil (<dv+s)) < a1 Wi (Zp%) Te

From (4.8) we obtain the chain of inequalities

Pn (n) Pn (n)
(k — kp)x, L (n)
) RSV B I — . 2 < n
E w,M( T |kn — K E w; M T (5M (z\™) <§

i=pnp—1+1 i=pp_1+1

and consequently using (4.4) we get

S k) S kn ()
=pn-1+1 i=pp—1+1

Combining the last inequality with (4.10) and b,, < d” 4 € we obtain

S = pn 141 w; M (dpk-:i-g (xgn) - xgm))>
(411) < f;p —1+1 sz (dll:is E")) +2e < Z +1 wlM (%xg"L)) +2e

IN

k—1+2€_7+k—k+2€<k 1_’_2.
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Finally by (4.3), (4.7) and (4.4) we get

n m - k m
(412) Z w; M (dp+6(x§ ) g >)>§ > sz(dp+s 5 >>+s.

i=pn+1 1=pn+1

Thus we have
@13 Sy oM (s (o —al™)) < 4514 5

From (4.9), (4.11) and (4.12) we obtain

2 _ g (m) 1/p
Sz = ‘ dp+e H‘]V[p ( + My ( () = (m))))
p_1y1/p p_1y1/p P\ 1/p
1 1/p (H((k P gy GP=pY +%+E> )
= L W W+ W) < .
(1 (k1) q6e)” )1/‘“
- k
. 2™ <m)) , PYRCOBINCD)
n 1 n
where Wy = >0t w, M P ) imp, 41 Wi (dP+5> and
- ((n) (m))
W3 = Zi:pn"'l sz < dP+e

We will prove that there exists ¢y > 0 such that the inequality

1/p
(1 (7 =)+ 65)p) < k12
holds for any k,p € [1,00) and every ¢ € (0,¢0). Let us consider the function F'(¢) =
1/ 1/
(1+ (k= 1)/ +62)") ¥ k—12c. Then F(0) = (1+ ((kp 1)/7)") "k =0. After
a differentiation we get F' () = 6 (1 + ((kP — 1)Y/P + 6¢) ) 2 (kP — 1)1/7 + 6¢)” )
From the inequality

p—1

F'(0)=6 (1 + ((k:P - 1)1“”)1))1% ((k” - 1)1/”)}771 —12=6 (1 . ij) 7 12<0

and the continuity of the function it follows that existence of o > 0 such that F’(e) < 0
for every k,p € [1,00) and every ¢ € (0,e0). Therefore F is a decreasing function in the
interval (0,¢0) and consequently F(¢) < F(gy) = 0 for every k,p € [1,00) and every
e € (0,¢ep).

Thus we get Si15 < 1+ % whenever we have chosen ¢ € (0,¢(). Consequently there
holds the inequality inf{||[z(™) —2(™)||[pr, : n # m} < (1412¢)(dP +¢). Since {z(M}22, C
Srr (w),|II1l1ar.,) @0d € € (0,0) be arbitrary it follows that K ((£ar(w), ||| - ||ar,p)) < dP.

The equality I'¢¢y; (), llllar.) = 2%a» follows from (2.1). O

2+dP

We say that an MO function & satisfies the uniform As—condition at zero if there exists
a constant K < oo and an integer N € N and a real t; > 0 such that the inequality

%Ln((%) < K holds for every n > N and every ¢ € (0,ty]. We say that an MO function &
satisfies the uniform Aj—condition at zero if there exists a constant k£ > 0 and an integer
N € Nand areal t; > 0 such that the inequality q:p" ((25) > k holds for every n > N

and every t € (0,%p]. Recall that given MO functions ® and ¥ the spaces {3 and (v
coincide with equivalence of norms [34] if and only if ® is equivalent to ¥, that is there
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exist constants K, § > 0 and a non—negative sequence {c,}>2; € {1, such that for every
n € N the inequalities

D, (Kt) < U,(t) + ¢, and U, (Kt) < P, (t) + ¢
hold for every ¢t € [0, min(®,,(3), ¥,;}(3))]. According to [47] {4 = he if and only if &

is equivalent to a function ¥, which satisfies the uniform A, condition. Let us recall [32]
that an MO sequence space /g is reflexive if and only if the MO function & is equivalent

to an MO function ¥, for which uniform A, and A%-conditions hold.

Theorem 4.8. Let M & Ay be an Orlicz function, w € A be a weight sequence and 1 < p < oo.
Then T oy, o), 11l ar) = 3 @14 K ((Car (), []] - [la19)) = 2.

Proof. If M & Ao, then {3 (w) # har(w). If we suppose that £,/ (w) is a reflexive space then
there exists a MO function ¥, which is equivalent to {w; M };2, and ¥ has the uniform A,
and Aj—conditions. Consequently form ¥ satisfying the uniform A, condition it follows
that £y = hg and therefore /5 (w) = hys(w), which is a contradiction. Thus £, (w) is not
a reflexive Banach space and according to [17] we get the equalities I'(y,, (w)
and K (¢r(w), ||| - l[[a1) = 2.

Al-larp) = 2

O

5. REISZ ANGLE IN KOTHE SEQUENCE SPACES

Let us mention that the Orlicz sequence spaces /5, {yr(w), w € A, endowed with the
Luxemburg norm, provided that M € A, are order continuous Kothe sequence spaces
with the Fatou property and the unit vector basis {e, }72, is unconditional and boun-
dedly complete [32]. From the equivalence of the Luxemburg and p—Amemiya norms it
follows that ¢5s, £3r(w), w € A, endowed with p-Amemiya norms, provided that M € A,
are order continuous Kothe sequence spaces and the unit vector basis {e,, }22; is uncon-
ditional and boundedly complete.

If M does not satisfy the As—condition at zero, then the Orlicz sequence spaces ¢/,
Uy (w), w € A, endowed with the Luxemburg or p-Amemiya norm are not order continu-
ous Kothe sequence spaces and the unit vector basis {e,, }52; is not boundedly complete.
Therefore we could not apply Theorem 3.2 for calculating of the Reisz angle in this case.

Definition 5.10. ([33], p.1) A partially ordered Banach space X over the reals is called a
Banach lattice provided
(i) * <z impliesz + 2z <y + z forevery z,y,z € X
(ii) ax > 0 for every z > 0 in X and every nonnegative real a
(iii) for all z,y € X there exists a least upper bound z V y and a greatest lower bound
VAN
(iv) ||z|| < |ly|| whenever |z| < |y|, where the absolute value |z| of z € X is defined by
x| =2V (—x).

The sequence spaces ¢, £ (w), endowed with Luxemburg or p-Amemiya norms are
Banach lattices [32].

We will need the next lemma, which is similar to that proven in [17].

Let us first recall that we say that the Banach space X containes an almost isometric
copy of Y if for every € > 0 there exists a linear operator P : ¥ — X such that the
inequality ||y|ly < ||Pyllx < (1+¢)|ly|ly holds for every y € Y.

Lemma 5.7. Let X and Y be two Kothe sequence spaces and let X contains an almost isometric
copy of Y. Then o(X) > a(Y).

Proof. Lete > 0be arbitrary chosen. There exist z,y € Sy such that a(Y)—e < ||(|z]| V]y])||
and |z| A Jy| = 0. Let P : Y — X be a linear operator that satisfies the inequality ||y||y <
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IPyllx < (1+¢)|ylly. Define z = HPI;II and y = HPyH . We will need the fact, that if
|z] Aly] = 0, then |Px| A |Py| = 0. Indeed if we assume that | Pz| A |Py| # 0, then there
existay, B;,i €N, D7 a? > 0,377, B2 > Osuch that P (32 awi) + P (X5 Bivi) = 0.
Consequently there holds the inequality

0 = [P aimi+ Byl = IS, (@i + Byl
= 0SS ail VIS Babll > 0,

which is a contradiction and thus |Pz| A |Py| = 0.

Using the inequality ‘m — 1pyTx | < 1 11z < € we get the chain of inequalities
1 o o T—y _ 1 _ 1
rrelle —ylly —e < HHP(z)uxHY ‘HPIHX uPyHX‘
< i - () = P (s )|
< Hanux HPnyH —HP e ) — P s ) ||«

Therefore for any two z,y € Sy such that a(Y) —e < ||(|z] V |y)|| and |z| A |y| = O there

exists u = ”;ﬁ € Sxand v = IIPuH € Sx, such that |u| A [v] = 0 and ||(Ju] V |[v])]] >
1%5”(\94 Vighll —e > O‘(ly_ggs — e. From the arbitrary choice of ¢ > 0 it follows that
a(X) = afY). O

Theorem 5.9. Any nonreflexive Banach lattice X has a Riesz angle equal to 2.

Proof. By assumption X contains an isomorphic copy of ¢y or ¢; [14]. According to [19]
X contains an almost isometric copy of ¢y or ¢;, respectively. From Theorem 5.7 it follows
that a(X) > a(ey) =2o0r a(X) > a(fy) = 2[2]. O

The MO sequence spaces, equipped with a p-Amemiya norm, p € [1,+o00] are Banach
lattices.

From Theorem 5.7 and the fact that if an Orlicz function M ¢ A, or a MO function
O & §y, then £y, £ps(w) for w € A and {g are not reflexive spaces for any p—Amemiya
norm, p € [1, +o00] we get the next results.

Theorem 5.10. Let M ¢ Ay be an Orlicz function and w € A be a weight sequence. Then

a((Car (w), (I - [llar,p) = 2.
Theorem 5.11. Let & & 65 be an MO function. Then a((Ls, ||| - |||ar,p) = 2.

Thus from the equality | - [|o = ||| - |||#.0 [8] it follows that a((¢ar, || - ||) = 2, a((£as, ||| -
) =2 a((le, || -1I) = 2, a((Le, |I] - [I]) = 2.

As corollaries of Theorem 3.2 and [6] we get the results from [49].

Theorem 5.12. ([49]) Let M € Ay be an Orlicz function. Then the Riesz angle of (¢ar, || - ||) can

be expressed as:
~(x 1
a((ar,] - 11)) = sup {k‘m M (k) =50€ SgM} .

Theorem 5.13. ([49]) Let M € Ag be an Orlicz function. Then the Riesz angle of (Uar, ||| - ||])
can be expressed as:

kx kE—1
a((Uars ||| - = sup inf<dyr: M =—>5.
(@ lll- 1) Hxnp_lm{ . (d) . }

As corollaries of Theorem 3.2 and [16] we get:
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Theorem 5.14. Let M € Ay be an Orlicz function and 1 < p < oo. Then the Riesz angle of
(Car, ||| - |az,p) can be expressed as:

k kP —1
al(lor - aap) = supint g B (35) = AL

4
llzlllar,p=1*>1 2

As corollaries of Theorem 3.2 and Theorem 4.4 we get the results from [53].

Theorem 5.15. ([53]) Let M € Ay be an Orlicz function and w = {w;}$2, € A be a weight
sequence. Then the Riesz angle of ({ar(w), || - ||) can be expressed as:

a((Ear(w), | - ) = sup {kw . M, (]j) SEPE seM(w)} |

As a corollary of Theorem 3.2 and Theorem 4.7 we get an expression of the Reisz angle
in (Lar (W), [[] - [l arp)-

Theorem 5.16. Let M € A, be an Orlicz function, w = {w; }32, € A be a weight sequence and

1 < p < co. Then the Riesz angle of (¢pr(w), ||| - |||ar,p) can be expressed as:
kx kP —1
15y : = fJde, M = .
a((ear(w), 11 11D) ,,S‘ﬁ’lé‘il{ ()=

As a corollary of Theorem 5.16 for p = 1 we improve the result from [53].
As a corollary of Theorem 3.2 and [18] we get an expression of the Reisz angle in /4.

Theorem 5.17. Let ® be an MO function with the do—condition at zero and condition (+). Then
the Riesz angle of ({g, || - ||) can be expressed as:

a((Ca, || - 1) = da.

Following [1]let 1 < p;, i € N be a sequence of reals. The MO sequence space /s, where
¢ = {tPi}2, is called a Nakano sequence space and is denoted by £y, 1.

Asa corollary of Theorem 3.2 and [18] we get an expression of the Reisz angle in £, 3,
when limsup;_, ., p; < 4+00. As a corollary of Theorem 5.10 we get an expression of the
Reisz angle in £y,,.}, when lim sup,_, ., p; = +00.

Theorem 5.18. Let £y, y be a Nakano sequence space, where 1 < p;, i € N. Then the Riesz angle
of (Uipy» || - I|) can be expressed as:
a((ﬂ{pi}, II- 1)) = 2 when limsup p; = +00
i—»00
and .
a((Lep;y, [+ 1)) = 27 when limsupp; = p < +oo.
11— 00

The concept of Orlicz-Lorentz space was first introduced by A.Kaminska in [25]. Let M
be an Orlicz function and w = {w,, }22; be a non-increasing sequence of positive scalars
so that lim,,_, w, = 0. We denote by d(w, M) the Orlicz-Lorentz sequence space of all
sequences x = {z,,}>2, for which

(5.14) lz|| = sup {Z wy, M W(n) } < 00,

n=1
where the supremum is taken over all permutations 7 of the N [50]. From (5.14) we deduce
that there exists a sequence rearrangement of the natural numbers {7(n)}72; such that
=] = {2, wn|xﬂ(n)|p}1/p. The space d(w, M) is a Banach space and the unit vector
basis {e, }52, is a boundedly complete unconditional basis (see [32] p. 175).



Kottman'’s constant in some classes of Kothe sequence spaces 121

If Y w, < oc0[2550]or M & Ay and Y2 | w, = oo [30, 50] then d(w, M) is not a
reflexive space. If M (t) = |t|” we get the Lorentz sequence space d(w, p).
As a corollary of Theorem 3.2 and [50] we get the results.

Theorem 5.19. Let d(w, p) be a Lorentz sequence space. Then a(d(w,p)) = 25,

Theorem 5.20. Let d(w, M) be an Orlicz—Lorentz sequence space, such that M € A,, Z;’il w; =

! (u)

oo and the function Gyr(u) = 1&4:17(%)

a(d(w, M)) = limu_m G]w (u)

is increasing on the interval (0, M ~'(1/2w1)]. Then

From Theorem 5.7 we get the next result.

Theorem 5.21. Let M be an Orlicz function. If > " w, < ocor M & Agand Y w, = oo.
Then a(d(w, M)) = 2.

Let p € [1,400). Following [10] we denote by ces,, the Cesaro sequence space of all
sequences x = {z, }>2, for which

o n NP 1/p
ces, =S wxel: <Z (ZZ_; |xl|> > <0

n=1

The Cesaro sequence space is a Banach space if endowed with the norm

|| = (i (W)p> 1/p

n=1

and it is an order continuous Kothe sequence space with the Fatou property [10].
As a corollary of Theorem 3.2 and [10] we get the result.

Theorem 5.22. Let ces, be a Cesaro sequence space. Then a(d(w, p)) = 25,

6. CONCLUSION

There are many articles where upper or lower estimates are found for the value of
Kottman’s constant. As a corollary of Theorem 3.2 and these results we can get estimates
of the Reisz angle.

Following [13] let us define a modulus of asymptotic uniform convexity

Ox(t) = inf sup inf  {||z+ 2] — 1}
z€Z

lz]|=1 ZCX
co —dimZ < oo lz]] >t

and a modulus of asymptotic uniform smoothness

px(t) = sup inf sup {|lz+z| —1}.
lel|=1 ZCX €2
co —dimZ < oo || >t

As a corollary of Theorem 3.2 and [13] we get the result.

Theorem 6.23. Let M € A, be an Orlicz function. Then 1+ &, 1.(1) < a((Car, | - ) <
L+ Do 1 (1)-
Following [7] for ¢ € [0, 2] we call a modulus of convexity of X the function

5x () :inf{l—”x,jy”:w,ye Sx.lle — ] >e}~
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A space is called uniformly convex if dx () > 0 for all ¢ > 0. We call [31] a modulus of
smoothness of X the function
pX(T> _ lnf{lx;yl + ||l‘;y|| —1:2€ Sx, ”yH _ T}.

For some properties of the two moduli just defined we refer to [33]. A space is called

uniformly smooth if lim,_, pr(ﬂ = 0 for all ¢ > 0. Some generalizations of the moduli of
convexity and smoothness can be found in [5, 52].
As a corollary of Theorem 3.2 and [35] we get the results.

Theorem 6.24. Let (X, || - ||) be a uniformly convex Kothe sequence space. Let there hold one of
the following

(a) X is order continuous with the Fatou property;
(b) the unit vector basis {e,, }52; of X is unconditional and boundedly complete.

Then there hold the inequalities

1 1 1
7175X(1)’1_5X(\/§)’1_5X( 2 ) < a(X)

a(X)

1
max<{ 1+ §5X(2/3)

and
a(X) <min{2 — 26x(1),1+ 2px(1)}.

—1 —1
Let us denote ), = liminf, o %((2’3), B9, = limsup,,_,, %((213), where M is an Or-

v (i)
2?21 Wy

licz function. Let w be a weight sequences. Let us denote o, ,, = infy>1 — =
; 1
Zle wy

~ _ M~ (u)
OMw = Hlfue(o,l/le} M—T(2u)"

As a corollary of Theorem 3.2 and [50] we get the result.
Theorem 6.25. Let d(w, M) be an Orlicz—Lorentz sequence space, such that M € Aq and
Yoo, w; = oo. Then max{ai0 ¥} < a(d(w,M)) < =L
)Y

Y ol >~ .
1 %M,w QM w

As a corollary of Theorem 3.2 and [42] we get the result.

Theorem 6.26. Let £y be an Orlicz sequence space, such that M € Ay and N € Ay be its
complementary function. Then

1 1 1
— - < - —
ma{ o o} < a1 < 5
and ,
max{28%, 284} < al(lan, 1 11)) < -
M

where oy = inf{ﬂj\f:ll(g;)) 0<u< %}, oy = inf{mzo <u< %(k’{* 71)} and

. M~ (5
oz']\/[:mf{]\/l_l((f)):kEN}.
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