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Some new types multivalued F -contractions on quasi
metric spaces and their fixed points

HATICE ASLAN HANÇER, MURAT OLGUN and ISHAK ALTUN

ABSTRACT. In this paper we present two new results for the existence of fixed points of multivalued map-
pings with closed values on quasi metric space. First we introduce the multivalued Fd-contraction on quasi
metric space (X, d) and give a fixed point result related to this concept. Then taking into account theQ-function
on a quasi metric space, we establish a Q-function version of this concept as multivalued Fq-contraction and
hence we present a fixed point result to see the effect of Q-function to existence of fixed point of multivalued
mappings on quasi metric space.

1. INTRODUCTION

Fundamentally, fixed point theory divides into three major subject which are topologi-
cal, discrete and metric. Especially, it has been intensively improving on the metric case
because of useful to applications. In general, metrical fixed point theory is related to con-
tractive type mappings and it has been developed either taking into account the new type
contractions or playing the structure of the space such as fuzzy metric space, quasi metric
space, metric like space etc. A quasi metric space plays a crucial role in some fields of
theoretical computer service, asymmetric functional analysis and approximation theory.
Now, we will recall some basic concepts of quasi metric space.

In quasi metric spaces there are many different types of Cauchyness, yielding even
more notions of completeness. Another difference comes from the fact that, in contrast to
the metric case, in a quasi metric space a convergent sequence could not be Cauchy (see
[4] for examples confirming this situation).

Let X be nonempty set and d : X × X → R+ be a function. Consider the following
conditions on d, for all x, y, z ∈ X :

(qm1) d(x, x) = 0,
(qm2) d(x, y) ≤ d(x, z) + d(z, y),
(qm3) d(x, y) = d(y, x) = 0⇒ x = y,
(qm4) d(x, y) = 0⇒ x = y.

If the function d satisfies conditions (qm1) and (qm2) then d is said to be a quasi-pseudo
metric on X. Further, if a quasi-pseudo metric d satisfies condition (qm3), then d is said to
be a quasi metric on X , and if a quasi metric d satisfies condition (qm4), then d is said to
be a T1-quasi metric on X. In this case, the pair (X, d) is said to be a quasi-pseudo (resp.
a quasi, a T1-quasi) metric space. It is clear that every metric space is a T1-quasi metric
space, but the converse may not be true.

Let (X, d) be a quasi-pseudo metric space. Given a point x0 ∈ X and a real constant
ε > 0, the set

Bd(x0, ε) = {y ∈ X : d(x0, y) < ε}
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is called open ball with center x0 and radius ε. Each quasi-pseudo metric d onX generates
a topology τd onX which has a base the family of open balls {Bd(x, ε) : x ∈ X and ε > 0}.
If d is a quasi metric on X , then τd is a T0 topology, and if d is a T1-quasi metric, then τd is
a T1 topology on X .

If d is a quasi-pseudo metric on X , then the function d−1 defined by

d−1(x, y) = d(y, x)

is a quasi-pseudo metric on X and

ds(x, y) = max
{
d(x, y), d−1(x, y)

}
is a quasi metric. If d is a quasi metric, then d−1 is also a quasi metric, and ds is a metric on
X . The closure of a subset A of X with respect to τd, τd−1 and τds are denoted by cld(A),
cld−1(A) and clds(A). It is clear that clds(A) ⊆ cld(A). We will call a subset A of X as
τd-closed (τd-compact) if it is closed (compact) with respect to τd.

Let (X, d) be a quasi metric space, A a nonempty subset of X and x ∈ X . Then

x ∈ cldA⇔ d(x,A) := inf{d(x, a) : a ∈ A} = 0.

Similarly,
x ∈ cld−1A⇔ d(A, x) := inf{d(a, x) : a ∈ A} = 0.

It is well known that if (X, d) is a metric space and A is a compact subset of X , then for
each x ∈ X, there is a ∈ A such that d(x, a) = d(x,A). However, if (X, d) is a quasi
metric space (even if it is a T1-quasi metric space), this property is not satisfied. (See [4]).
Additionally, if A is a τd−1 -compact subset of a quasi metric space (X, d), then for each
x ∈ X, there is a ∈ A such that d(x, a) = d(x,A). The convergence of a sequence {xn} to

x with respect to τd called d-convergence and denoted by xn
d→ x, is defined

xn
d→ x⇔ d(x, xn)→ 0.

Similarly, the convergence of a sequence {xn} to xwith respect to τd−1 called d−1-convergence

and denoted by xn
d−1

→ x, is defined

xn
d−1

→ x⇔ d(xn, x)→ 0.

Finally, the convergence of a sequence {xn} to x with respect to τds called ds-convergence

and denoted by xn
ds→ x, is defined

xn
ds→ x⇔ ds(xn, x)→ 0.

It is clear that xn
ds→ x⇔ xn

d→ x and xn
d−1

→ x. More and detailed information about some
important properties of quasi metric spaces and their topological structures can be found
in [12, 16, 17, 18].

Definition 1.1 ([23]). Let (X, d) be a quasi metric space. A sequence {xn} in X is called
• left K-Cauchy (or forward Cauchy) if for every ε > 0, there exists n0 ∈ N such

that
∀n, k, n ≥ k ≥ n0, d(xk, xn) < ε,

• right K-Cauchy (or backward Cauchy) if for every ε > 0, there exists n0 ∈ N such
that

∀n, k, n ≥ k ≥ n0, d(xn, xk) < ε,

• ds-Cauchy if for every ε > 0, there exists n0 ∈ N such that

∀n, k ≥ n0, d(xn, xk) < ε.
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If a sequence is left K-Cauchy with respect to d, then it is right K-Cauchy with respect
to d−1. A sequence is ds-Cauchy if and only if it is both leftK-Cauchy and rightK-Cauchy.
Let {xn} be a sequence in a quasi metric space (X, d) such that

∞∑
n=1

d(xn, xn+1) <∞,

then it is left K-Cauchy sequence (see [12]).
It is well known that a metric space is said to be complete if every Cauchy sequence

is convergent. The completeness of a quasi metric space, however, can not be uniquely
defined. Taking into account the convergence and the Cauchyness of sequences in a quasi
metric space, one obtains several notions of completeness, most of them being already
available in the literature (see [1, 11, 12, 17, 23]) with different notations. It can be found a
detailed classification, some important properties and relations for completeness of quasi
metric spaces in [4]

Definition 1.2. Let (X, d) be a quasi metric space. Then (X, d) is said to be
• left (right) K-complete if every left (right) K-Cauchy sequence is d-convergent,
• left (right) M -complete if every left (right) K-Cauchy sequence is d−1-convergent,
• left (right) Smyth complete if every left (right)K-Cauchy sequence is ds-convergent.

Remark 1.1. It is clear that a quasi metric space (X, d) is left M -complete if and only if
(X, d−1) is right K-complete. Also, a quasi metric space (X, d) is right M -complete if and
only if (X, d−1) is left K-complete.

In [2, 19, 20], considering some contractive conditions with respect to q-function, which
is introduced by Al-Hamidan et al. [2], the authors proved some fixed point results on
quasi metric space. As understood from the recent papers [2, 19, 20, 21] it is more suitable
using the w-distance or Q-function (a slight generalization of w-distance) instead of the
quasi metric d in contractive condition.

A Q-function on a quasi metric space (X, d) is a function q : X ×X → [0,∞) satisfying
the following conditions:
(Q1) q(x, z) ≤ q(x, y) + q(y, z) for all x, y, z ∈ X,
(Q2) if x ∈ X , M > 0 and {yn} is a sequence in X such that d−1-converges to a point

y ∈ X and satisfies q(x, yn) ≤M for all n ∈ N, then q(x, y) ≤M,
(Q3) for each ε > 0 there exists δ > 0 such that q(x, y) ≤ δ and q(x, z) ≤ δ imply

d(y, z) ≤ ε (and so ds(y, z) ≤ ε).
Note that, if q(x, y) = 0 and q(x, z) = 0, then y = z. It is clear that if (X, d) is a metric

space then d is a Q-function on (X, d). However, as it can be seen in [2], if d is a quasi
metric, then d may not be a Q-function on (X, d).

On the other hand, the following family of functions, introduced by Wardowski [26],
has been thought recently to give more general contractive condition for fixed point the-
ory on metric spaces:

Let F be the family of all functions F : (0,∞)→ R satisfying the following conditions:
(F1) F is strictly increasing, i.e., for all α, β ∈ (0,∞) such that α < β, F (α) < F (β),
(F2) For each sequence {an} of positive numbers limn→∞ an = 0 if and only if

lim
n→∞

F (an) = −∞

(F3) There exists k ∈ (0, 1) such that

lim
α→0+

αkF (α) = 0.
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Many authors have extended fixed point results on metric space by considering the
family F . For instance, by inspiration the recent papers as [3, 10], some fixed point results
for multivalued mappings which are compact set valued on metric space have been obtai-
ned in [6, 7, 8, 9, 13, 24, 25]. Furthermore, in the same papers some fixed point results for
multivalued mappings with closed values defined on a metric space have been obtained
by adding the following condition:

(F4) F (inf A) = inf F (A) for all A ⊂ (0,∞) with inf A > 0.
We denote by F∗ the set of all functions F satisfying (F1)-(F4).
Dağ et al. [14] proved the quasi metric versions of Theorem 5 and Theorem 6 of [22] and

their results also includes the quasi metric version of Feng-Liu’s [15] fixed point theorem.
For the sake of completeness we recall the following: Let (X, d) be a quasi metric space.

P(X) denotes the family of all nonempty subsets ofX, Cd(X) denotes the family of all no-
nempty, τd-closed subsets ofX andKd(X) denotes the family of all nonempty τd-compact
subsets ofX . We will say that a nonempty subsetA ofX is d-proximinal set if for all x ∈ X
there exists a ∈ A such that d(x,A) = d(x, a). We indicate the family of all d-proximinal
subsets of X by Ad(X).

If (X, d) is a metric space, then it is clear that Kd(X) ⊆ Ad(X) ⊆ Cd(X). However,
if (X, d) is a quasi metric space, then each one of these classes is independent from each
other. However, although there is no connection between these classes on quasi metric
space, if (X, d) is a T1-quasi metric space, then Ad(X) ⊆ Cd(X) (see [5, 14] for more de-
tails). Let T : X → P(X) be a multivalued mapping, F ∈ F and σ ≥ 0. For x ∈ X with
d(x, Tx) > 0, define the set F xσ ⊆ X as

F xσ = {y ∈ Tx : F (d(x, y)) ≤ F (d(x, Tx)) + σ}.

Theorem 1.1 ([14]). Let (X, d) be a left K-complete quasi metric space, T : X → Cd(X) be
a multivalued mapping and F ∈ F∗. If there exists τ > 0 such that for any x ∈ X with
d(x, Tx) > 0, there exists y ∈ F xσ satisfying

τ + F (d(y, Ty)) ≤ F (d(x, y)),

then T has a fixed point in X provided σ < τ and x → d(x, Tx) is lower semi-continuous with
respect to τd.

Theorem 1.2 ([14]). Let (X, d) be a left M -complete quasi metric space, T : X → Cd(X) be a
multivalued mapping and F ∈ F∗. If there exists τ > 0 such that for any x ∈ X with d(x, Tx) >
0, there exists y ∈ F xσ satisfying

τ + F (d(y, Ty)) ≤ F (d(x, y)),

then T has a fixed point in X provided σ < τ and x → d(x, Tx) is lower semi-continuous with
respect to τd−1 .

In the same study, taking into account the class of Ad(X) instead of Cd(X), Dağ et al.
[14] removed the condition (F4) on F and presented two fixed point results. However,
they need the space to be a T1-quasi metric space.

In this paper, we introduce two new type multivalued contractions, called multivalued
Fd-contraction and multivalued Fq-contraction, on quasi metric space. Then taking into
account multivalued Fd-contraction, we present a fixed point result different from The-
orem 1.1 for multivalued mappings with closed values by omitting the condition (F4).
However, we still need the distance d to be a T1-quasi metric. To overcome this situation,
we consider the multivalued Fq-contraction and provide a new result for multivalued
mappings with closed values on quasi metric space.
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2. MAIN RESULTS

First we introduce the new contractions, which are mentioned above, for multivalued
mappings on quasi metric space.

Definition 2.3. Let (X, d) be a quasi metric space, T : X → P(X) and F ∈ F . Then T
is said to be multivalued Fd-contraction if there exists τ > 0 such that for each x, y ∈ X
with d(x, y) > 0 and for each u ∈ Tx, there exists v ∈ Ty satisfying either d(u, v) = 0 or
d(u, v) > 0 such that

τ + F (d(u, v)) ≤ F (d(x, y)).

Definition 2.4. Let q be a Q-function on quasi metric space (X, d), T : X → P(X) and
F ∈ F . Then T is said to be multivalued Fq-contraction if for all x, y ∈ X the following
conditions hold:

(i) q(x, y) = 0 implies qT (x, y) = 0, where

qT (x, y) = inf{q(x, u) : u ∈ Ty},

(ii) q(x, y) > 0 implies there exists τ > 0 such that for each u ∈ Tx, there exists v ∈ Ty
satisfying either q(u, v) = 0 or q(u, v) > 0 such that

τ + F (q(u, v)) ≤ F (q(x, y)).

Now we present some examples to discuss these concepts.

Example 2.1. Let X =

{
1

2n
: n ∈ N

}
∪ {0} and d(x, y) = max{y − x, 0}, then (X, d) is a

quasi metric space. Define T : X → P(X) by

Tx =



{
1

2n+1
, 1

}
, x =

1

2n{
0,

1

2

}
, x = 0

.

Then T is a multivalued Fd-contraction with F (α) = lnα and τ = ln 2. Indeed, if d(x, y) >
0, then y > x and so there are two cases:

Case 1. x = 0 and y =
1

2n
, then Tx =

{
0,

1

2

}
and Ty =

{
1

2n+1
, 1

}
. For u = 0, by

choosing v =
1

2n+1
∈ Ty, we have

τ + F (d(u, v)) = ln 2 + ln(d(0,
1

2n+1
))

= ln
1

2n
= ln(d(0,

1

2n
))

= F (d(x, y)).

For u =
1

2
, by choosing v =

1

2n+1
∈ Ty, we have d(u, v) = 0.
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Case 2. x =
1

2n
and y =

1

2m
with m < n, then Tx = { 1

2n+1
, 1} and Ty =

{
1

2m+1
, 1

}
.

Now for u =
1

2n+1
, by choosing v =

1

2m+1
∈ Ty, we have

τ + F (d(u, v)) = ln 2 + ln(d(
1

2n+1
,

1

2m+1
))

= ln d(
1

2n
,
1

2m
)

= F (d(x, y)).

For u = 1, by choosing v = 1 ∈ Ty, we have d(u, v) = 0.

Example 2.2. LetX = [0, 1], d(x, y) = |x− y| and q(x, y) = y, then (X, d) is a (quasi) metric
space and q is a Q-function on X . Define T : X → P(X) by Tx = [0, x2]. Then T is not
multivalued Fd-contraction but it is multivalued Fq-contraction with for all F ∈ F and
for all τ > 0. Indeed, consider x = 1 and y = 0, then we have T1 = [0, 1] and T0 = {0}.
Thus, for u = 1 we get d(u, v) > 0 and

τ + F (d(u, v)) = τ + F (1) > F (1) = F (d(x, y))

for all τ > 0 and for all F ∈ F . That is, T is not multivalued Fd-contraction. Now we
show T is a multivalued Fq-contraction.

(i) Since 0 ∈ Ty we have qT (x, y) = 0 for all x, y ∈ X . Therefore condition (i) of
Definition 2.4 holds.

(ii) It is obvious that q(u, v) = 0 for all x, y ∈ X and for all u ∈ Tx with v = 0 ∈ Ty.
Therefore condition (ii) of Definition 2.4 holds.

Now we give our main results.

Theorem 2.3. Let (X, d) be a left K-complete T1-quasi metric space, T : X → Cd(X) be a
multivalued mapping and F ∈ F . If T is multivalued Fd-contraction ,then T has a fixed point in
X provided that the function f(x) = d(x, Tx) is lower-semicontinuous with respect to τd.

Proof. Fix x0 ∈ X and let x1 ∈ Tx0. If d(x0, x1) = 0, then x0 is a fixed point of T . Now
assume that d(x0, x1) > 0. Since T is multivalued Fd-contraction, then there exists x2 ∈
Tx1 satisfying either d(x1, x2) = 0 or d(x1, x2) > 0 such that

τ + F (d(x1, x2)) ≤ F (d(x0, x1)).

Now, if d(x1, x2) = 0, then x1 is a fixed point of T . Assume d(x1, x2) > 0, then there
exists x3 ∈ Tx2 satisfying either d(x2, x3) = 0 or d(x2, x3) > 0 such that

τ + F (d(x2, x3)) ≤ F (d(x1, x2)).

Continuining this process we can construct a sequence {xn} in X with xn+1 ∈ Txn
satisfying either

(A) there exists n0 ∈ N with xn = xn0
for n ≥ n0,

or
(B) d(xn, xn+1) > 0 such that

(2.1) τ + F (d(xn, xn+1)) ≤ F (d(xn−1, xn))

for all n ∈ N.
If (A) holds, then it is clear that xn0 is a fixed point of T and also {xn} τd-converges to

xn0
.
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Now assume (B) holds. We will verify that {xn} is left K-Cauchy sequence. From (2.1)
inequality, we have

F (d(xn, xn+1)) ≤ F (d(xn−1, xn))− τ
≤ F (d(xn−2, xn−1))− 2τ

...
≤ F (d(x0, x1))− nτ(2.2)

for all n ∈ N. From (2.2) we get

lim
n→∞

F (d(xn, xn+1)) = −∞

and so from (F2) we have
lim
n→∞

d(xn, xn+1) = 0.

From (F3), there exists k ∈ (0, 1) such that

lim
n→∞

d(xn, xn+1)
kF (d(xn, xn+1)) = 0.

Then, by (2.2), the following holds for all n ∈ N,

(2.3) d(xn, xn+1)
k[F (d(xn, xn+1))− F (d(x0, x1))] ≤ −d(xn, xn+1)

knτ

Letting n→∞ in (2.3), we obtain that

(2.4) lim
n→∞

nd(xn, xn+1)
k = 0.

From (2.4), there exits n1 ∈ N such that nd(xn, xn+1)
k ≤ 1 for all n ≥ n1. So, we have, for

all n ≥ n1

(2.5) d(xn, xn+1) ≤
1

n1/k
.

In order to show that {xn} is a left K-Cauchy sequence consider m,n ∈ N such that
m > n ≥ n1. Using the triangular inequality of d, from (2.5), we have

d(xn, xm) ≤ d(xn, xn+1) + d(xn+1, xn+2) + · · ·+ d(xm−1, xm)

=

m−1∑
i=n

d(xi, xi+1) ≤
∞∑
i=n

d(xi, xi+1) ≤
∞∑
i=n

1

i1/k
.

Taking into account the convergence of the series
∞∑
i=1

1

i1/k
,

we get d(xn, xm) → 0 as n → ∞. So {xn} is a left K-Cauchy sequence in the left K-
complete quasi metric space (X, d), so there exists z ∈ X such that {xn} is d-convergent
to z, that is, d(z, xn)→ 0 as n→∞.

On the other hand, since xn+1 ∈ Txn, we get

d(xn, Txn) ≤ d(xn, xn+1)

and so we have
lim
n→∞

d(xn, Txn) = 0.

Since f is lower semi-continuous with respect to τd, then

d(z, Tz) = f(z) ≤ lim inf
n→∞

f(xn) = lim inf
n→∞

d(xn, Txn) = 0.

Therefore z ∈ cld(Tz) = Tz. �
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In the following theorem we will consider the concept of multivalued Fq-contraction.

Theorem 2.4. Let (X, d) be a left M -complete quasi metric space, q be a Q-function on X , T :
X → Cd(X) be a multivalued mapping and F ∈ F . If T is multivalued Fq-contraction then, T
has a fixed point in X .

Proof. Fix x0 ∈ X and let x1 ∈ Tx0.
If q(x0, x1) = 0, then from (i) of Definition 2.4, we get

qT (x0, x1) = inf{q(x0, u) : u ∈ Tx1} = 0.

Hence there exists a sequence {un} in Tx1 such that q(x0, un) → 0 as n → ∞. Therefore,
from (Q3), we have d(x1, un)→ 0 as n→∞ and so x1 ∈ cld(Tx1) = Tx1. This shows that
x1 is a fixed point of T .

Assume q(x0, x1) > 0. Then from (i) of Definition 2.4, there exists x2 ∈ Tx1 satisfying
either q(x1, x2) = 0 or q(x1, x2) > 0 such that

τ + F (q(x1, x2)) ≤ F (q(x0, x1)).
Again, if q(x1, x2) = 0, then from (i) of Definition 2.4, x2 is a fixed point of T . Assume

q(x1, x2) > 0. Then there exists x3 ∈ Tx2 satisfying either q(x2, x3) = 0 or q(x2, x3) > 0
such that

τ + F (q(x2, x3)) ≤ F (q(x1, x2)).
Continuining this process we can construct a sequence {xn} in X with xn+1 ∈ Txn

satisfying either
(C) there exists n0 ∈ N with xn = xn0

for n ≥ n0,
or
(D) q(xn, xn+1) > 0 such that

τ + F (q(xn, xn+1)) ≤ F (q(xn−1, xn))
for all n ∈ N.

If (C) holds, then it is clear that xn0
is a fixed point of T and also {xn} τd-converges to

xn0 .
If (D) holds, as in the proof of Theorem 2.3, then we can obtain

∞∑
n=1

q(xn, xn+1) <∞.

Now let ε > 0 and 0 < δ < ε for which condition (Q3) is satisfied. Thus there exists
n(δ) ∈ N such that

∞∑
n=n(δ)

q(xn, xn+1) < δ.

Now, for all n ≥ n(δ), we get, from (Q1)

q(xn(δ), xn) ≤ q(xn(δ), xn(δ)+1) + q(xn(δ)+1, xn(δ)+2) + · · ·+ q(xn−1, xn)

≤
∞∑

n=n(δ)

q(xn, xn+1) < δ.

Therefore, for all m,n ≥ n(δ), we get q(xn(δ), xn) < δ and q(xn(δ), xm) < δ. From (Q3), we
get ds(xn, xm) ≤ ε.

Consequently, {xn} is a ds-Cauchy and so it is left K-Cauchy sequence in the quasi
metric space (X, d). Since (X, d) left M-complete, there exists z ∈ X such that {xn} is
d−1-convergent to z, that is, d(xn, z)→ 0 as n→∞. On the other hand, for m > n ≥ n(δ)
we can get q(xn, xm) < δ.
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Therefore by(Q2), we get q(xn, z) ≤ δ < ε and so q(xn, z) → 0 as n → ∞. Now we
consider the following cases:

Case 1. If there exists n0 ∈ N such that q(xn0
, z) = 0, then from (i) of Definition 2.4, we

have
qT (xn0 , z) = inf{q(xn0 , y) : y ∈ Tz} = 0.

Therefore there exists a sequence {yn} in Tz such that q(xn0
, yn) → 0 as n → ∞. Thus

from (Q3), we have d(z, yn)→ 0 as n→∞. Hence z ∈ cld(Tz) = Tz.
Case 2. Assume q(xn, z) > 0 for all n ∈ N. Then from (ii) of Definition 2.4, for all n ∈ N,

there exists vn ∈ Tz such that either q(z, vn) = 0 or q(z, vn) > 0 satisfying

τ + F (q(z, vn)) ≤ F (q(xn, z)).

Thus by taking into account (F1), we have q(z, vn) → 0 as n → ∞. Therefore, from (Q1)
we get q(xn, vn) ≤ q(xn, z) + q(z, vn) → 0 as n → ∞. From (Q3), we have d(z, vn) → 0
and so z ∈ cld(Tz) = Tz. �
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