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A sequence of positive linear operators related to powered
Baskakov basis

ADRIAN HOLHOS

ABSTRACT. In this paper we study some approximation properties of a sequence of positive linear operators
defined by means of the powered Baskakov basis. We prove that in the particular case of squared Baskakov
basis the operators behave better than the classical Baskakov operators. For this particular case we give also a
quantitative Voronovskaya type result.

1. INTRODUCTION

The operators defined by

Valf,x) = ivnk(x)f (f;) , x€[0,00),n=1,2,...,
k=0

are called the Baskakov operators [2] and the functions vy, j

_[—n (—z)"  nm+1)...(n+k) ol _
Uk (2) = ( . ) S TRl k=0,1,...

form the Baskakov basis.
Motivated by [1], [4] and [6] we study the following operators

1.1) Los(foz) = Yoo k(@) f (£)

>0, n=12

Z:o:o[vn,k(x)]T ’ =Y ,2,. ..

where r is a positive integer. For r = 1, because Z?;o vn k() = 1 we obtain the classical
Baskakov operators.

Let us denote by 4l the sum of the r-powered Baskakov functions

(1.2) ¢7[:] (z) = Z[Un,k(x)]r'

k=0

In this paper, we show that the study of the operators (1.1) is closely related to the
study of the function (1.2). In the final part of the paper, we present some approximation
properties of the operators L,,, for the particular case » = 2, including a quantitative
Voronovskaya theorem.
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2. SOME PROPERTIES OF THE OPERATORS

Let us denote
/JJL:]k(.%‘) =Ln,((e; —2)* 2), k=0,1,2,...

the central moments of the operators L, ,. Because L,, , preserve the constant functions

we have ug)]o(x) = 1. There is a strong connection between the central moments of the

operators, as the next two lemmas will reveal.

Lemma 2.1. For every x > 0 and every n > 1 we have

T rq—1 r—1 r T k
2. [r] - — 1= . r=k 1 2=
e o= (g) | -Z 0 - (55)

Proof. From the relation
n—|—1 . (n+k-1) r. z \*
-1 1+
- (

oo , k/r oo
2 = e (!
i n(n+1) n+i)\" T (+1)r
yrn 14+
n

/‘Tk(f)

)

k=1
=0

oo n(n+1). n+zfl) xt " 1+i "
1—|—acT (14 z)nt? n
L

1=

we deduce that L,, ,-(e,,z) =
and the relations

(1+¢)T nr((1+e1)", x), for every x > 0. Using this identity

Lo (ers2) = Ln((en — 2+ 2" )+ Z ()w “ul (@),

Lo (L4 1)’ 2) = ph] (2 )+Z_: <IZ>(3:+1)’” Fpll (@),

the formula (2.3) is proved. |

Lemma 2.2. For every « > 0 we have

4 (lh@) +kull )= e @ — i@ )]

Proof. We use the equality z(1 + z)v;, (%) = vnk(7)(k — nx) and we get

vp(@) )o@ s(@)  ro (@) S v @)y, @)
S0 U i(@) :

=0 Un.i Yo vni(x) (Xrzgon ()
_ vy, () k—nz >ico vy, () Ii(ziz)
Yoo vni(x) \z(1+m) D ieo Uni(@)

rn U1 (T) kL M
(@) '

z(1+xz) Y2 v, diso vy, ()
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We obtain
(Do () = Sy e (F (2 = Ls(e, 2)),0)
= m(%x) Ly (f - (e1 = 2),2) + Lo (f - (2 = L p (€1, 2)), )]
= ﬁ NLny(f - (e1 —2),2) = Lnr(er — 2,2) - Lo (£, 2)].
We consider f = (e; — z)* in the last equality and we obtain (2.4). 0

Remark 2.1. The recurrence relation (2.4) is similar to the relation (2.7) from [7] for the
so called exponential type operators. Because the central moment of order 0 is known,
we can use this relation to express every central moment only in terms of the first central
moment u[ '] . Using the relation (2.3), we deduce that the first central moment verifies a
differential equation of order r — 1.

Lemma 2.3. The following representation formula for the first central moment is true for every
x > 0and everyn > 1

s (@)

(7]
(2-5) Mo, 1( ) J : k‘] (.%‘)

Proof. Using again the well-known relation z(1 + z)v;, (%) = vn k() - (k — nz) we have

") (2) = <Zk RO _x> r i U (o) (k — 1)

LU ] LT] (33) [T] (a?)
el ) B o ) :w<1+w>( H@)

Remark 2.2. The first central moment is expressed using the function Pl Ttis important
to know as many properties as one can of this function since ql),[f ! defines the first central

moment, which defines the rest of the central moments. The function z/;r[f Vis conjectured
in [1] to be completely monotonic. This function can be written in terms of a generalized
hypergeometric function by

1

:L‘ s
e Fpy (s .
(Ttaym 7 1(" " <1+x>>

The function wT[f lis also related to the Rényi entropy of order r > 0, r # 1, which is defined
by the expression (see for example [10])

Enr(z) = (1L =)' - Inyl(2).

In [8] it is given the asymptotic expansion of the Rényi entropy of order r for a probability

distribution.
1[ra(1=7) K3(r—2)]1 1
Inr+ - - — ).
2(r—1) nrE T 8ot * 120 | n +0 n?

(2.6) o (z) =

1 1
Enr(x) = 3 Inn+ 3 In(27wo?) +
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In our case 0% = Vj(ez,z) — [Vi(e1,2)]?> = z(1 + z). We deduce the following asymptotic
expansion for the function ¢7[f ]

2.7) oll(z) ~ % - (2mnx(1 + x))l% - exp (9:233) +0 (;)) ,
where 6, is a function depending on x and r but not on n.

Lemma 2.4. For any x > 0 we have

1
2.8 max v ~———— (N — 00).
@8) k=0 nk( ) 2mnz(l + ) ( )
Proof. Using Lemma 2.4 from [3] we know that maxy—o,1,... vn k(%) = Vp [(n-1)2](®). Let
x > 0. Denoting n — 1 = m and using Stirling’s formula n! = n"e~"\/27n e, with
€ (0,1) we deduce that

(m+[mx])!.( x >[ml.( 1

Un.[(n=1)2] (%) = V1 fma) () = m! [maz]! 14+z 1+ z)m+t!

- ()" (G ey

_ c1 _ _ 3
where ¢ = SOnima]) Tom TSl Because

m + [mz] N 1
(1+x)y/2mm [mz]  /2mma(l + z)
it remains to prove that
) m + [mz]\ " ((m + [ma])x [ma] B
o () - (Gss) -

Denoting € = ma — [mz] € [0, 1) the fractional part of ma and applying the logarithm
m+ [mz]\" [ (m+ [mz])z [ma] B €
Ga) - (e —rr e )

mr—e) In e \___ me (mz — €)e =1 — O(m-1
el <1+(mx—e)(1+x)> o) =g +a) O ) =0mT.

(m — o),

In

O

Remark 2.3. Using (2.7) and (2.8) we obtain the following asymptotic result

T )

This suggests that for a fixed > 0 and large n and for a positive function f the operator
L,, ,» and the classical Baskakov operator V;, have the same behaviour

Lus(r.2) = 3 P e (1) < (et
k=0 n

We will prove in the next section that in the case r = 2 the operator L, , behaves better
from approximation point of view than the case r = 1.
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3. THE PARTICULAR CASEr = 2

In the case r = 2 we can prove more results. The relation (2.3) becomes

(2] _ _2$(1 + ) 2] S

(39) /’(‘n,Z(x) - 14 22 :un 1( ) Tz 0.
For k£ = 1 in (2.4) we obtain

2 ) 412 2" 2] 2 (7). l2)
(3.10) (@) +1= ey [P — @) i@
so the first central moment satisfies the following Riccati equation

2 ) = — n_ 2n__ 0
(3.11) (1)) = =1 = 5 (@) = sy (@)

Replacing (2.5) in (3.11) we deduce that ’t/)n (x) satisfies the following equation
r(14+2)(1+22)y" + [1+4(n + Dzl + )]y’ + 2n(1 + 2x)y = 0,

which is equation (15) from [9].

Lemma 3.5. We have for every x > 0

z(1+4 ) 73

(3.12) Wz <c-  where €' < 5.

Proof. Using the formula wi?] () =1 f01 (t+ (1 —t)(1+22)%)"" (¢(1 - t))fl/2 dt (see (10)
from [9]) with the substitution ¢ = cos? v we obtain

2 (%
(3.13) YlR(z) = f/ (1 +42(1 + z)sin®v) ™" do.

T Jo
Using (3.9) and (2.5) the following representation holds true

2 !/
2 (2) = _x2(1—|-x)2 (1/17[1](10)) fo 14 4z(1 + x) sin? v) " sin? v do
2 n(1+ 2z) e (2) fo (1+4z(1 + z)sin®v)~" dv -
Let us denote a = 42(1 + ) > 0. We have to prove that
afo 1+asin®v)"" sin?v dv - o
fo (1+ asin?v)=" dv ~32n

Using the inequalities 2% < sinv < v, for v € (0,7/2), and the substitution u = 2v/7

z asin® v z av? a3 [t au?
-—21dv = de Y 727H-ldu‘
o (14 asin”v)?* o (14 5v2)nt 8 Jo (1+au?)

Integrating by parts the last integral, we get

/1 aw o1 /1 L 1 1 /1 L
U au = — u — — — du

0 (1+ au2)nti 2n Jo (14 au?)” n(1+a)” " 2n ), (14 au?)”
Using the inequality 1 < Q\/ﬁ, which holds true for every u € (0, 1) and substituting
u = sin® v, we finally obtain

1 /1 L que ! /1 1 du 1 /5 1 q
- —du J— = — ———— av.
2n Jo (14 au?)? dn Jo (I+au®)™ Ju(l —u) 4nJy (1+asin®v)"
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Remark 3.4. Because uE}Q = (1” and 73 ~ 31, inequality (3.12) shows that the second

central moment of the operators L,, 5 is smaller than the corresponding one of the clas-
sical Baskakov operators. If we consider the following estimation in terms of the usual
modulus of continuity

Lusho) = S| < (L milfhi)) o (1.2,

which is valid for every uniformly continuous function f, we deduce that the error by
approximating f with L, »f is smaller than the error of approximation by the classical
Baskakov operators. The constant C from (3.12) is less than 1 and can be improved, but it
cannot be less that %, as one can see from the next lemma.

Lemma 3.6. For every z in (0, 00)

(3.14) lim 4n - pl) (x) = —(1+ 22)
n—oo

(3.15) lim 2n - ML]Q( ) =z(1+z).
n—oo

Proof. Using the representation (3.13) it is not difficult to obtain that

! 142
(3.16) (@) = sy @ —vh@)].
With this in (2.5) we get

(3.17) pi (z) =

I
=
—~
8
~—

142z ¢ﬂ1(x)_1 1+2z
2\ i)

The asymptotic relation (2.7) gives us
(2] = . L — —
Hn(x) — ¢”+1($) —1= <1 + 1) e ng(i(ﬂ)‘f‘o(*a) — 1= 71 + M +(9 (1> .
n

i (x)
This proves (3.14). Using (3.9) the relation (3.15) is proved, too. O

Remark 3.5. It can be proved by induction that all the derivatives of uf}l satisfy

dz’ [2] _ d1
(318) nh—{:go an - d i rL 1(‘7") - dx’

(14+2z), i=0,1,2,...

Using (3.17) it suffices to prove that (anf)) tend to zero when n tends to infinity for all
i € N. With the representation (3.16) we get
1+ 22
H(z) = ——
Because n - [Hy+1(z) — H,(x)] tends to zero and all the higher derivatives of H,, can be
expressed in terms of this forward difference, the relation (3.18) is proved.

[Ho(2) + 1] - [Hppa () — Hu(2)] -

Lemma 3.7. For every x > 0

(3.19) nlggo(zn)ku%k( 2)=1-3---2k—1)-[z(1+2), k=12,...

Proof. We will prove this by induction. Actually, we will prove more than that. Denoting
gr(r) =1-3---(2k — 1) - [z(1 + 2)]* and go(x) = 1 we will prove that

d d’

. o4 12] _
(3.20) S (2n)" - = g, 04 (2) = 50

(z), k=0,1,2,... i=0,1,2,...
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We will prove also that

d’ d
; k+1 (2] —
(3.21) nhm (2n)F L. e Mo op i1 () = 3

for some functions hj (which can be given explicitly, but not useful in the sequel).

For k = 0, the relation (3.21) holds true because of (3.18) and (3.20) because uf}o(x) =1.
We use (2.4) for r = 2. Using Leibniz rule, we apply the derivative i times to

2y o) = 20 (@)l 1 (@) + 21+ 2) (12,,) (@) + @k + Da(l + 2)pl?
My 2+2\T H My 2k+1\T z(1+z) M 2k+1 (z) + (2k + 1)a( +5”)/~‘n2k( z).

Then, we multiply the result with (2n)* and let n tend to infinity. We obtain

% ((2k + Da(1 + z)gi(z)) = dd; Gt ().

(), k=0,1,2,... i=0,1,2,...

di
: k+1 (2] —
S (2n)" =, o 4o (7) =

Similarly, from

li
21 (2) = 2 ()bl (@) + 21+ 2) (1) () + 2K+ @)l (@)
we obtain hy(z) = ho(z)gi(z) + z(1 + x) g, (z) + 2kz(1 + x)hk—1 (). O

In order to give some approximation results for the operators L, o, let us denote by E,,
a > 0, the space of all continuous functions f : (0, 00) — R with the property that exists a
constant M > 0 such that | f(x)| < Me*”, for every z > 0.

Let us observe that for n large the functions L,, » f exist for every f € E,. We prove

Lemma 3.8. The sequence Ly, >(e®t, z:) converges pointwise to the function e®*.

Proof. Using the definition, L,, »(e®*, z) can be expressed as a quotient of two hypergeo-

metric functions L, 2(e®",z) = oF} (n n; 1 (155)? en)/gFl(n n; 15 (135)?). For z > 0 we
consider y,, such that (HI)%% = (1% )2, ie. Y, = Hm% — z. Using (2.6) we obtain

(L+ya)?" 90 (90)
(1+ 22l (@)

L, Q(GO‘t,x) =

s

Because
(1 + yn)Qn
(14 x)2n
it remains to prove that ne (yn)/ ne (z) — 1. But this is true, because ?!(z) is completely
monotonic (see [1]) and using (2.5), (3.12) and (3.9) we have

=(1+2(1- e%))f% — e

| () © (v) @ P14 22)
‘1 7[12](:3) - wg](x) (x*yn)ﬁm(x*yn)ﬁm(yn—x).

O

Remark 3.6. The Lemma 3.8 implies that for a fixed x > 0 there is a constant M, (x) not
depending on n such that

(3.22) Ly 2(max(e®, e™),z) < My(x), n€N.

Indeed, for z > 0, there is ng € N such that |L,, 2(e®, z) — e**| < 1, for every n > ng. We
obtain L,, o(max(e®,e**), ) < Ly 2(e* +e%* ) < 14 2e**, for every n > ng. Forn < ng
we define M, (x) to be the maximum of the values L,, »(max(e*, %), z).
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Theorem 3.1. Let f € E,, be such that f is twice continuously differentiable and f" € E,. Then

’ :un,2(x) " M(Oz,aj) w1
Lualf.) = £@) = pna @) (@) = 2225 )| < 202 (17, 2.

for every n € Nand x > 0, where M («, x) is a positive constant depending only on o and .

Proof. Let x > 0 be fixed. We use Theorem 1 from [5] for p(z) = ¢(x) = x and §,, = ﬁ

which states that

2. ¢k A,
Enat) = 32 ™ st < g (Anate) + 222 )70
where 4, (x) = L, (max (e**,e*) [t — z|*,z) and wa(f,6) = sup 1®) = f@)]

t—z|<s Max (et ear)’
Because of (3.19), is true that (2n)k,uf’]2k(a:) < My(z), for some My(x) > 0. Using the
Cauchy-Schwarz inequality for positive linear operators and condition (3.22)
Moo (z) M (x)
(2n)*
This proves that A,, »(z)+/nA, 3(z) < w, foreveryn € N, forsome M (e, z) > 0. O

A k(@) < 3/ Lop (max (e20t, e205) ) -\ /L5 (|t — 22, 2) < . k=23

Corollary 3.1. For every f € E, such that f" € E, and g(x) = e=** - f"(x) is uniformly
continuous on (0, 00) and for every x > 0 it holds true

. 1+ 2z z(l+x
Tim nlLa(f.x) - f@)] = — 2220 )+ TED )
Conjecture 3.1. In the same conditions as in the Corollary 3.1 we have
| e A=n+2) L, a4,
il (f2) — f(a)] = S T2y T ),
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