Hemi-slant submanifolds in metallic Riemannian manifolds

Cristina E. Hretcanu and Adara M. Blaga

Abstract

The aim of our paper is to focus on some properties of hemi-slant submanifolds in metallic (and Golden) Riemannian manifolds. We give some characterizations of hemi-slant submanifolds in metallic or Golden Riemannian manifolds and we obtain integrability conditions for the distributions involved. Examples of hemi-slant submanifolds in metallic and Golden Riemannian manifolds are given.

1. Introduction

The geometry of slant submanifolds in complex manifolds, studied by B. Y. Chen in ([7]) in the early 1990s, was extended to semi-slant submanifold, pseudo-slant submanifold and bi-slant submanifold, respectively, in different types of differentiable manifolds. The pseudo-slant submanifolds (also called hemi-slant submanifolds) in Kenmotsu or nearly Kenmotsu manifolds ([1], [2]) or in locally decomposable Riemannian manifolds ([3]) were studied by M. Atçeken et al. Properties of hemi-slant submanifolds in locally product Riemannian manifolds were studied by H. M. Taştan and F. Ozdem in ([15]).

The notion of metallic structure (and, in particular, Golden structure) on a Riemannian manifold was initially studied in ([4], [5], [6], [8],[12],[13],[14]). In ([12]), the authors of the present paper studied the properties of the slant and semi-slant submanifolds in metallic or Golden Riemannian manifolds.

The purpose of the present paper is to investigate the properties of hemi-slant submanifolds in metallic (or Golden) Riemannian manifolds. Using a polynomial structure on a manifold ([9]) and the metallic numbers ([16]), we defined the metallic structure J ([14]). The name of this structure is provided by the metallic number $\sigma_{p, q}=\frac{p+\sqrt{p^{2}+4 q}}{2}$ (i.e. the positive solution of the equation $x^{2}-p x-q=0$) for positive integer values of p and q. If \bar{M} is an m-dimensional manifold endowed with a tensor field J of type $(1,1)$ such that:

$$
\begin{equation*}
J^{2}=p J+q I, \tag{1.1}
\end{equation*}
$$

for $p, q \in \mathbb{N}^{*}$, where I is the identity operator on the Lie algebra $\Gamma(T \bar{M})$, then the structure J is a metallic structure. In this situation, the pair (\bar{M}, J) is called metallic manifold.

In particular, if $p=q=1$ one obtains the Golden structure ([8]) determined by a (1,1)tensor field J which verifies $J^{2}=J+I$. In this case, (\bar{M}, J) is called Golden manifold ([8]).

If (\bar{M}, \bar{g}) is a Riemannian manifold endowed with a metallic (or a Golden) structure J, such that the Riemannian metric \bar{g} is J-compatible, i.e.:

$$
\begin{equation*}
\bar{g}(J X, Y)=\bar{g}(X, J Y), \tag{1.2}
\end{equation*}
$$

Received: 01.05.2018. In revised form: 05.08.2018. Accepted: 15.08.2018
2010 Mathematics Subject Classification. 53B20, 53B25, 53C15.
Key words and phrases. Metallic Riemannian structure, Golden Riemannian structure, almost product structure, induced structure on submanifold, slant submanifold, hemi-slant submanifold.

Corresponding author: Hretcanu; criselenab@yahoo.com
for any $X, Y \in \Gamma(T \bar{M})$, then (\bar{g}, J) is called a metallic (or a Golden) Riemannian structure and (\bar{M}, \bar{g}, J) is a metallic (or a Golden) Riemannian manifold ([14]). Moreover, we have:

$$
\begin{equation*}
\bar{g}(J X, J Y)=\bar{g}\left(J^{2} X, Y\right)=p \bar{g}(J X, Y)+q \bar{g}(X, Y) \tag{1.3}
\end{equation*}
$$

for any $X, Y \in \Gamma(T \bar{M})$ ([14]).
Any almost product structure F on \bar{M} induces two metallic structures on \bar{M} :

$$
\begin{equation*}
J=\frac{p}{2} I \pm \frac{2 \sigma_{p, q}-p}{2} F, \tag{1.4}
\end{equation*}
$$

where I is the identity operator on the Lie algebra $\Gamma(T \bar{M})$ ([14]).

2. Submanifolds in the metallic Riemannian manifolds

Let M be an m^{\prime}-dimensional submanifold, isometrically immersed in the m-dimensional metallic (or Golden) Riemannian manifold (\bar{M}, \bar{g}, J) with $m, m^{\prime} \in \mathbb{N}^{*}$ and $m>m^{\prime}$. Let $T_{x} M$ be the tangent space of M in a point $x \in M$ and $T_{x}^{\perp} M$ the normal space of M in x. The tangent space $T_{x} \bar{M}$ can be decomposed into the direct sum: $T_{x} \bar{M}=T_{x} M \oplus T_{x}^{\perp} M$, for any $x \in M$. Let i_{*} be the differential of the immersion $i: M \rightarrow \bar{M}$. The induced Riemannian metric g on M is given by $g(X, Y)=\bar{g}\left(i_{*} X, i_{*} Y\right)$, for any $X, Y \in \Gamma(T M)$. For the simplification of the notations, in the rest of the paper we shall note by X the vector field $i_{*} X$, for any $X \in \Gamma(T M)$. Properties of submanifolds in metallic Riemannian manifolds was studied in ([10]) and ([11]). If we denote by $T X$ and $N X$, respectively, the tangential and normal parts of $J X$, for any $X \in \Gamma(T M)$, then we get:

$$
\begin{equation*}
J X=T X+N X \tag{2.1}
\end{equation*}
$$

$T: \Gamma(T M) \rightarrow \Gamma(T M), T X:=(J X)^{T}$ and $N: \Gamma(T M) \rightarrow \Gamma\left(T^{\perp} M\right), N X:=(J X)^{\perp}$. For any $V \in \Gamma\left(T^{\perp} M\right)$, the tangential and normal parts of $J V$ satisfy:

$$
\begin{equation*}
J V=t V+n V \tag{2.2}
\end{equation*}
$$

$t: \Gamma\left(T^{\perp} M\right) \rightarrow \Gamma(T M), t V:=(J V)^{T}$ and $n: \Gamma\left(T^{\perp} M\right) \rightarrow \Gamma\left(T^{\perp} M\right), n V:=(J V)^{\perp}$.
We remark that the maps T and n are \bar{g}-symmetric ([5]):

$$
\begin{equation*}
\text { (i) } \bar{g}(T X, Y)=\bar{g}(X, T Y), \quad(i i) \bar{g}(n U, V)=\bar{g}(U, n V) \tag{2.3}
\end{equation*}
$$

for any $X, Y \in \Gamma(T M)$ and $U, V \in \Gamma\left(T^{\perp} M\right)$. Moreover, we get

$$
\begin{equation*}
\bar{g}(N X, U)=\bar{g}(X, t U) \tag{2.4}
\end{equation*}
$$

for any $X \in \Gamma(T M)$ and $U \in \Gamma\left(T^{\perp} M\right)$. By using (2.1), (2.2) and (1.1), we obtain:
Remark 2.1. If M is a submanifold in a metallic Riemannian manifold (\bar{M}, \bar{g}, J), then:
(i) $T^{2} X=p T X+q X-t N X$,
(ii) $p N X=N T X+n N X$,
for any $X \in \Gamma(T M)$ and $V \in \Gamma\left(T^{\perp} M\right)$.
For $p=q=1$ and M is a submanifold in a Golden Riemannian manifold (\bar{M}, \bar{g}, J) then, for any $X \in \Gamma(T M)$ we get $T^{2} X=T X+X-t N X, N X=N T X+n N X$ and for any $V \in \Gamma\left(T^{\perp} M\right)$ we get $n^{2} V=n V+V-N t V, t V=T t V+t n V$.

Remark 2.2. ([11]) Let (\bar{M}, \bar{g}) be a Riemannian manifold endowed with an almost product structure F and let J be one of the two metallic structures induced by F on \bar{M}. If M is a submanifold in the almost product Riemannian manifold (\bar{M}, \bar{g}, F) and for any $X \in$
$\Gamma(T M), V \in \Gamma\left(T^{\perp} M\right)$ we have $F X=f X+\omega X, F V=B V+C V$, with $f X:=(F X)^{T}$, $\omega X:=(F X)^{\perp}, B V:=(F V)^{T}$ and $C V:=(F V)^{\perp}$, then:
(i) $T X=\frac{p}{2} X \pm \frac{2 \sigma-p}{2} f X$,
(ii) $N X= \pm \frac{2 \sigma-p}{2} \omega X$
(i) $t V= \pm \frac{2 \sigma-p}{2} B V$,
(ii) $n V=\frac{p}{2} V \pm \frac{2 \sigma-p}{2} C V$.

In the next considerations we denote by $\bar{\nabla}$ and ∇ the Levi-Civita connections on (\bar{M}, \bar{g}) and its submanifold (M, g), respectively. The Gauss and Weingarten formulas are given by:
(i) $\bar{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y)$,
(ii) $\bar{\nabla}_{X} V=-A_{V} X+\nabla_{X}^{\perp} V$,
for any $X, Y \in \Gamma(T M)$ and $V \in \Gamma\left(T^{\perp} M\right)$, where h is the second fundamental form and A_{V} is the shape operator. The second fundamental form and the shape operator verify:

$$
\begin{equation*}
\bar{g}(h(X, Y), V)=\bar{g}\left(A_{V} X, Y\right) \tag{2.10}
\end{equation*}
$$

Definition 2.1. ([10]) If (\bar{M}, \bar{g}, J) is a metallic (or Golden) Riemannian manifold and J is parallel with respect to the Levi-Civita connection $\bar{\nabla}$ on \bar{M} (i.e. $\bar{\nabla} J=0$), we say that (\bar{M}, \bar{g}, J) is a locally metallic (or locally Golden) Riemannian manifold.

The covariant derivatives of the tangential and normal parts of $J X$ (and $J V$), T and N (t and n, respectively) are given by ([10],[1]):
(i) $\left(\nabla_{X} T\right) Y=\nabla_{X} T Y-T\left(\nabla_{X} Y\right)$,
(ii) $\left(\bar{\nabla}_{X} N\right) Y=\nabla_{X}^{\perp} N Y-N\left(\nabla_{X} Y\right)$,
(i) $\left(\nabla_{X} t\right) V=\nabla_{X} t V-t\left(\nabla_{X}^{\perp} V\right)$,
(ii) $\left(\bar{\nabla}_{X} n\right) V=\nabla_{X}^{\perp} n V-n\left(\nabla_{X}^{\perp} V\right)$,
for any $X, Y \in \Gamma(T M)$ and $V \in \Gamma\left(T^{\perp} M\right)$. From $\bar{g}(J X, Y)=\bar{g}(X, J Y)$, it follows:

$$
\begin{equation*}
\bar{g}\left(\left(\bar{\nabla}_{X} J\right) Y, Z\right)=\bar{g}\left(Y,\left(\bar{\nabla}_{X} J\right) Z\right) \tag{2.13}
\end{equation*}
$$

for any $X, Y, Z \in \Gamma(T \bar{M})$. Moreover, if M is an isometrically immersed submanifold in the metallic Riemannian manifold (\bar{M}, \bar{g}, J), then ([6]):

$$
\begin{equation*}
\bar{g}\left(\left(\nabla_{X} T\right) Y, Z\right)=\bar{g}\left(Y,\left(\nabla_{X} T\right) Z\right) \tag{2.14}
\end{equation*}
$$

for any $X, Y, Z \in \Gamma(T M)$.
Lemma 2.1. ([11]) If M is a submanifold in a locally metallic (or Golden) Riemannian manifold (\bar{M}, \bar{g}, J), then the covariant derivatives of T and N verify:
$(i)\left(\nabla_{X} T\right) Y=A_{N Y} X+t h(X, Y)$,
(ii) $\left(\bar{\nabla}_{X} N\right) Y=n h(X, Y)-h(X, T Y)$,
for any $X, Y \in \Gamma(T M)$ and $V \in \Gamma\left(T^{\perp} M\right)$.
Remark 2.3. If M is a submanifold in a locally metallic (or locally Golden) Riemannian manifold (\bar{M}, \bar{g}, J), then we obtain:

$$
\begin{equation*}
\bar{g}\left(\left(\bar{\nabla}_{X} N\right) Y, V\right)=\bar{g}\left(\left(\nabla_{X} t\right) V, Y\right) \tag{2.17}
\end{equation*}
$$

for any $X, Y \in \Gamma(T M)$ and $V \in \Gamma\left(T^{\perp} M\right)$.
Proof. From (2.15) (ii) and (2.3) (ii) we get $\bar{g}\left(\left(\bar{\nabla}_{X} N\right) Y, V\right)=\bar{g}(h(X, Y), n V)-\bar{g}(h(X, T Y), V)=$ $\bar{g}\left(A_{n V} X-T A_{V} X, Y\right)$ and using (2.16)(i) we obtain (2.17).

Theorem 2.1. Let M be a submanifold in a locally metallic (or locally Golden) Riemannian manifold (\bar{M}, \bar{g}, J). Then $\left(\bar{\nabla}_{X} N\right) Y=0$ and $\left(\nabla_{X} t\right) V=0$, for any $X, Y \in \Gamma(T M), V \in \Gamma\left(T^{\perp} M\right)$ if and only if the shape operator A verifies:

$$
\begin{equation*}
A_{n V} X=T A_{V} X=A_{V} T X \tag{2.18}
\end{equation*}
$$

Proof. From (2.3)(ii) we get $\bar{g}(n h(X, Y), V)=\bar{g}(h(X, Y), n V)$, for any $X, Y \in \Gamma(T M)$, $V \in \Gamma\left(T^{\perp} M\right)$. Thus, we obtain:

$$
\bar{g}\left(\left(\bar{\nabla}_{X} N\right) Y, V\right)=\bar{g}(h(X, Y), n V)-\bar{g}(h(X, T Y), V)=\bar{g}\left(A_{n V} X, Y\right)-\bar{g}\left(A_{V} X, T Y\right),
$$

for any $X, Y \in \Gamma(T M), V \in \Gamma\left(T^{\perp} M\right)$. From (2.15)(ii) and (2.10) we have

$$
\begin{equation*}
\bar{g}\left(\left(\bar{\nabla}_{X} N\right) Y, V\right)=\bar{g}\left(A_{n V} X-T A_{V} X, Y\right)=\bar{g}\left(A_{n V} Y-A_{V} T Y, X\right) \tag{2.19}
\end{equation*}
$$

for any $X, Y \in \Gamma(T M), V \in \Gamma\left(T^{\perp} M\right)$. Thus, from (2.19) and (2.17) we obtain the conclusion.

Theorem 2.2. ([11]) If M is a submanifold in a locally metallic (or locally Golden) Riemannian manifold (\bar{M}, \bar{g}, J), then:

$$
\begin{gather*}
T([X, Y])=\nabla_{X} T Y-\nabla_{Y} T X-A_{N Y} X+A_{N X} Y \tag{2.20}\\
N([X, Y])=h(X, T Y)-h(T X, Y)+\nabla_{X}^{\perp} N Y-\nabla_{Y}^{\perp} N X, \tag{2.21}
\end{gather*}
$$

for any $X, Y \in \Gamma(T M)$, where ∇ is the Levi-Civita connection on $\Gamma(T M)$.

3. Hemi-Slant submanifolds in metallic Riemannian manifolds

In this section we recall the definition of a slant distribution and of a bi-slant submanifold in a metallic (or Golden) Riemannian manifold. Then, we define the hemi-slant submanifold and find some properties regarding the distributions involved in this type of submanifold, using a similar definition as for Riemannian product manifold ([15]).

Definition 3.2. ([11]) Let M be an immersed submanifold in a metallic (or Golden) Riemannian manifold (\bar{M}, \bar{g}, J). A differentiable distribution D on M is called a slant distribution if the angle θ_{D} between $J X_{x}$ and the vector subspace D_{x} is constant, for any $x \in M$ and any nonzero vector field $X_{x} \in \Gamma\left(D_{x}\right)$. The constant angle θ_{D} is called the slant angle of the distribution D.

Theorem 3.3. ([11]) Let D be a differentiable distribution on a submanifold M of a metallic (or Golden) Riemannian manifold (\bar{M}, \bar{g}, J). The distribution D is a slant distribution if and only if there exists a constant $\lambda \in[0,1]$ such that:

$$
\begin{equation*}
\left(P_{D} T\right)^{2} X=\lambda\left(p P_{D} T X+q X\right) \tag{3.1}
\end{equation*}
$$

for any $X \in \Gamma(D)$, where P_{D} is the orthogonal projection on D. Moreover, if θ_{D} is the slant angle of D, then it satisfies $\lambda=\cos ^{2} \theta_{D}$.

Definition 3.3. ([11]) Let M be an immersed submanifold in a metallic (or Golden) Riemannian manifold (\bar{M}, \bar{g}, J). We say that M is a bi-slant submanifold of \bar{M} if there exist two orthogonal differentiable distribution D_{1} and D_{2} on M such that $T M=D_{1} \oplus D_{2}$, and D_{1}, D_{2} are slant distributions with the slant angles θ_{1} and θ_{2}, respectively. Moreover, M is a proper bi-slant submanifold of \bar{M} if $\operatorname{dim}\left(D_{1}\right) \cdot \operatorname{dim}\left(D_{2}\right) \neq 0$.
Definition 3.4. An immersed submanifold M in a metallic (or Golden) Riemannian manifold (\bar{M}, \bar{g}, J) is a hemi-slant submanifold if there exist two orthogonal distributions D^{θ} and D^{\perp} on M such that:
(1) $T M$ admits the orthogonal direct decomposition $T M=D^{\theta} \oplus D^{\perp}$;
(2) The distribution D^{θ} is slant with angle $\theta \in\left[0, \frac{\pi}{2}\right]$;
(3) The distribution D^{\perp} is anti-invariant distribution (i.e. $J\left(D^{\perp}\right) \subseteq \Gamma\left(T^{\perp} M\right)$).

Moreover, if $\operatorname{dim}\left(D^{\theta}\right) \cdot \operatorname{dim}\left(D^{\perp}\right) \neq 0$ and $\theta \in\left(0, \frac{\pi}{2}\right)$, then M is a proper hemi-slant submanifold.

Remark 3.4. If M is a hemi-slant submanifold in a metallic Riemannian manifold (\bar{M}, \bar{g}, J), with $T M=D^{\theta} \oplus D^{\perp}$, for particular cases we get:
(1) if $\theta=0$ and $\operatorname{dim}\left(D^{\perp}\right)=0$, then M is an invariant submanifold;
(2) if $\operatorname{dim}\left(D^{\theta}\right)=0$ or $\theta=\frac{\pi}{2}$, then M is an anti-invariant submanifold;
(3) if $\operatorname{dim}\left(D^{\perp}\right)=0$ and $\theta \neq 0$, then M is a slant submanifold;
(4) if $\operatorname{dim}\left(D^{\theta}\right) \cdot \operatorname{dim}\left(D^{\perp}\right) \neq 0$ and $\theta=0$, then M is a semi-invariant submanifold.

Remark 3.5. If M is a hemi-slant submanifold in a metallic Riemannian manifold (\bar{M}, \bar{g}, J), with $T M=D^{\theta} \oplus D^{\perp}$, then we get that M is an anti-invariant submanifold if $\theta=\frac{\pi}{2}$ and $g(J X, Y)=0$, for any $X \in \Gamma\left(D^{\theta}\right)$ and $X \in \Gamma\left(D^{\perp}\right)$.

Let M be a hemi-slant submanifold in a metallic Riemannian manifold (\bar{M}, \bar{g}, J), with $T M=D^{\theta} \oplus D^{\perp}$ and let P_{1} and P_{2} be the orthogonal projections on D^{θ} and D^{\perp}, respectively. Thus, for any $X \in \Gamma(T M)$, we can consider the decomposition of $X=P_{1} X+P_{2} X$, where $P_{1} X \in \Gamma\left(D^{\theta}\right)$ and $P_{2} X \in \Gamma\left(D^{\perp}\right)$. From $J\left(D^{\perp}\right) \subseteq \Gamma\left(T^{\perp} M\right)$ we obtain:

Lemma 3.2. If M is a hemi-slant submanifold in a metallic (or Golden) Riemannian manifold (\bar{M}, \bar{g}, J) then, for any $X \in \Gamma(T M)$ we have:

$$
\begin{gather*}
J X=T P_{1} X+N P_{1} X+N P_{2} X=T P_{1} X+N X \tag{3.2}\\
(i) J P_{2} X=N P_{2} X,(i i) T P_{2} X=0,(i i i) T P_{1} X \in \Gamma\left(D^{\theta}\right) . \tag{3.3}
\end{gather*}
$$

Remark 3.6. If M is a hemi-slant submanifold in a metallic (or Golden) Riemannian manifold (\bar{M}, \bar{g}, J), then:

$$
\begin{equation*}
T^{\perp} M=N\left(D^{\theta}\right) \oplus N\left(D^{\perp}\right) \oplus \mu, \tag{3.4}
\end{equation*}
$$

where μ is an invariant subbundle of $T^{\perp} M$.
Proof. For any $X \in \Gamma\left(D^{\theta}\right)$ and $Z \in \Gamma\left(D^{\perp}\right)$ we get $\bar{g}(N X, N Z)=\bar{g}(J X, J Z)=p \bar{g}(X, T Z)+$ $q \bar{g}(X, Z)=0$. Thus, the distributions $N\left(D^{\theta}\right)$ and $N\left(D^{\perp}\right)$ are mutually perpendicular in $T^{\perp} M$. If we denote by μ the orthogonal complementary subbundle of $J(T M)$ in $T^{\perp} M$, then we obtain (3.4).

Remark 3.7. If M is a hemi-slant submanifold in a metallic (or Golden) Riemannian manifold (\bar{M}, \bar{g}, J), then: $\bar{g}\left(J P_{1} X, T P_{1} X\right)=\cos \theta(X)\left\|T P_{1} X\right\| \cdot\left\|J P_{1} X\right\|$ and the cosine of the slant angle $\theta(X)=: \theta$ of the distribution D^{θ} is constant, for any nonzero $X \in \Gamma(T M)$. Thus, for any nonzero $X \in \Gamma(T M)$, we get:

$$
\begin{equation*}
\cos \theta=\frac{\bar{g}\left(J P_{1} X, T P_{1} X\right)}{\left\|T P_{1} X\right\| \cdot\left\|J P_{1} X\right\|}=\frac{\left\|T P_{1} X\right\|}{\left\|J P_{1} X\right\|} \tag{3.5}
\end{equation*}
$$

Theorem 3.4. If M is a hemi-slant submanifold in a metallic Riemannian manifold (\bar{M}, \bar{g}, J) then, for any $X, Y \in \Gamma(T M)$, we have:

$$
\begin{gather*}
\bar{g}\left(T P_{1} X, T P_{1} Y\right)=\cos ^{2} \theta\left[p \bar{g}\left(T P_{1} X, P_{1} Y\right)+q \bar{g}\left(P_{1} X, P_{1} Y\right)\right] \tag{3.6}\\
\bar{g}(N X, N Y)=\sin ^{2} \theta\left[p \bar{g}\left(T P_{1} X, P_{1} Y\right)+q \bar{g}\left(P_{1} X, P_{1} Y\right)\right] . \tag{3.7}
\end{gather*}
$$

Proof. Taking $X+Y$ in (3.5) then, for any $X, Y \in \Gamma(T M)$ we have
$\bar{g}\left(T P_{1} X, T P_{1} Y\right)=\cos ^{2} \theta \bar{g}\left(J P_{1} X, J P_{1} Y\right)=\cos ^{2} \theta\left[p \bar{g}\left(J P_{1} X, P_{1} Y\right)+q \bar{g}\left(P_{1} X, P_{1} Y\right)\right]$, and using (3.3)(iii) we get (3.6). Thus, from (3.2) we get, for any $X, Y \in \Gamma(T M)$:
$\bar{g}\left(T P_{1} X, T P_{1} Y\right)=\bar{g}\left(J P_{1} X, J P_{1} Y\right)-\bar{g}(N X, N Y)$ and (3.7) holds.
Remark 3.8. A hemi-slant submanifold M in a Golden Riemannian manifold (\bar{M}, \bar{g}, J) with the slant angle θ of the distribution D^{θ} verifies (3.6) and (3.7) with $p=q=1$.

Theorem 3.5. Let M be a hemi-slant submanifold in a metallic Riemannian manifold (\bar{M}, \bar{g}, J) with the slant angle θ of the distribution D^{θ}. Then:

$$
\begin{equation*}
\left(T P_{1}\right)^{2}=\cos ^{2} \theta\left(p T P_{1}+q I\right) \tag{3.8}
\end{equation*}
$$

where I is the identity on $\Gamma\left(D^{\theta}\right)$ and

$$
\begin{equation*}
\nabla\left(\left(T P_{1}\right)^{2}\right)=p \cos ^{2} \theta \nabla\left(T P_{1}\right) \tag{3.9}
\end{equation*}
$$

Remark 3.9. Let M be a hemi-slant submanifold in a metallic (or Golden) Riemannian manifold (\bar{M}, \bar{g}, J), with $T M=D^{\theta} \oplus D^{\perp}$. Then $T\left(D^{\theta}\right)=D^{\theta}$ and $T\left(D^{\perp}\right)=0$.
Proof. By using (2.3)(i), we get $\bar{g}(T X, Z)=\bar{g}(X, T Z)=0$, for any $X \in \Gamma\left(D^{\theta}\right), Z \in \Gamma\left(D^{\perp}\right)$. Thus, $T\left(D^{\theta}\right) \perp D^{\perp}$. Since $T\left(D^{\theta}\right) \subset \Gamma(T M)$ we obtain that $T\left(D^{\theta}\right) \subseteq D^{\theta}$. Moreover, from (3.8) we obtain $X=\frac{1}{q} T\left(T X-p \cos ^{2} \theta X\right)$, for any $X \in \Gamma\left(D^{\theta}\right)$ (i.e. $P_{1} X=X$), where (\bar{M}, \bar{g}, J) is a metallic Riemannian manifold. If (\bar{M}, \bar{g}, J) is a Golden Riemannian manifold, then $X=T\left(T X-\cos ^{2} \theta X\right)$, for any $X \in \Gamma\left(D^{\theta}\right)$. Thus, $D^{\theta} \subseteq T\left(D^{\theta}\right)$. Since $T\left(D^{\theta}\right) \subseteq D^{\theta}$, we get $T\left(D^{\theta}\right)=D^{\theta}$. By using (3.3)(ii) we obtain that D^{\perp} is anti-invariant with respect to J and $T\left(D^{\perp}\right)=0$.

Theorem 3.6. Let M be an immersed submanifold in a metallic Riemannian manifold (\bar{M}, \bar{g}, J). Then M is a hemi-slant submanifold in \bar{M} if and only if there exists a constant $\lambda \in[0,1]$ such that $D=\left\{X \in \Gamma(T M) \mid T^{2} X=\lambda(p T X+q X)\right\}$ is a distribution and $T Y=0$, for any Y orthogonal to $D, Y \in \Gamma(T M)$, where $p, q \in \mathbb{N}^{*}$.

Proof. If M is a hemi-slant submanifold in a metallic Riemannian manifold (\bar{M}, \bar{g}, J), with $D^{\theta}:=D$ and $T M=D^{\theta} \oplus D^{\perp}$ then, from (3.8) and $\theta(X) \neq 0$ we have $\lambda=\cos ^{2} \theta \in[0,1]$. Conversely, if there exists a real number $\lambda \in[0,1]$ such that $T^{2} X=\lambda(p T X+q X)$, for any $X \in \Gamma(D)$, it follows that $\cos ^{2} \theta(X)=\lambda$ which implies that $\theta(X)=\arccos (\sqrt{\lambda})$ does not depend on X. If we consider the orthogonal direct sum $T M=D \oplus D^{\perp}$, since $T(D) \subseteq D$ and $T Y=0$, for any Y orthogonal to $D, Y \in \Gamma(T M)$, we obtain that M is a hemi-slant submanifold in \bar{M} with $D^{\theta}:=D$.

Example 3.1. Let \mathbb{R}^{4} be the Euclidean space endowed with the usual Euclidean metric $<\cdot,>$. Let $f: M \rightarrow \mathbb{R}^{4}$ be the immersion given by: $f(u, v)=\left(u \cos t, u \sin t, v, \frac{\sigma}{\sqrt{q}} v\right)$, where $M:=\left\{(u, v) \mid u>0, t \in\left(0, \frac{\pi}{2}\right)\right\}$ and $\sigma:=\sigma_{p, q}=\frac{p+\sqrt{p^{2}+4 q}}{2}$ is the metallic number $\bar{\sigma}=p-\sigma\left(p, q \in N^{*}\right)$. We can find a local orthonormal frame on $T M$ given by: $Z_{1}=$ $\cos t \frac{\partial}{\partial x_{1}}+\sin t \frac{\partial}{\partial x_{2}}$, and $Z_{2}=\frac{\partial}{\partial x_{3}}+\frac{\sigma}{\sqrt{q}} \frac{\partial}{\partial x_{4}}$. We define the metallic structure $J: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ by:
$J\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=\left(\sigma X_{1}, \bar{\sigma} X_{2}, \sigma X_{3}, \bar{\sigma} X_{4}\right)$, and we can easily verify that $J^{2} X=p J+q I$ and $<J X, Y>=<X, J Y>$, for any $X:=\left(X_{1}, X_{2}, X_{3}, X_{4}\right), Y:=\left(Y_{1}, Y_{2}, Y_{3}, Y_{4}\right) \in \mathbb{R}^{4}$. We remark that $J Z_{2} \perp \operatorname{span}\left\{Z_{1}, Z_{2}\right\}$ and $\cos \theta=\frac{\left\langle J Z_{1}, Z_{1}\right\rangle}{\left\|Z_{1}\right\| \cdot\left\|J Z_{1}\right\|}=\frac{\sigma \cos ^{2} t+\bar{\sigma} \sin ^{2} t}{\sqrt{\sigma^{2} \cos ^{2} t+\bar{\sigma}^{2} \sin ^{2} t}}$.

We define the distributions $D^{\perp}=\operatorname{span}\left\{Z_{2}\right\}\left(J\left(D^{\perp}\right) \subset \Gamma\left(T^{\perp} M\right)\right)$ and $D^{\theta}=\operatorname{span}\left\{Z_{1}\right\}$ is a slant distribution with the slant angle θ. The Riemannian metric tensor of $D^{\theta} \oplus D^{\perp}$
is given by $g=d u^{2}+\frac{p \sigma+2 q}{q} d v^{2}$. Thus, M is a hemi-slant submanifold in the metallic Riemannian manifold $\left(\mathbb{R}^{4},<\cdot, \cdot>, J\right)$, with $T M=D^{\theta} \oplus D^{\perp}$.

Example 3.2. If we consider $p=q=1$ in the example 3.1 and $\phi:=\sigma_{1,1}$ is the Golden number ($\bar{\phi}:=1-\phi$), for M given in the example 3.1 we define the immersion $f: M \rightarrow$ \mathbb{R}^{4} by $f(u, v)=(u \cos t, u \sin t, v, \phi v)$. The Golden structure $J: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ is defined by $J\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=\left(\phi X_{1}, \bar{\phi} X_{2}, \phi X_{3}, \bar{\phi} X_{4}\right)$. The distribution $D^{\theta}=\operatorname{span}\left\{Z_{1}\right\}$ has the slant angle $\theta=\arccos \frac{\phi \cos ^{2} t+\bar{\phi} \sin ^{2} t}{\sqrt{\left(\phi \cos ^{2} t+\bar{\phi} \sin ^{2} t\right)+1}}$ and $D^{\perp}=\operatorname{span}\left\{Z_{2}\right\}$. The Riemannian metric tensor of $D^{\theta} \oplus D^{\perp}$ is given by $g=d u^{2}+(\phi+2) d v^{2}$. Thus, M is a hemi-slant submanifold in the Golden Riemannian manifold $\left.\left(\mathbb{R}^{4},<\cdot, \cdot\right\rangle, J\right)$.

Example 3.3. If M and f are the same as in the example 3.1, we define the metallic structure $\bar{J}: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ given by $\bar{J}\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=\left(\sigma X_{1}, \sigma X_{2}, \sigma X_{3}, \bar{\sigma} X_{4}\right)$. We obtain: $\bar{J} Z_{1}=\sigma Z_{1}$, the distributions $D^{\perp}=\operatorname{span}\left\{Z_{2}\right\}$ and $D^{\theta}=\operatorname{span}\left\{Z_{1}\right\}$ has the slant angle $\theta=0$. Thus, $T M=D^{\theta} \oplus D^{\perp}$ and M is a semi-invariant submanifold in the metallic Riemannian manifold $\left(\mathbb{R}^{4},<\cdot, \cdot>, \bar{J}\right)$. Similarly, for $p=q=1$ we obtain that M is a semi-invariant submanifold in the Golden Riemannian manifold $\left(\mathbb{R}^{4},<\cdot, \cdot>, \bar{J}\right)$.

Example 3.4. Let \mathbb{R}^{7} be the Euclidean space endowed with the usual Euclidean metric $<\cdot, \cdot\rangle$. Let $f: M \rightarrow \mathbb{R}^{7}$ be the immersion given by:

$$
f(u, v, w)=\left(\frac{1}{\sqrt{3}} u \cos t, \frac{1}{\sqrt{3}} u \sin t, v, \frac{\sigma}{\sqrt{q}} v, \frac{\sqrt{q}}{\sigma} w, w, \frac{\sqrt{2}}{\sqrt{3}} u\right)
$$

where $M:=\left\{(u, v, w) \mid u>0, t \in\left(0, \frac{\pi}{2}\right)\right\}$ and $\sigma:=\sigma_{p, q}$ is the metallic number $\left(p, q \in N^{*}\right)$. We can find a local orthonormal frame on $T M$ given by: $Z_{1}=\frac{1}{\sqrt{3}} \cos t \frac{\partial}{\partial x_{1}}+\frac{1}{\sqrt{3}} \sin t \frac{\partial}{\partial x_{2}}+$ $\frac{\sqrt{2}}{\sqrt{3}} \frac{\partial}{\partial x_{7}}, Z_{2}=\frac{\partial}{\partial x_{3}}+\frac{\sigma}{\sqrt{q}} \frac{\partial}{\partial x_{4}}$, and $Z_{3}=\frac{\sqrt{q}}{\sigma} \frac{\partial}{\partial x_{5}}+\frac{\partial}{\partial x_{6}}$. We define the metallic structure $J: \mathbb{R}^{7} \rightarrow \mathbb{R}^{7}$ by: $J\left(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}, X_{7}\right)=\left(\sigma X_{1}, \bar{\sigma} X_{2}, \sigma X_{3}, \bar{\sigma} X_{4}, \sigma X_{5}, \bar{\sigma} X_{6}, \sigma X_{7}\right)$ and we can easily verify that $J^{2} X=p J+q I$ and $<J X, Y>=<X, J Y>$, for any $X:=$ $\left(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}, X_{7}\right), Y:=\left(Y_{1}, Y_{2}, Y_{3}, Y_{4}, Y_{5}, Y_{6}, Y_{7}\right) \in \mathbb{R}^{7}$. We find that $J Z_{2} \perp$ $\operatorname{span}\left\{Z_{1}, Z_{2}, Z_{3}\right\}$ and $J Z_{3} \perp \operatorname{span}\left\{Z_{1}, Z_{2}, Z_{3}\right\}$. Thus, we get $\cos \theta=\frac{\sigma\left(\cos ^{2} t+2\right)+\bar{\sigma} \sin ^{2} t}{\sqrt{3\left[\sigma^{2}\left(\cos ^{2} t+2\right)+\bar{\sigma}^{2} \sin ^{2} t\right]}}$.

We define the distributions $D^{\perp}=\operatorname{span}\left\{Z_{2}, Z_{3}\right\}\left(J\left(D^{\perp}\right) \subset \Gamma\left(T^{\perp} M\right)\right)$ and $D^{\theta}=\operatorname{span}\left\{Z_{1}\right\}$ is a slant distribution, with the slant angle θ. The Riemannian metric tensor of $D^{\theta} \oplus D^{\perp}$ is given by $g=d u^{2}+\frac{p \sigma+2 q}{q} d v^{2}+\frac{p \sigma+2 q}{p \sigma+q} d w^{2}$. Thus, $T M=D^{\theta} \oplus D^{\perp}$ and M is a hemi-slant submanifold in the metallic Riemannian manifold $\left(\mathbb{R}^{7},<\cdot, \cdot>, J\right)$.

Example 3.5. We consider $p=q=1$ in the example 3.4 and $\phi:=\sigma_{1,1}$ is the Golden number $(\bar{\phi}:=1-\phi)$. We define, for M given in the example 3.1, the immersion $f: M \rightarrow \mathbb{R}^{7}$ by

$$
f(u, v, w)=\left(\frac{1}{\sqrt{3}} u \cos t, \frac{1}{\sqrt{3}} u \sin t, v, \phi v, \bar{\phi} w, w, \frac{\sqrt{2}}{\sqrt{3}} u\right)
$$

and the Golden structure $J: \mathbb{R}^{7} \rightarrow \mathbb{R}^{7}$ by

$$
J\left(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}, X_{7}\right)=\left(\phi X_{1}, \bar{\phi} X_{2}, \phi X_{3}, \bar{\phi} X_{4}, \phi X_{5}, \bar{\phi} X_{6}, \phi X_{7}\right)
$$

The distributions $D^{\perp}=\operatorname{span}\left\{Z_{2}, Z_{3}\right\}$ verifies $J\left(D^{\perp}\right) \subset \Gamma\left(T^{\perp} M\right)$ and the slant distribution $D^{\theta}=\operatorname{span}\left\{Z_{1}\right\}$ has the slant angle $\theta=\arccos \frac{\phi\left(\cos ^{2} t+2\right)+\bar{\phi} \sin ^{2} t}{\sqrt{3\left[\phi^{2}\left(\cos ^{2} t+2\right)+\bar{\phi}^{2} \sin ^{2}\right]}}$. The Riemannian metric tensor of $D^{\theta} \oplus D^{\perp}$ is given by $g=d u^{2}+(\phi+2) d v^{2}+\frac{\phi+2}{\phi+1} d w^{2}$. Thus, M is a hemi-slant submanifold in the Golden Riemannian manifold $\left(\mathbb{R}^{7},<\cdot, \cdot>, J\right)$.

Example 3.6. If M and f are the same as in the example 3.4 and the metallic structure \bar{J} : $\mathbb{R}^{7} \rightarrow \mathbb{R}^{7}$ is defined by $\bar{J}\left(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}, X_{7}\right)=\left(\sigma X_{1}, \sigma X_{2}, \sigma X_{3}, \bar{\sigma} X_{4}, \sigma X_{5}, \bar{\sigma} X_{6}, \sigma X_{7}\right)$. then we get: $\bar{J} Z_{1}=\sigma Z_{1}$. We obtain the distributions $D^{\perp}=\operatorname{span}\left\{Z_{2}, Z_{3}\right\}$ and $D^{\theta}=$ $\operatorname{span}\left\{Z_{1}\right\}$ with the slant angle $\theta=0$. Thus, $T M=D^{\theta} \oplus D^{\perp}$ and M is a semi-invariant submanifold in the metallic Riemannian manifold $\left(\mathbb{R}^{7},<\cdot, \cdot>, \bar{J}\right)$. Similarly, for $p=q=1$ we obtain that M is a semi-invariant submanifold in the Golden Riemannian manifold $\left(\mathbb{R}^{7},<\cdot, \cdot>, \bar{J}\right)$.

4. On the integrability of the distributions of a hemi-Slant submanifold

In this section we investigate the conditions for the integrability of the distributions of a hemi-slant submanifold in a metallic (or Golden) Riemannian manifold.

Theorem 4.7. If M is a hemi-slant submanifold in a locally metallic (or locally Golden) Riemannian manifold (\bar{M}, \bar{g}, J), then

$$
\begin{equation*}
\nabla_{X} T Y-\nabla_{Y} T X-A_{N Y} X+A_{N X} Y \in \Gamma\left(D^{\theta}\right) \tag{4.1}
\end{equation*}
$$

for any $X, Y \in \Gamma\left(D^{\theta}\right)$.
Proof. By using (2.3)(i), we obtain: $\bar{g}(T([X, Y]), Z)=\bar{g}([X, Y], T Z)=0$, for any $X, Y \in$ $\Gamma\left(D^{\theta}\right)$ and $Z \in \Gamma\left(D^{\perp}\right)$ (i.e. $T Z=0$). Thus, $T([X, Y]) \in \Gamma\left(D^{\theta}\right)$ and from (2.20) we get (4.1).

Theorem 4.8. If M is a hemi-slant submanifold in a locally metallic (or locally Golden) Riemannian manifold (\bar{M}, \bar{g}, J), then the distribution D^{θ} is integrable.
Proof. By using (1.3), we have $\bar{g}\left(\bar{\nabla}_{X} Y, Z\right)=\frac{1}{q}\left[\bar{g}\left(J \bar{\nabla}_{X} Y, J Z\right)-p \bar{g}\left(\bar{\nabla}_{X} Y, J Z\right)\right]$, for any $X, Y \in \Gamma\left(D^{\theta}\right), Z \in \Gamma\left(D^{\perp}\right)$. From $\bar{\nabla} J=0$ we get $J \bar{\nabla}_{X} Y=\bar{\nabla}_{X} J Y$ and using $J Z=N Z$, for any $Z \in \Gamma\left(D^{\perp}\right)$, we obtain $q \bar{g}\left(\bar{\nabla}_{X} Y, Z\right)=\bar{g}\left(\bar{\nabla}_{X} J Y, N Z\right)-p \bar{g}\left(\bar{\nabla}_{X} Y, N Z\right)$. From (2.9) and (2.10) we get $q \bar{g}\left(\bar{\nabla}_{X} Y, Z\right)=\bar{g}(h(X, T Y), N Z)+\bar{g}\left(\nabla \frac{1}{X} N Y, N Z\right)-p \bar{g}(h(X, Y), N Z)$. From (2.11)(ii) and (2.15)(ii) we obtain $\nabla \frac{\perp}{X} N Y=n h(X, Y)-h(X, T Y)+N \nabla_{X} Y$, for any $X, Y \in \Gamma\left(D^{\theta}\right)$. From $q \bar{g}\left(\bar{\nabla}_{X} Y, Z\right)=\bar{g}(n h(X, Y), N Z)+\bar{g}\left(N \nabla_{X} Y, N Z\right)-p \bar{g}(h(X, Y), N Z)$, we get $q \bar{g}([X, Y], Z)=\bar{g}\left(N \nabla_{X} Y, N Z\right)-\bar{g}\left(N \nabla_{Y} X, N Z\right)=\bar{g}(N[X, Y], N Z)$, for any $X, Y \in$ $\Gamma\left(D^{\theta}\right)$ and $Z \in \Gamma\left(D^{\perp}\right)$. Thus, from (3.7) and (2.3)(i) we have

$$
q \bar{g}([X, Y], Z)=\sin ^{2} \theta\left[p \bar{g}\left(P 1[X, Y], T P_{1} Z\right)+q \bar{g}\left(P 1[X, Y], P_{1} Z\right)\right] .
$$

By using $P_{1} Z=0$ for any $Z \in \Gamma\left(D^{\perp}\right)$ (where $P_{1} Z$ is the projection of Z on $\Gamma\left(D^{\theta}\right)$), we obtain $\bar{g}([X, Y], Z)=0$, for any $X, Y \in \Gamma\left(D^{\theta}\right), Z \in \Gamma\left(D^{\perp}\right)$ which implies that $[X, Y] \in$ $\Gamma\left(D^{\theta}\right)$.

Theorem 4.9. Let M be a hemi-slant submanifold in a locally metallic (or locally Golden) Riemannian manifold (\bar{M}, \bar{g}, J). Then the distribution D^{\perp} is integrable if and only if, for any $Z, W \in \Gamma\left(D^{\perp}\right)$ we have

$$
\begin{equation*}
A_{N Z} W=0 \tag{4.2}
\end{equation*}
$$

Proof. If M is a hemi-slant submanifold in a locally metallic (or locally Golden) Riemannian manifold (\bar{M}, \bar{g}, J) then, for any $Z, W \in \Gamma\left(D^{\perp}\right)$ we have $T Z=T W=0$ which implies $\nabla_{Z} T W=\nabla_{W} T Z=0$. By using (3.3)(ii) and (2.20) we get $T([Z, W])=0$ if and only if $A_{N Z} W=A_{N W} Z$ holds, for any $Z, W \in \Gamma\left(D^{\perp}\right)$. From (2.15)(i), for any $X \in$ $\Gamma(T M)$ and $Z, W \in \Gamma\left(D^{\perp}\right)$, we get $\bar{g}\left(A_{N Z} X, W\right)+\bar{g}(\operatorname{th}(X, Z), W)=\bar{g}\left(\left(\nabla_{X} T\right) Z, W\right)=$ $-\bar{g}\left(\nabla_{X} Z, T W\right)=0$, which implies $\bar{g}\left(A_{N Z} X, W\right)=-\bar{g}(t h(X, Z), W)$. From

$$
\bar{g}\left(A_{N Z} X, W\right)=\bar{g}\left(A_{N Z} W, X\right)=\bar{g}\left(A_{N W} Z, X\right)=\bar{g}(h(X, Z), N W)=\bar{g}(\operatorname{th}(X, Z), W),
$$

we obtain $\bar{g}\left(A_{N Z} W, X\right)=0$ for any $X \in \Gamma(T M)$ and $Z, W \in \Gamma\left(D^{\perp}\right)$. Thus, (4.2) holds. Conversely, if $A_{N Z} W=0$, for any $Z, W \in \Gamma\left(D^{\perp}\right)$ then $\bar{g}(t h(X, Z), W)=\bar{g}\left(A_{N W} Z, X\right)=0$ and from (2.15)(i) we get $0=\bar{g}\left(\left(\nabla_{Z} T\right) W, X\right)=\bar{g}\left(T \nabla_{Z} W, X\right)=\bar{g}\left(\nabla_{Z} W, T X\right)$, for any $Z, W \in \Gamma\left(D^{\perp}\right), X \in \Gamma\left(D^{\theta}\right)$. From $T\left(D^{\theta}\right)=D^{\theta}$, we obtain $\nabla_{Z} W \in \Gamma\left(D^{\perp}\right)$ which implies $[Z, W] \in \Gamma\left(D^{\perp}\right)$.
Theorem 4.10. Let M be a hemi-slant submanifold in a locally metallic (or locally Golden) Riemannian manifold (\bar{M}, \bar{g}, J). Then, the anti-invariant distribution D^{\perp} is integrable if and only if, for any $Z, W \in \Gamma\left(D^{\perp}\right)$ we have

$$
\begin{equation*}
\left(\nabla_{Z} T\right) W=\left(\nabla_{W} T\right) Z \tag{4.3}
\end{equation*}
$$

Proof. By using (2.13) we get $\left(\nabla_{Z} T\right) W-\left(\nabla_{W} T\right) Z=A_{N W} Z-A_{N Z} W$, for any $Z, W \in$ $\Gamma\left(D^{\perp}\right)$ and using (4.2) we obtain the conclusion.

Remark 4.10. Let M be a hemi-slant submanifold in a locally metallic (or locally Golden) Riemannian manifold (\bar{M}, \bar{g}, J). If $\left(\nabla_{Z} T\right) W=0$, for any $Z, W \in \Gamma\left(D^{\perp}\right)$, then D^{\perp} is integrable.

Theorem 4.11. Let M be a hemi-slant submanifold in a locally metallic (or locally Golden) Riemannian manifold (\bar{M}, \bar{g}, J). If $\left(\bar{\nabla}_{X} N\right) Y=0$, for any $X, Y \in \Gamma\left(D^{\theta}\right)$ then, either M is a D^{θ} geodesic submanifold (i.e $h(X, Y)=0$) or $h(X, Y)$ is an eigenvector of n, with eigenvalues

$$
\begin{equation*}
\lambda_{1}=\frac{p \cos ^{2} \theta+\cos \theta \sqrt{p^{2} \cos ^{2} \theta+4 q}}{2}, \quad \lambda_{2}=\frac{p \cos ^{2} \theta-\cos \theta \sqrt{p^{2} \cos ^{2} \theta+4 q}}{2} \tag{4.4}
\end{equation*}
$$

Proof. By using $\left(\bar{\nabla}_{X} N\right) Y=0$ for any $X, Y \in \Gamma\left(D^{\theta}\right)$ and (2.15)(ii) we obtain $n h(X, Y)=$ $h(X, T Y)$. From (3.8) we get $n^{2} h(X, Y)=h\left(X, T^{2} Y\right)=p \cos ^{2} \theta n h(X, Y)+q \cos ^{2} \theta h(X, Y)$, for any $X, Y \in \Gamma\left(D^{\theta}\right)$. Thus, we obtain either M is a D^{θ} geodesic submanifold or $h(X, Y)$ is an eigenvector of n with eigenvalue λ, which verifies $\lambda^{2}-p \cos ^{2} \theta \lambda-q \cos ^{2} \theta=0$ and (4.1) holds.

5. Mixed totally geodesic hemi-Slant submanifolds

We consider hemi-slant submanifolds in a locally metallic (or locally Golden) Riemannian manifold and we find some conditions for these submanifolds to be $D^{\theta}-D^{\perp}$ mixed totally geodesic (i.e. $h(X, Y)=0$, for any $X \in \Gamma\left(D^{\theta}\right)$ and $Y \in \Gamma\left(D^{\perp}\right)$).

Theorem 5.12. If M is a hemi-slant submanifold in a locally metallic (or locally Golden) Riemannian manifold (\bar{M}, \bar{g}, J), then M is a $D^{\theta}-D^{\perp}$ mixed totally geodesic submanifold if and only if $A_{V} X \in \Gamma\left(D^{\theta}\right)$ and $A_{V} Y \in \Gamma\left(D^{\perp}\right)$, for any $X \in \Gamma\left(D^{\theta}\right), Y \in \Gamma\left(D^{\perp}\right)$ and $V \in \Gamma\left(T^{\perp} M\right)$.
Proof. From $\bar{g}\left(A_{V} X, Y\right)=\bar{g}\left(A_{V} Y, X\right)=\bar{g}(h(X, Y), V)$, for any $X \in \Gamma\left(D^{\theta}\right), Y \in \Gamma\left(D^{\perp}\right)$ and $V \in \Gamma\left(T^{\perp} M\right)$ we obtain that M is a $D^{\theta}-D^{\perp}$ mixed totally geodesic submanifold in the locally metallic (or locally Golden) Riemannian manifold if and only if $A_{V} X \in \Gamma\left(D^{\theta}\right)$ and $A_{V} Y \in \Gamma\left(D^{\perp}\right)$, for any $X \in \Gamma\left(D^{\theta}\right), Y \in \Gamma\left(D^{\perp}\right)$ and $V \in \Gamma\left(T^{\perp} M\right)$.

Theorem 5.13. Let M be a proper hemi-slant submanifold in a locally metallic (or locally Golden) Riemannian manifold (\bar{M}, \bar{g}, J). If $\left(\bar{\nabla}_{X} N\right) Z=0$, for any $X \in \Gamma(T M)$ and $Z \in \Gamma\left(D^{\perp}\right)$, then M is a $D^{\theta}-D^{\perp}$ mixed totally geodesic submanifold in \bar{M}.
Proof. If $X \in \Gamma\left(D^{\theta}\right)$ and $Z \in \Gamma\left(D^{\perp}\right)$ then, from $\left(\bar{\nabla}_{X} N\right) Z=0$, (2.15)(ii) and $T Z=0$ we get $h(Z, T X)=n h(X, Z)=h(X, T Z)=0$. From $n^{2} h(Z, X)=h\left(Z, T^{2} X\right)=0$ and (3.8) we get $p \cos ^{2} \theta n h(Z, T X)+q \cos ^{2} \theta h(Z, X)=0$. From $n h(Z, T X)=0$ and $\theta \neq \frac{\pi}{2}$ and $q \neq 0$, we obtain $h(X, Z)=0$, for any $X \in \Gamma\left(D^{\theta}\right)$ and $Z \in \Gamma\left(D^{\perp}\right)$.

References

[1] Atçeken, M. and Dirik, S., Pseudo-slant submanifolds of a nearly Kenmotsu manifold, Serdica Math. J., 41 (2015), No. 2-3, 243-262, MR3363604
[2] Atçeken, M. and Dirik, S., On the geometry of pseudo-slant submanifolds of a Kenmotsu manifold, Gulf J. Math., 2 (2014), No. 2, 51-66
[3] Atçeken, M., Dirik, S. and Yildirim, U., Pseudo-slant submanifolds of a locally decomposable Riemannian manifold, Journal of Advances in Math., 11 (2015), No. 8, 5587-5599
[4] Blaga, A. M. and Hretcanu, C. E., Golden warped product Riemannian manifolds, Libertas Mathematica (new series), 37 (2017), No. 1, 1-11
[5] Blaga, A. M. and Hretcanu, C. E., Invariant, anti-invariant and slant submanifolds of a metallic Riemannian manifold, Novi Sad Journal of Mathematics, 48 (2018), No. 2, 55-80
[6] Blaga, A. M. and Hretcanu, C. E., Metallic conjugate connections, Rev. Un. Mat. Argentina, 59 (2018), No. 1, 179-192
[7] Chen, B.-Y., Geometry of slant submanifolds, Katholieke Universiteit Leuven, Louvain, 1990, 123 pp. MR1099374
[8] Crasmareanu, M. and Hretcanu, C. E., Golden differential geometry, Chaos Solitons Fractals, 38 (2008), No. 5, 1229-1238, MR2456523
[9] Goldberg, S. I. and Yano, K., Polynomial structures on manifolds, Kodai Math. Sem. Rep., 22 (1970), 199-218, MR0267478
[10] Hretcanu, C. E. and Blaga, A. M., Submanifolds in metallic Riemannian manifolds, Differential GeometryDynamical Systems, 20 (2018), 83-97
[11] Hretcanu, C. E. and Blaga, A. M., Slant and semi-slant submanifolds in metallic Riemannian manifolds, Volume 2018, Article ID 2864263, 13 pages, https://doi.org/10.1155/2018/2864263, (2018)
[12] Hretcanu, C. E. and Crasmareanu, M., On some invariant submanifolds in a Riemannian manifold with Golden structure, An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.), 53 (2007), suppl. 1, 199-211, MR2522394
[13] Hretcanu, C. E. and Crasmareanu, M. C., Applications of the Golden ratio on Riemannian manifolds, Turkish J. Math., 33 (2009), No. 2, 179-191, MR2537561
[14] Hretcanu, C. E. and Crasmareanu, M., Metallic structures on Riemannian manifolds, Rev. Un. Mat. Argentina, 54 (2013), No. 2, 15-27 MR3263648
[15] Taştan, H. M. and Ozdem, F., The geometry of hemi-slant submanifolds of a locally product Riemannian manifold, Turk. J. Math., 39 (2015), 268-284, doi:10.3906/mat-1407-18
[16] Spinadel, V. W., The metallic means family and forbidden symmetries, Int. Math. J., 2 (2002), No. 3, 279-288, MR1867157

Ştefan cel Mare University of Suceava

Romania
E-mail address: criselenab@yahoo.com, cristina.hretcanu@fia.usv.ro

```
West University of Timisoara
Romania
E-mail address: adarablaga@yahoo.com, adara.blaga@e-uvt.ro
```

