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Bounds for the skew Laplacian spectral radius of oriented
graphs

BILAL A. CHAT1 , HILAL A. GANIE2 and S. PIRZADA2

ABSTRACT. We consider the skew Laplacian matrix of a digraph
−→
G obtained by giving an arbitrary direction

to the edges of a graph G having n vertices and m edges. We obtain an upper bound for the skew Laplacian
spectral radius in terms of the adjacency and the signless Laplacian spectral radius of the underlying graph
G. We also obtain upper bounds for the skew Laplacian spectral radius and skew spectral radius, in terms of
various parameters associated with the structure of the digraph

−→
G and characterize the extremal graphs.

1. INTRODUCTION

Consider a simple graph G with n vertices and m edges and having the vertex set
V = {v1, v2, . . . , vn}. Let

−→
G be a digraph obtained by assigning arbitrarily a direction to

each of the edges of G. The digraph
−→
G is called an orientation of G or oriented graph

corresponding to G. Also the graph G is called the underlying graph of
−→
G . Let d+i =

d+(vi), d
−
i = d−(vi) and di = d+i + d−i , i = 1, 2, . . . , n be respectively the out-degree, in-

degree and degree of the vertices of
−→
G . The out-adjacency matrix of the digraph

−→
G is the

n×nmatrixA+ = A+(
−→
G) = (aij), where aij = 1, if (vi, vj) is an arc and aij = 0, otherwise.

The in-adjacency matrix of the digraph
−→
G is the n×n matrix A− = A−(

−→
G) = (aij), where

aij = 1, if (vj , vi) is an arc and aij = 0, otherwise. We note that A− = (A+)t. The skew
adjacency matrix of a digraph

−→
G is the n× n matrix S = S(

−→
G) = (sij), where

sij =

 1, if there is an arc from vi to vj ,
−1, if there is an arc from vj to vi,
0, otherwise.

Clearly S(
−→
G) is a skew symmetric matrix, so all its eigenvalues are zero or purely

imaginary. For recent developments on the theory of skew spectrum, we refer to the
papers [2, 14, 16, 23, 26, 28]. Let D+ = D+(

−→
G) = diag(d+1 , d

+
2 , . . . , d

+
n ), D− = D−(

−→
G) =

diag(d−1 , d
−
2 , . . . , d

−
n ) and D(

−→
G) = diag(d1, d2, . . . , dn) be respectively the diagonal matrix

of vertex out-degrees, vertex in-degrees and vertex degrees of
−→
G . Further, let A+ and

A− be respectively the out-adjacency and in-adjacency matrix of a digraph
−→
G . If S(

−→
G)

is the skew adjacency matrix of
−→
G and A(G) is the adjacency matrix of the underlying

graph G of the digraph
−→
G , clearly A(G) = A+ + A− and S(

−→
G) = A+ − A−. Analogous

to the definition of Laplacian matrix of a graph, Cai et al. [4] called the matrix S̃L(
−→
G) =

D̃(
−→
G)−S(

−→
G), where D̃(

−→
G) = D+(

−→
G)−D−(

−→
G), as the skew Laplacian matrix of the digraph
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−→
G . Clearly the matrix S̃L(

−→
G) is not symmetric and so its eigenvalues need not be real.

The characteristic polynomial

Psl(
−→
G, x) = xn + a1x

n−1 + a2x
n−2 + · · ·+ an,

of the matrix S̃L(
−→
G) is called the skew Laplacian characteristic polynomial of the digraph

−→
G .

The zeros of the polynomial Psl(
−→
G, x), that is, the eigenvalues of the matrix S̃L(

−→
G) are the

skew Laplacian eigenvalues of the digraph
−→
G and are denoted by ν1, ν2, . . . , νn. The skew

Laplacian spectrum of the digraph
−→
G is denoted by Spectsl(

−→
G). The sign of the even cycle

Ck = u1u2 . . . uku1, denoted by sgn(Ck), is defined as sgn(Ck) = s12s23 . . . sk−1ksk1. An
even oriented cycle Ck is called evenly-oriented (oddly-oriented) if its sign is positive (ne-
gative). If every even cycle in

−→
G is evenly-oriented,

−→
G is called evenly-oriented. An even

oriented cycle C2k is said to be uniformly oriented if sgn(C2k) = (−1)k. The following
observations are immediate from the definition of S̃L.

Theorem 1.1. [4]

(i) If ν1, ν2, . . . , νn are the eigenvalues of S̃L(
−→
G), then

n∑
i=1

νi = 0.

(ii) 0 is an eigenvalue of S̃L(
−→
G) with multiplicity at least p, where p is the number of compo-

nents of
−→
G with all ones vector (1, 1, . . . , 1) as the corresponding eigenvector.

(iii) If Psl(
−→
G, x) = xn +

n∑
i=1

aix
n−i is the skew Laplacian characteristic polynomial of the

digraph
−→
G , then a1 = 0, a2 = m+

∑
i<j

(d+i − d
−
i )(d+j − d

−
j ), an = 0.

Evidently a good amount of research work has been done on spectral theory of skew
matrices of oriented graphs, see [16], but the work on the skew Laplacian spectrum of
a digraph

−→
G has been recently started and it will be of interest to develop the theory in

this direction. For some recent work, see [10, 12] and the references therein. Although the
skew Laplacian matrix of a digraph was so defined that it uses the structure of the digraph
and at the same time enjoys the same characteristics as possessed by the Laplacian matrix
of a graph, it seems that the definition of S̃L uses the structure of the digraph, but not all
the properties of L(G) are possessed by S̃L. It is well-known that 0 is an eigenvalue of
L(G) with multiplicity equal to the number of components of G. In fact, the eigenvalue 0
in the spectrum of L(G) decides the connectedness of the graph G. This need not be true
for the matrix S̃L, as is clear from the following observation, the proof of which follows
from Theorem 2.1 in [27].

Theorem 1.2. Let G be a bipartite graph and let
−→
G be the corresponding digraph of G. If

−→
G is an

Eulerian digraph such that each even cycle of G is oriented uniformly in
−→
G , then the multiplicity

of 0 in the spectrum of S̃L is same as the multiplicity of 0 in the spectrum of A(G).

As usual, we denote the complete graph on n vertices by Kn, the complete bipartite
graph on s + t vertices by Ks,t, the cycle on n vertices by Cn. For other undefined nota-
tions and terminology from graphs and spectral graph theory, the readers are referred to
[6, 22]. Let Kr,s be the complete bipartite graph with both r and s even. Orient the edges
of Kr,s in such a way that in the resulting digraph

−→
G all the even cycles are oriented uni-

formly. Since 0 is an adjacency eigenvalue of Kr,s of multiplicity r + s− 2, from Theorem
1.2, it follows that 0 is the skew Laplacian eigenvalue of

−→
G of multiplicity r + s− 2.
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2. Skew Laplacian spectrum of an oriented graph

Let S̃L be the skew Laplacian matrix of the digraph
−→
G . If we reverse the direction

of all the edges of
−→
G , we obtain a new digraph

←−
G , which we call the converse digraph of

−→
G . Clearly −S̃L is the skew Laplacian matrix of

←−
G . Therefore, we have the following

observation.

Theorem 2.3. If
←−
G is the converse digraph of the digraph

−→
G , then Spectsl(

←−
G) = −Spectsl(

−→
G).

Let
−→
H be an induced subdigraph of

−→
G corresponding to the induced subgraph H of G

and let
−→
H ∗ =

−→
H ∪ (n− n(H))K1, that is,

−→
H together with n− n(H) isolated vertices. Let

−→
G −E(

−→
H ) be the subdigraph obtained by removing the arcs of

−→
H in

−→
G and

−→
G −
−→
H be the

subdigraph obtained by deleting the vertices of
−→
H and the arcs incident at the vertices of

−→
H . With out loss of generality, we can choose a labelling of the vertices of

−→
G , so that

S(
−→
G) =

(
S(
−→
H ∗) X

−Xt S(
−→
G −

−→
H )

)
= S(

−→
H ∗) + S(

−→
G − E(

−→
H )),

and D̃(
−→
G) = D̃(

−→
H ∗) + D̃(

−→
G − E(

−→
H )),

where X corresponds to the arcs connecting
−→
H and

−→
G −

−→
H . Therefore,

S̃L(
−→
G) = D̃ − S(

−→
G) =

(
D̃(
−→
H ∗)− S(

−→
H ∗)

)
+
(
D̃(
−→
G − E(

−→
H ))− S(

−→
G − E(

−→
H ))

)
.

Suppose both
−→
H and

−→
G −

−→
H are Eulerian subdigraphs of

−→
G . Let

−→
G1 be the digraph

obtained from
−→
G by reversing the direction of all the arcs in

−→
H and keeping the other arcs

unchanged. We have

S̃L(
−→
G1) =

(
D̃(
←−
H ∗)− S(

←−
H ∗)

)
+
(
D̃(
−→
G − E(

−→
H ))− S(

−→
G − E(

−→
H )
)

=
(
D̃(
−→
H ∗) + S(

−→
H ∗)

)
+
(
D̃(
−→
G − E(

−→
H ))− S(

−→
G − E(

−→
H ))

)
,

as −S(
−→
H ∗) = S(

←−
H ∗) and D̃(

←−
H ∗) = D̃(

−→
H ∗). The last equality is due to the fact that the

only non-zero contribution to the (i, i)th element d+i − d
−
i of the matrix D̃(

−→
H ∗) is due to

the arcs connecting the vertices in
−→
H and

−→
G −

−→
H . Let

−→
G2 be the digraph obtained from

−→
G by reversing the direction of all arcs in

−→
G − E(

−→
H ) and keeping other arcs unchanged.

Since −S(
−→
G − E(

−→
H )) = S(

←−
G − E(

←−
H )) and the only non-zero contribution to the (i, i)th

element d+i − d
−
i of the matrix D̃(

−→
G − E(

−→
H )) is due to the arcs connecting the vertices in

−→
H and

−→
G −

−→
H , it follows that

S̃L(
−→
G2) =

(
− D̃(

−→
H ∗)− S(

−→
H ∗)

)
+
(
D̃(
←−
G − E(

←−
H ))− S(

←−
G − E(

←−
H )
)

=
(
− D̃(

−→
H ∗)− S(

−→
H ∗)

)
+
(
− D̃(

−→
G − E(

−→
H )) + S(

−→
G − E(

−→
H ))

)
= −

[(
D̃(
−→
H ∗) + S(

−→
H ∗)

)
+
(
D̃(
−→
G − E(

−→
H ))− S(

−→
G − E(

−→
H ))

)]
= −S̃L(

−→
G1).

Therefore, it follows that the skew Laplacian spectrum of
−→
G2 is negative of the skew

Laplacian spectrum of
−→
G1.

Again, if both
−→
H and

−→
G −

−→
H are Eulerian subdigraphs of

−→
G , and

−→
G3 is the digraph
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obtained from
−→
G by reversing the direction of the arcs having one end in

−→
H and other

end in
−→
G −

−→
H , then proceeding similarly as above, it can seen that S̃L(

−→
G3) = −S̃L(

−→
G4),

where
−→
G4 is the digraph obtained from

−→
G by reversing the direction of arcs in both

−→
H and

−→
G −

−→
H and keeping other arcs unchanged. From this, it follows that the skew Laplacian

spectrum of
−→
G4 is negative of the skew Laplacian spectrum of

−→
G3. Thus, we have proved

the following.

Theorem 2.4. Let
−→
G be an orientation of a graph G and let

−→
H be an induced subdigraph of

−→
G

corresponding to the subgraph H of G. If the subdigraphs
−→
H and

−→
G −

−→
H of

−→
G are Eulerian, then

(i) Spectsl(
−→
G1) = −Spectsl(

−→
G2), (ii) Spectsl(

−→
G3) = − Spectsl(

−→
G4),

where
−→
G1,

−→
G2,

−→
G3 and

−→
G4 are the digraphs defined above.

If
−→
G is itself an Eulerian digraph, the conclusion of Theorem 2.4 holds for all induced

subdigraphs. A subset W of the vertex set V (
−→
G) is said to be independent if the induced

subdigraph 〈W 〉 is an empty digraph. In other words, W is an independent subset of
V (
−→
G) if the vertices in W are mutually non-adjacent. We have the following observation.

Theorem 2.5. Let
−→
G be an orientation of a graph G and let

−→
H be an induced subdigraph of

−→
G

corresponding to the subgraphH ofG. If the subdigraph
−→
H is Eulerian and the subdigraph

−→
G−
−→
H

is independent, then

(i) Spectsl(
−→
G1) = −Spectsl(

−→
G2), (ii) Spectsl(

−→
G3) = −Spectsl(

−→
G4),

where
−→
G1,

−→
G2,

−→
G3 and

−→
G4 are the digraphs defined as above.

The skew Laplacian spectral radius of the digraph
−→
G is denoted by ρsl(

−→
G) and is defi-

ned as
ρsl(
−→
G) = max

i
{|νi| : i = 1, 2, . . . , n}.

The singular values of a square matrix X of order n are defined as the positive square
roots of the eigenvalues of the matrix X∗X . If σ1 ≥ σ2 ≥ · · · ≥ σn are the singular values
and |λ1| ≥ |λ2| ≥ · · · ≥ |λn| are the absolute values of the eigenvalues of X , then it is well
known [15] that |λ1| ≤ σ1, with equality if and only if X is a normal matrix (a matrix X
is said to be normal if XX∗ = X∗X). This observation implies that any upper bound for
the largest singular value σ1 gives an upper bound for the spectral radius.

In this paper, we obtain upper bounds for the skew Laplacian spectral radius of
−→
G

in terms of various parameters associated with the structure of the digraph
−→
G and the

underlying graph G. The spectral radius of the matrices has been discussed in general for
all matrices real or complex. But when restricted to a special kind of a matrix associated
to a graph or a digraph, it is always interesting to find estimates for the spectral radius in
terms of the structure of the graph or the digraph. Also, when restricted to a particular
class of graphs or digraphs, it is of interest to characterize the graphs or digraphs which
attain the extremal values in that class. A reasonable amount of work has been done
in these directions and various research articles can be found in the literature regarding
the spectral radius of a graph with respect to different matrices, like adjacency matrix
A(G), Laplacian matrix L(G), signless Laplacian matrix Q(G), distance matrix, etc, for
example, see the recent articles [3, 8, 9, 11, 21]. Similarly, various papers can be found in
the literature regarding the spectral radius of a digraph with respect to different matrices
like adjacency matrix A(

−→
G), Laplacian matrix L(

−→
G), skew matrix S(

−→
G), etc, associated
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to the digraph
−→
G . Here, we consider spectral radius of the digraph

−→
G with respect to its

skew Laplacian matrix S̃L(
−→
G). The following observation is due to Perron and Frobenius

[15].

Lemma 2.1. Let S = (sij) be a complex matrix and X be an irreducible matrix of the same order.
Let |S| denote the matrix whose (i, j)-entry is |sij |. If |S| ≤ X and S has t as an eigenvalue, then
|t| ≤ λ1(X). If the equality holds, then |S| = X , and there is a diagonal matrix E with diagonal
entries of absolute value 1 and a constant c of absolute value 1, such that S = cEXE−1.

Now, we obtain an upper bound for ρsl(
−→
G) in terms of the adjacency spectral radius

and signless Laplacian spectral radius of the underlying graph G.

Theorem 2.6. Let
−→
G be an orientation of a connected graph G of order n and let ρsl(

−→
G) be the

skew Laplacian spectral radius of
−→
G . Let λ1 and q1 be respectively the largest adjacency eigenvalue

and the largest signless Laplacian eigenvalue of the graph G. Then

ρsl(
−→
G) ≤

{
λ1, if

−→
G is Eulerian

q1, if
−→
G is non-Eulerian.

If
−→
G is Eulerian, equality occurs if and only if G is a bipartite graph such that each even cycle of

G is oriented uniformly in
−→
G .

Proof. Let G be a connected graph of order n and let
−→
G be an orientation of G. Further, let

Q(G) = L(G) + A(G) be the signless Laplacian matrix of the graph G and let S̃L(
−→
G) be

the skew Laplacian matrix of the digraph
−→
G . With out loss of generality, suppose that the

vertices of
−→
G andG are labelled in the same order. If

−→
G is Eulerian, then S̃L(

−→
G) = −S(

−→
G)

and so |S̃L(
−→
G)| = |−S(G)| = A(G). Since the matrixA(G) is irreducible, by Lemma 2.1, it

follows that ρsl(
−→
G) ≤ λ1. On the other hand, if

−→
G is non-Eulerian, then for any orientation

−→
G ofG, we always have |S̃L(

−→
G)| ≤ Q(G). Since the matrixQ(G) is irreducible, by Lemma

2.1, it follows that ρsl(
−→
G) ≤ q1.

If
−→
G is Eulerian, then S̃L(

−→
G) = −S(

−→
G) and so by Theorem 2.1 of [27] equality occurs

if and only if G is a bipartite graph such that each even cycle of G is oriented uniformly
in
−→
G . On the other hand if

−→
G is non-Eulerian, then G is either a bipartite graph or a non-

bipartite graph. If G is a non-bipartite graph, the equality can never occur. This is due to
the fact that for non-bipartite graphs the smallest eigenvalue for the matrix Q(G) and so
for the matrix cEQ(G)E−1 is positive while as the smallest eigenvalue of S̃L(

−→
G) is always

zero. So, assume that G is a bipartite graph and
−→
G is a non-Eulerian graph. Let (V1, V2)

be the bipartition of the vertex set V (G) of the graph G. If we choose an orientation
−→
G

such that all the arcs are directed from V1 to V2, then with out loss of generality we can

label the vertices of
−→
G so that its skew Laplacian matrix is S̃L(

−→
G) =

(
D1 −X
Xt −D2

)
, where

D̃ =

(
D1 0
0 −D2

)
and S(G) =

(
0 X
−Xt 0

)
. Clearly |S̃L| = Q(G), but equality can not

occur in this case. If E = diag(α1, α2, . . . , αn), |αi| = 1, Q(G) = (qij), S̃L(
−→
G) = (sij),

it can be seen that cEQ(G)E−1 = S̃L(
−→
G) gives cαiα−1j aij = sij , for all i, j = 1, 2, . . . , n.

Since aii 6= 0 and sii 6= 0, there is no such c, |c| = 1, for which this equality occurs. This
completes the proof. �
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Remark 2.1. From Theorem 2.6, we observe that if the orientation
−→
G is an Eulerian di-

graph, then any upper bound for λ1(G) gives an upper bound for ρsl(
−→
G) and if the

orientation
−→
G is a non-Eulerian digraph, then any upper bound for q1(G) gives an up-

per bound for ρsl(
−→
G). For example, if the digraph

−→
G of the graph G is Eulerian, then

ρsl(
−→
G) ≤ ∆ = maxi{d+i + d−i }, this is because λ1(G) ≤ ∆. If

−→
G is a non-Eulerian digraph,

then ρsl(
−→
G) ≤ maxvi∼vj{di + dj}, because q1(G) ≤ maxvi∼vj{di + dj}.

The following observation is immediate from Theorem 2.6.

Corollary 2.1. Among all the Eulerian digraphs, the bipartite Eulerian digraphs with each even
cycle of G oriented uniformly in

−→
G has the maximum skew Laplacian spectral radius.

For Eulerian digraphs
−→
G , since the skew Laplacian spectral radius ρsl(

−→
G) and skew

spectral radius ρs(
−→
G) are same, we have the following observation, the proof of which

follows from Theorem 2.1 of [27] and Corollary 2.1.

Corollary 2.2. Among all the bipartite Eulerian digraphs, the complete bipartite digraph with
partite sets of even cardinality and with each even cycle oriented uniformly has the maximum skew
Laplacian spectral radius.

It will be interesting to determine the oriented graphs among the oriented trees, orien-
ted unicyclic graphs, oriented bicyclic graphs, oriented non-Eulerian graphs, etc, which
attain the extremal values for the skew Laplacian spectral radius. Now, we obtain an up-
per bound for ρsl(

−→
G) in terms of the out-degree d+i and in-degree d−i of the vertex vi of

the digraph
−→
G .

Theorem 2.7. Let ρsl(
−→
G) be the skew Laplacian spectral radius of the digraph

−→
G . If d+i and d−i

are the out and in-degrees of the vertices of
−→
G , then

ρsl(
−→
G) ≤ max

i
{|d+i − d

−
i |+ di}.

If
−→
G is Eulerian, equality occurs if and only if G is a regular bipartite graph such that each even

cycle of G is oriented uniformly in
−→
G .

Proof. It is well known [15] that the spectral radius ρ(X) of an n × n matrix X = (xij)
always satisfies

ρ(X) ≤ min
i
{Ri, Ci},

where

Ri = max
i
{
n∑
k=1

|xik| : 1 ≤ i ≤ n}

and

Ci = max
i
{
n∑
k=1

|xki| : 1 ≤ i ≤ n}.

Taking X = S̃L(
−→
G) and using the fact that Ri = Ci = maxi{|d+i − d

−
i | + di}, the result

follows. By Theorem 2.6, ρsl(
−→
G) = λ1, where λ1 is the adjacency spectral radius of G, if

and only if G is a bipartite graph such that each even cycle of G is oriented uniformly in
−→
G . The result now follows by using the fact that the adjacency matrix of G is irreducible
and non-negative. �
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If ρs(
−→
G) is the skew spectral radius of the digraph

−→
G , we have the following observa-

tion, the proof of which is similar to that of Theorem 2.7.

Theorem 2.8. Let ρs(
−→
G) be the skew spectral of the digraph

−→
G . If d+i and d−i , are the out and

in-degrees of the vertices of
−→
G , then

ρs(
−→
G) ≤ max

i
{di}.

Equality occurs if and only if G is a regular bipartite graph such that each even cycle of G is
oriented uniformly in

−→
G .

For each vertex vi ∈ V (
−→
G), let αi = d+i − d

−
i be its oriented degree. Let ti be the sum

of the absolute values of the oriented degrees of the vertices which are adjacent to vi, that
is, ti =

∑
vj ,vivj∈E(G) |αj |. We call ti the 2-oriented degree and m(vi) = ti

|αi| as the average

oriented degree of the vertex vi. Let m+(vi) =
t+i
d+i

, where t+i =
∑
vj ,vivj∈E(G) d

+
j , be the

average positive degree of the vertex vi. The next result gives an upper bound for ρsl(
−→
G)

in terms of oriented degrees αi and the average oriented degrees m(vi) of the vertices of
the digraph

−→
G .

Theorem 2.9. Let
−→
G be an orientation of a connected graph G. If αi is the oriented degree and

m(vi) is the average oriented degree of the vertex vi, then

ρsl(
−→
G) ≤

 maxi{|αi|+m(vi)}, if αi 6= 0, for all i
maxi{δki }, if αi = 0, for 1 ≤ i ≤ k
maxi{δi}, if αi = 0, for 1 ≤ i ≤ n,

where for 1 ≤ i ≤ k, we have

δki =
∑

vj , vivj∈E(G)
j≤k

β−1i βj +
∑

vj , vivj∈E(G)
j≥k+1

β−1i |αj |,

and for k + 1 ≤ i ≤ n, we have

δki =
∑

vj , vivj∈E(G)
j≤k

βj |α−1i |+
∑

vj , vivj∈E(G)
j≥k+1

|α−1i αj |+ |αi|

and
δi =

∑
vj ,vivj∈E(G)

β−1i βj .

If
−→
G is Eulerian, equality occurs if and only if G is a regular bipartite graph such that each even

cycle of G is oriented uniformly in
−→
G .

Proof. Let G be a connected graph of order n having m edges and let
−→
G be an orientation

of G. First suppose that the oriented degrees αi of each of the vertices vi of the orienta-
tion

−→
G are non-zero. If D̃ = diag(α1, α2, . . . , αn), then D̃−1 = diag(α−11 , α−12 , . . . , α−1n )

exists. Consider the matrix D̃−1S̃LD̃. It is easy to see that the (i, i)th entry of this matrix
is αi = d+i − d−i and the (i, j)th entry is (d+i − d−i )−1(d+j − d−j )sij , where sij = −1 or
0 or −1. Using the fact that the matrices S̃L and D̃−1S̃LD̃ are similar, it follows that
ρsl(
−→
G) = ρ(D̃−1S̃LD̃). Now, proceeding similarly as in Theorem 2.7, and by taking

X = D̃−1S̃LD̃, the result follows in this case.
Let some k, 1 ≤ k ≤ n − 1, vertices of

−→
G have oriented degree zero. Without loss of
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generality, suppose these vertices are v1, v2, . . . , vk. Label the vertices of
−→
G in such a way

that the first k rows and columns of the matrix S̃L correspond to the vertices v1, v2, . . . , vk.
Let D1 = diag(β1, β2, . . . , βk, αk+1, . . . , αn), where βi = mini{d+i , d

−
i }. Clearly, the matrix

D̃−1 = diag(β−11 , β−12 , . . . , β−1k , α−1k+1, . . . , α
−1
n ) exists. Consider the matrix D−11 S̃LD1. It is

easy to see that the (i, i)th entry of this matrix is equal to 0, for 1 ≤ i ≤ k, and equal to
αi = d+i − d

−
i , for k + 1 ≤ i ≤ n. Also, for 1 ≤ i ≤ k, its (i, j)th entry is equal to β−1i βj , for

1 ≤ j ≤ k and equal to β−1i (d+j − d
−
j )sij , for k+ 1 ≤ j ≤ n; and for k+ 1 ≤ i ≤ n its (i, j)th

entry is equal to βi(d+j −d
−
j )−1sij , for 1 ≤ j ≤ k and equal to (d+i −d

−
i )−1(d+j −d

−
j )sij , for

k + 1 ≤ j ≤ n, where sij = −1 or 0 or 1. Since the matrices S̃L and D−11 S̃LD1 are similar,
the result follows by taking X = D̃−1S̃LD̃, in Theorem 2.7.

Lastly, we suppose that the oriented degrees of all the vertices of
−→
G are zero. Let

D2 = diag(β1, β2, . . . , βn). Clearly, the matrix D̃−1 = diag(β−11 , β−12 , . . . , β−1n ) exists. Now,
consider the matrix D−12 S̃LD2 and proceeding similarly as above, it can be seen that the
result follows in this case as well. If λ1 is the adjacency spectral radius of G, then as
shown in Theorem 2.6, ρsl(

−→
G) = λ1, if and only if G is a bipartite graph such that each

even cycle of G is oriented uniformly in
−→
G . Therefore, if G is a regular graph, equality

follows by using the fact that the adjacency matrix of G is irreducible and non-negative.
This completes the proof. �

Proceeding similarly as in Theorem 2.9, we obtain the following upper bound for the
skew spectral radius ρs(

−→
G) of the digraph

−→
G .

Theorem 2.10. Let
−→
G be an orientation of a connected graph G. Then

ρs(
−→
G) ≤ max

i
{

∑
vj ,vivj∈E(G)

β−1i βj},

where βi = mini{d+i , d
−
i }, if d+i d

−
i 6= 0 and βi = maxi{d+i , d

−
i }, if d+i d

−
i = 0. Equality occurs

if and only if G is a regular bipartite graph such that each even cycle of G is oriented uniformly in
−→
G .

The following observation can be found in [15].

Lemma 2.2. Let A and B be square complex matrices of order n with singular values

σ1(A) ≥ · · · ≥ σn(A)

and
σ1(B) ≥ · · · ≥ σn(B).

Then

σi+j−1(A+B) ≤ σi(A) + σj(B),(2.1)

where
σ1(A+B) ≥ · · · ≥ σn(A+B)

are the singular values of A+B.

The following result gives a relation between ρsl(
−→
G) and ρs(

−→
G) for a digraph

−→
G .

Theorem 2.11. Let ρsl(
−→
G) and ρs(

−→
G) be respectively, the skew Laplacian spectral radius and the

skew spectral radius of the digraph
−→
G . Then

ρsl(
−→
G) ≤ max

i
{|d+i − d

−
i |}+ ρs(

−→
G),
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with equality if
−→
G is Eulerian.

Proof. Let G be a connected graph of order n having m edges and let
−→
G be an orientation

of G. Since S̃L(
−→
G) = D̃ − S(

−→
G), from Lemma 2.2, it follows that

σ1(S̃L) ≤ σ1(D̃) + σ1(S(
−→
G)).(2.2)

For any complex matrix X , it is well known [15], that the spectral radius ρ(X) satisfies

ρ(X) ≤ σ1(X),

with equality if and only if X is a normal matrix. Since the matrices D̃ and S(
−→
G) are

normal, from (1), it follows that

ρ(S̃L) ≤ σ1(S̃L) ≤ ρ(D̃) + ρ(S(
−→
G)),

which implies that
ρsl(
−→
G) ≤ max

i
{|d+i − d

−
i |}+ ρs(

−→
G).

If
−→
G is an Eulerian digraph, then D̃ = 0 and so

S̃L(
−→
G) = −S(

−→
G).

Therefore equality occurs in this case. �

Remark 2.2. If
−→
G is an Eulerian digraph, the upper bound given by Theorem 2.11, beco-

mes ρsl(
−→
G) ≤ ρs(

−→
G). Since ρs(

−→
G) ≤ λ1, for Eulerian digraphs, it follows that the upper

bound given by Theorem 2.11 is better than the upper bound given by Theorem 2.6.
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