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A sequence of positive linear operators related to powered
Baskakov basis

ADRIAN HOLHOŞ

ABSTRACT. In this paper we study some approximation properties of a sequence of positive linear operators
defined by means of the powered Baskakov basis. We prove that in the particular case of squared Baskakov
basis the operators behave better than the classical Baskakov operators. For this particular case we give also a
quantitative Voronovskaya type result.

1. INTRODUCTION

The operators defined by

Vn(f, x) =

∞∑
k=0

vn,k(x)f

(
k

n

)
, x ∈ [0,∞), n = 1, 2, . . . ,

are called the Baskakov operators [2] and the functions vn,k

vn,k(x) =

(
−n
k

)
· (−x)k

(1 + x)n+k
=
n(n+ 1) . . . (n+ k)

(n+ k)k!

xk

(1 + x)n+k
, k = 0, 1, . . .

form the Baskakov basis.
Motivated by [1], [4] and [6] we study the following operators

(1.1) Ln,r(f, x) =

∑∞
k=0[vn,k(x)]

rf
(
k
n

)∑∞
k=0[vn,k(x)]

r
, x ≥ 0, n = 1, 2, . . .

where r is a positive integer. For r = 1, because
∑∞
k=0 vn,k(x) = 1 we obtain the classical

Baskakov operators.
Let us denote by ψ[r]

n the sum of the r-powered Baskakov functions

(1.2) ψ[r]
n (x) =

∞∑
k=0

[vn,k(x)]
r.

In this paper, we show that the study of the operators (1.1) is closely related to the
study of the function (1.2). In the final part of the paper, we present some approximation
properties of the operators Ln,r for the particular case r = 2, including a quantitative
Voronovskaya theorem.
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2. SOME PROPERTIES OF THE OPERATORS

Let us denote

µ
[r]
n,k(x) = Ln,r((e1 − x)k, x), k = 0, 1, 2, . . .

the central moments of the operators Ln,r. Because Ln,r preserve the constant functions
we have µ[r]

n,0(x) = 1. There is a strong connection between the central moments of the
operators, as the next two lemmas will reveal.

Lemma 2.1. For every x ≥ 0 and every n ≥ 1 we have

(2.3) µ[r]
n,r(x) = −

[
1−

(
x

1 + x

)r]−1
·
r−1∑
k=0

(
r

k

)
xr−k

[
1−

(
x

1 + x

)k]
µ
[r]
n,k(x).

Proof. From the relation

∞∑
k=0

vrn,k(x) ·
kr

nr
=

1

nr(1 + x)rn

∞∑
k=1

(
n(n+ 1) . . . (n+ k − 1)

(k − 1)!

)r
·
(

x

1 + x

)kr
=

1

nr(1 + x)rn

∞∑
i=0

(
n(n+ 1) . . . (n+ i)

i!

)r
·
(

x

1 + x

)(i+1)r

=
xr

(1 + x)r

∞∑
i=0

(
n(n+ 1) . . . (n+ i− 1)

i!

xi

(1 + x)n+i

)r (
1 +

i

n

)r
we deduce that Ln,r(er, x) = xr

(1+x)rLn,r((1 + e1)
r, x), for every x ≥ 0. Using this identity

and the relations

Ln,r(er, x) = Ln,r((e1 − x+ x)r, x) = µ[r]
n,r(x) +

r−1∑
k=0

(
r

k

)
xr−kµ

[r]
n,k(x),

Ln,r((1 + e1)
r, x) = µ[r]

n,r(x) +

r−1∑
k=0

(
r

k

)
(x+ 1)r−kµ

[r]
n,k(x),

the formula (2.3) is proved. �

Lemma 2.2. For every x > 0 we have(
µ
[r]
n,k(x)

)′
+ k · µ[r]

n,k−1(x) =
rn

x(1 + x)
·
[
µ
[r]
n,k+1(x)− µ

[r]
n,1(x) · µ

[r]
n,k(x)

]
.(2.4)

Proof. We use the equality x(1 + x)v′n,k(x) = vn,k(x)(k − nx) and we get(
vrn,k(x)∑∞
i=0 v

r
n,i(x)

)′
=
rvr−1n,k (x)v′n,k(x)∑∞

i=0 v
r
n,i(x)

−
rvrn,k(x)

∑∞
i=0 v

r−1
n,i (x)v′n,i(x)(∑∞

i=0 v
r
n,i(x)

)2
=

rvrn,k(x)∑∞
i=0 v

r
n,i(x)

·

(
k − nx
x(1 + x)

−
∑∞
i=0 v

r
n,i(x)

i−nx
x(1+x)∑∞

i=0 v
r
n,i(x)

)

=
r n

x(1 + x)
·

vrn,k(x)∑∞
i=0 v

r
n,i(x)

·

(
k

n
−
∑∞
i=0 v

r
n,i(x)

i
n∑∞

i=0 v
r
n,i(x)

)
.
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We obtain

(Ln,r(f, x))
′
=

rn

x(1 + x)
· Ln,r(f · (e1 − Ln,r(e1, x)), x)

=
rn

x(1 + x)
· [Ln,r(f · (e1 − x), x) + Ln,r(f · (x− Ln,r(e1, x)), x)]

=
rn

x(1 + x)
· [Ln,r(f · (e1 − x), x)− Ln,r(e1 − x, x) · Ln,r(f, x)].

We consider f = (e1 − x)k in the last equality and we obtain (2.4). �

Remark 2.1. The recurrence relation (2.4) is similar to the relation (2.7) from [7] for the
so called exponential type operators. Because the central moment of order 0 is known,
we can use this relation to express every central moment only in terms of the first central
moment µ[r]

n,1. Using the relation (2.3), we deduce that the first central moment verifies a
differential equation of order r − 1.

Lemma 2.3. The following representation formula for the first central moment is true for every
x ≥ 0 and every n ≥ 1

(2.5) µ
[r]
n,1(x) =

x(1 + x)

rn
·

(
ψ
[r]
n (x)

)′
ψ
[r]
n (x)

.

Proof. Using again the well-known relation x(1 + x)v′n,k(x) = vn,k(x) · (k − nx) we have

rn · µ[r]
n,1(x) = rn

(∑∞
k=0 v

r
n,k(x) · kn

ψ
[r]
n (x)

− x

)
=
r
∑∞
k=0 v

r
n,k(x)(k − nx)

ψ
[r]
n (x)

=
r x(1 + x)

∑∞
k=0 v

r−1
n,k (x)v′n,k(x)

ψ
[r]
n (x)

=
x(1 + x)

(
ψ
[r]
n (x)

)′
ψ
[r]
n (x)

.

�

Remark 2.2. The first central moment is expressed using the function ψ[r]
n . It is important

to know as many properties as one can of this function since ψ[r]
n defines the first central

moment, which defines the rest of the central moments. The function ψ[r]
n is conjectured

in [1] to be completely monotonic. This function can be written in terms of a generalized
hypergeometric function by

(2.6) ψ[r]
n (x) =

1

(1 + x)rn
· rFr−1

(
n, . . . , n; 1, . . . , 1;

(
x

1 + x

)r)
.

The function ψ[r]
n is also related to the Rényi entropy of order r ≥ 0, r 6= 1, which is defined

by the expression (see for example [10])

En,r(x) = (1− r)−1 · lnψ[r]
n (x).

In [8] it is given the asymptotic expansion of the Rényi entropy of order r for a probability
distribution.

En,r(x) =
1

2
lnn+

1

2
ln(2πσ2) +

1

2(r − 1)
ln r +

1

r

[
κ4(1− r)

8σ4
+
κ23(r − 2)

12σ6

]
1

n
+O

(
1

n2

)
.
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In our case σ2 = V1(e2, x) − [V1(e1, x)]
2 = x(1 + x). We deduce the following asymptotic

expansion for the function ψ[r]
n

(2.7) ψ[r]
n (x) ∼ 1√

r
· (2πnx(1 + x))

1−r
2 · exp

(
θr(x)

n
+O

(
1

n2

))
,

where θr is a function depending on x and r but not on n.

Lemma 2.4. For any x > 0 we have

(2.8) max
k=0,1,...

vn,k(x) ∼
1√

2πnx(1 + x)
(n→∞).

Proof. Using Lemma 2.4 from [3] we know that maxk=0,1,... vn,k(x) = vn,[(n−1)x](x). Let
x > 0. Denoting n − 1 = m and using Stirling’s formula n! = nne−n

√
2πn e

cn
12n , with

cn ∈ (0, 1) we deduce that

vn,[(n−1)x](x) = vm+1,[mx](x) =
(m+ [mx])!

m! [mx]!
·
(

x

1 + x

)[mx]

· 1

(1 + x)m+1

=

√
m+ [mx]

(1 + x)
√

2πm [mx]
·
(
m+ [mx]

m(1 + x)

)m
·
(
(m+ [mx])x

[mx](1 + x)

)[mx]

· ec,

where c = c1
12(m+[mx]) −

c2
12m −

c3
12[mx] . Because√

m+ [mx]

(1 + x)
√

2πm [mx]
∼ 1√

2πmx(1 + x)
(m→∞),

it remains to prove that

lim
m→∞

(
m+ [mx]

m(1 + x)

)m
·
(
(m+ [mx])x

[mx](1 + x)

)[mx]

= 1.

Denoting ε = mx− [mx] ∈ [0, 1) the fractional part of mx and applying the logarithm

ln

[(
m+ [mx]

m(1 + x)

)m
·
(
(m+ [mx])x

[mx](1 + x)

)[mx]
]

= m ln

(
1− ε

m(1 + x)

)
+

(mx−ε) ln
(
1 +

ε

(mx− ε)(1 + x)

)
= − mε

m(1 + x)
+

(mx− ε)ε
(mx− ε)(1 + x)

+O(m−1) = O(m−1).

�

Remark 2.3. Using (2.7) and (2.8) we obtain the following asymptotic result

lim
n→∞

maxk≥0[vn,k(x)]
r−1

ψ
[r]
n (x)

=
√
r.

This suggests that for a fixed x > 0 and large n and for a positive function f the operator
Ln,r and the classical Baskakov operator Vn have the same behaviour

Ln,r(f, x) =

∞∑
k=0

[vn,k(x)]
r−1

ψ
[r]
n (x)

· vn,k(x)f
(
k

n

)
≤ (
√
r + ε)Vn(f, x).

We will prove in the next section that in the case r = 2 the operator Ln,r behaves better
from approximation point of view than the case r = 1.
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3. THE PARTICULAR CASE r = 2

In the case r = 2 we can prove more results. The relation (2.3) becomes

(3.9) µ
[2]
n,2(x) = −

2x(1 + x)

1 + 2x
µ
[2]
n,1(x), x ≥ 0.

For k = 1 in (2.4) we obtain

(3.10)
(
µ
[2]
n,1(x)

)′
+ 1 =

2n

x(1 + x)
·
[
µ
[2]
n,2(x)− µ

[2]
n,1(x) · µ

[2]
n,1(x)

]
,

so the first central moment satisfies the following Riccati equation

(3.11)
(
µ
[2]
n,1(x)

)′
= −1− 4n

1 + 2x
µ
[2]
n,1(x)−

2n

x(1 + x)
(µ

[2]
n,1(x))

2.

Replacing (2.5) in (3.11) we deduce that ψ[2]
n (x) satisfies the following equation

x(1 + x)(1 + 2x)y′′ + [1 + 4(n+ 1)x(1 + x)]y′ + 2n(1 + 2x)y = 0,

which is equation (15) from [9].

Lemma 3.5. We have for every x ≥ 0

(3.12) µ
[2]
n,2(x) ≤ C ·

x(1 + x)

n
, where C ≤ π3

32
.

Proof. Using the formula ψ[2]
n (x) = 1

π

∫ 1

0
(t + (1 − t)(1 + 2x)2)−n (t(1− t))−1/2 dt (see (10)

from [9]) with the substitution t = cos2 v we obtain

(3.13) ψ[2]
n (x) =

2

π

∫ π
2

0

(1 + 4x(1 + x) sin2 v)−n dv.

Using (3.9) and (2.5) the following representation holds true

µ
[2]
n,2(x) = −

x2(1 + x)2

n(1 + 2x)
·

(
ψ
[2]
n (x)

)′
ψ
[2]
n (x)

=
4x2(1 + x)2

∫ π
2

0
(1 + 4x(1 + x) sin2 v)−n−1 sin2 v dv∫ π

2

0
(1 + 4x(1 + x) sin2 v)−n dv

.

Let us denote a = 4x(1 + x) ≥ 0. We have to prove that

a
∫ π

2

0
(1 + a sin2 v)−n−1 sin2 v dv∫ π

2

0
(1 + a sin2 v)−n dv

≤ π3

32n
.

Using the inequalities 2v
π ≤ sin v ≤ v, for v ∈ (0, π/2), and the substitution u = 2v/π∫ π

2

0

a sin2 v

(1 + a sin2 v)n+1
dv ≤

∫ π
2

0

av2

(1 + 4a
π2 v2)n+1

dv =
π3

8

∫ 1

0

au2

(1 + au2)n+1
du.

Integrating by parts the last integral, we get∫ 1

0

u · au

(1 + au2)n+1
du =

1

2n

∫ 1

0

1

(1 + au2)n
du− 1

2n(1 + a)n
<

1

2n

∫ 1

0

1

(1 + au2)n
du.

Using the inequality 1 ≤ 1

2
√
u(1−u)

, which holds true for every u ∈ (0, 1) and substituting

u = sin2 v, we finally obtain

1

2n

∫ 1

0

1

(1 + au2)n
du <

1

4n

∫ 1

0

1

(1 + au2)n
du√

u(1− u)
=

1

4n

∫ π
2

0

1

(1 + a sin2 v)n
dv.

�
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Remark 3.4. Because µ[1]
n,2 = x(1+x)

n and π3 ≈ 31, inequality (3.12) shows that the second
central moment of the operators Ln,2 is smaller than the corresponding one of the clas-
sical Baskakov operators. If we consider the following estimation in terms of the usual
modulus of continuity

|Ln,r(f, x)− f(x)| ≤
(
1 + nµ

[r]
n,2(x)

)
· ω
(
f,

1√
n

)
,

which is valid for every uniformly continuous function f , we deduce that the error by
approximating f with Ln,2f is smaller than the error of approximation by the classical
Baskakov operators. The constant C from (3.12) is less than 1 and can be improved, but it
cannot be less that 1

2 , as one can see from the next lemma.

Lemma 3.6. For every x in (0,∞)

lim
n→∞

4n · µ[2]
n,1(x) = −(1 + 2x)(3.14)

lim
n→∞

2n · µ[2]
n,2(x) = x(1 + x).(3.15)

Proof. Using the representation (3.13) it is not difficult to obtain that

(3.16)
(
ψ[2]
n (x)

)′
= − 1 + 2x

x(1 + x)

[
ψ[2]
n (x)− ψ[2]

n+1(x)
]
.

With this in (2.5) we get

(3.17) µ
[2]
n,1(x) =

1 + 2x

2

(
ψ
[2]
n+1(x)

ψ
[2]
n (x)

− 1

)
=

1 + 2x

2
·Hn(x).

The asymptotic relation (2.7) gives us

Hn(x) =
ψ
[2]
n+1(x)

ψ
[2]
n (x)

− 1 =

(
1 +

1

n

)−1
2

e−
θ2(x)

n(n+1)
+O( 1

n3 ) − 1 =
−1
2n

+
3/8− θ2(x)

n2
+O

(
1

n3

)
.

This proves (3.14). Using (3.9) the relation (3.15) is proved, too. �

Remark 3.5. It can be proved by induction that all the derivatives of µ[2]
n,1 satisfy

(3.18) lim
n→∞

4n · di

dxi
µ
[2]
n,1(x) = −

di

dxi
(1 + 2x), i = 0, 1, 2, . . .

Using (3.17) it suffices to prove that (nH(i)
n ) tend to zero when n tends to infinity for all

i ∈ N. With the representation (3.16) we get

H ′n(x) =
1 + 2x

x(1 + x)
· [Hn(x) + 1] · [Hn+1(x)−Hn(x)] .

Because n · [Hn+1(x)−Hn(x)] tends to zero and all the higher derivatives of Hn can be
expressed in terms of this forward difference, the relation (3.18) is proved.

Lemma 3.7. For every x > 0

lim
n→∞

(2n)kµ
[2]
n,2k(x) = 1 · 3 · · · (2k − 1) · [x(1 + x)]k, k = 1, 2, . . .(3.19)

Proof. We will prove this by induction. Actually, we will prove more than that. Denoting
gk(x) = 1 · 3 · · · (2k − 1) · [x(1 + x)]k and g0(x) = 1 we will prove that

(3.20) lim
n→∞

(2n)k · di

dxi
µ
[2]
n,2k(x) =

di

dxi
gk(x), k = 0, 1, 2, . . . i = 0, 1, 2, . . .
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We will prove also that

(3.21) lim
n→∞

(2n)k+1 · di

dxi
µ
[2]
n,2k+1(x) =

di

dxi
hk(x), k = 0, 1, 2, . . . i = 0, 1, 2, . . .

for some functions hk (which can be given explicitly, but not useful in the sequel).
For k = 0, the relation (3.21) holds true because of (3.18) and (3.20) because µ[2]

n,0(x) = 1.
We use (2.4) for r = 2. Using Leibniz rule, we apply the derivative i times to

2nµ
[2]
n,2k+2(x) = 2nµ

[2]
n,1(x)µ

[2]
n,2k+1(x) + x(1 + x)

(
µ
[2]
n,2k+1

)′
(x) + (2k + 1)x(1 + x)µ

[2]
n,2k(x).

Then, we multiply the result with (2n)k and let n tend to infinity. We obtain

lim
n→∞

(2n)k+1 di

dxi
µ
[2]
n,2k+2(x) =

di

dxi
((2k + 1)x(1 + x)gk(x)) =

di

dxi
gk+1(x).

Similarly, from

2nµ
[2]
n,2k+1(x) = 2nµ

[2]
n,1(x)µ

[2]
n,2k(x) + x(1 + x)

(
µ
[2]
n,2k

)′
(x) + 2kx(1 + x)µ

[2]
n,2k−1(x)

we obtain hk(x) = h0(x)gk(x) + x(1 + x)g′k(x) + 2kx(1 + x)hk−1(x). �

In order to give some approximation results for the operators Ln,2, let us denote by Eα,
α ≥ 0, the space of all continuous functions f : (0,∞)→ R with the property that exists a
constant M > 0 such that |f(x)| ≤Meαx, for every x > 0.

Let us observe that for n large the functions Ln,2f exist for every f ∈ Eα. We prove

Lemma 3.8. The sequence Ln,2(eαt, x) converges pointwise to the function eαx.

Proof. Using the definition, Ln,2(eαt, x) can be expressed as a quotient of two hypergeo-
metric functions Ln,2(eαt, x) = 2F1(n, n; 1; (

x
1+x )

2e
α
n )/2F1(n, n; 1; (

x
1+x )

2). For x > 0 we

consider yn such that ( x
1+x )

2e
α
n = ( yn

1+yn
)2, i.e. yn = xe

α
2n

1+x−xe
α
2n
→ x. Using (2.6) we obtain

Ln,2(e
αt, x) =

(1 + yn)
2nψ

[2]
n (yn)

(1 + x)2nψ
[2]
n (x)

.

Because
(1 + yn)

2n

(1 + x)2n
=
(
1 + x(1− e α

2n )
)−2n → eαx

it remains to prove that ψ[2]
n (yn)/ψ

[2]
n (x)→ 1. But this is true, because ψ[2](x) is completely

monotonic (see [1]) and using (2.5), (3.12) and (3.9) we have∣∣∣∣∣1− ψ
[2]
n (yn)

ψ
[2]
n (x)

∣∣∣∣∣ =
(
ψ
[2]
n

)′
(c)

ψ
[2]
n (x)

(x− yn) ≤

(
ψ
[2]
n

)′
(x)

ψ
[2]
n (x)

(x− yn) ≤
π3(1 + 2x)

32x(1 + x)
(yn − x).

�

Remark 3.6. The Lemma 3.8 implies that for a fixed x > 0 there is a constant Mα(x) not
depending on n such that

(3.22) Ln,2(max(eαt, eαx), x) ≤Mα(x), n ∈ N.

Indeed, for x > 0, there is n0 ∈ N such that |Ln,2(eαt, x)− eαx| ≤ 1, for every n ≥ n0. We
obtain Ln,2(max(eαt, eαx), x) ≤ Ln,2(eαt+eαx, x) ≤ 1+2eαx, for every n ≥ n0. For n ≤ n0
we define Mα(x) to be the maximum of the values Ln,2(max(eαt, eαx), x).
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Theorem 3.1. Let f ∈ Eα be such that f is twice continuously differentiable and f ′′ ∈ Eα. Then∣∣∣∣Ln,2(f, x)− f(x)− µn,1(x)f ′(x)− µn,2(x)

2
f ′′(x)

∣∣∣∣ ≤ M(α, x)

n
· ωα

(
f ′′,

1√
n

)
,

for every n ∈ N and x > 0, where M(α, x) is a positive constant depending only on α and x.

Proof. Let x > 0 be fixed. We use Theorem 1 from [5] for ρ(x) = ϕ(x) = x and δn = 1√
n

which states that∣∣∣∣∣Ln,2(f, x)−
2∑
k=0

f (k)(x)

k!
· µn,k(x)

∣∣∣∣∣ ≤ 1

2

(
An,2(x) +

An,3(x)

δn

)
ωα (f

′′, δn)

where An,k(x) = Ln
(
max (eαt, eαx) |t− x|k, x

)
and ωα(f, δ) = sup

|t−x|≤δ

|f(t)− f(x)|
max (eαt, eαx)

.

Because of (3.19), is true that (2n)kµ[2]
n,2k(x) ≤ Mk(x), for some Mk(x) > 0. Using the

Cauchy-Schwarz inequality for positive linear operators and condition (3.22)

An,k(x) ≤
√
Ln,2 (max (e2αt, e2αx) , x) ·

√
Ln,2 (|t− x|2k, x) ≤

√
M2α(x)Mk(x)√

(2n)k
, k = 2, 3.

This proves thatAn,2(x)+
√
nAn,3(x) ≤ M(α,x)

n , for every n ∈ N, for someM(α, x) > 0. �

Corollary 3.1. For every f ∈ Eα such that f ′′ ∈ Eα and g(x) = e−αx · f ′′(x) is uniformly
continuous on (0,∞) and for every x > 0 it holds true

lim
n→∞

n[Ln,2(f, x)− f(x)] = −
1 + 2x

4
· f ′(x) + x(1 + x)

4
· f ′′(x).

Conjecture 3.1. In the same conditions as in the Corollary 3.1 we have

lim
n→∞

n[Ln,r(f, x)− f(x)] =
(1− r)(1 + 2x)

2r
· f ′(x) + x(1 + x)

2r
· f ′′(x).
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[5] Holhoş, A., Quantitative Estimates of Voronovskaya Type in Weighted Spaces, Results Math. 73 (2018), Art. 53.
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