A new class of fractional type set-valued functions

Alexandru Orzan

Abstract

The so-called ratios of affine functions, introduced by Rothblum (1985) in the framework of finite-dimensional Euclidean spaces, represent a special class of fractional type vector-valued functions, which transform convex sets into convex sets. The aim of this paper is to show that a similar convexity preserving property holds within a new class of fractional type set-valued functions, acting between any real linear spaces.

1. Introduction

Several classes of fractional type real-valued functions, such as ratios between a convex function and a concave one (in particular, a quadratic function and an affine one, or two affine functions), are known to play an important role in scalar optimization. Also, vectorvalued functions having fractional type scalar components have been studied intensively within vector optimization (see, e.g., Cambini and Martein [4], Göpfert et al. [7], Schaible [11] and Stancu-Minasian [12], and the references therein). It seems that, although the set-valued optimization is an important field (see, e.g., Khan, Tammer and Zălinescu [8]), only a few concepts of fractional type set-valued functions have been introduced so far in the literature (see, e.g., Bhatia and Mehra [2], or the recent paper by Das and Nahak [5]).

An interesting class of fractional type vector-valued functions has been introduced by Rothblum [10] within finite-dimensional Euclidean spaces. We present here a slightly modified version.

Definition 1.1. A vector-valued function $f: D \rightarrow \mathbb{R}^{m}$, defined on a nonempty convex set $D \subseteq \mathbb{R}^{n}$, is said to be a ratio of affine functions if there exist a vector-valued affine function $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and a real-valued affine function $h: \mathbb{R}^{n} \rightarrow \mathbb{R}$, such that

$$
D \subseteq\left\{x \in \mathbb{R}^{n} \mid h(x)>0\right\}
$$

and

$$
\begin{equation*}
f(x)=\frac{g(x)}{h(x)}, \forall x \in D \tag{1.1}
\end{equation*}
$$

As shown in [10], these functions have several important properties, among which two are of special interest for our purposes:
(P1) conv $f(S)=f(\operatorname{conv} S)$ for any set $S \subseteq D$;
(P2) $f(A)$ is convex for any convex set $A \subseteq D$.
The principal aim of our paper is to generalize (P1) and (P2) within a special class of fractional type set-valued functions, defined similarly to (1.1), this time by means of an appropriate concept of affine set-valued function brought in the literature by Tan [13].

In the preliminary Section 2 we recall a few notions of set-valued analysis and we state some useful properties of affine set-valued functions. Then, in Section 3 we introduce a new concept of set-valued ratio of affine functions and establish our main results.

Received: 27.07.2018. In revised form: 21.12.2018. Accepted: 30.12.2018
2010 Mathematics Subject Classification. 54C60, 26 B25.
Key words and phrases. Affine set-valued function, ratio of affine functions, convexity preserving functions.

2. Preliminaries

For any real linear space E, we denote by $\mathcal{P}(E)$ the collection of all subsets of E. Then, for any $S, S^{\prime} \in \mathcal{P}(E)$ and $\lambda \in \mathbb{R}$, we adopt the following notational conventions:

$$
\begin{aligned}
S+S^{\prime} & =\left\{x \in E \mid \exists\left(s, s^{\prime}\right) \in S \times S^{\prime}: x=s+s^{\prime}\right\} \\
\lambda S & =\{x \in E \mid \exists s \in S: x=\lambda s\} \\
\frac{S}{\lambda} & =\frac{1}{\lambda} S, \text { whenever } \lambda \neq 0 .
\end{aligned}
$$

The convex hull of S is denoted by conv S. In order to use convex combinations, in the sequel it will be convenient to consider, for any $k \in \mathbb{N}=\{1,2, \ldots\}$, the standard simplex of the Euclidean space \mathbb{R}^{k}, namely

$$
\Delta_{k-1}=\left\{\left(t_{1}, \ldots, t_{k}\right) \in \mathbb{R}^{k} \mid t_{1}+\ldots+t_{k}=1, t_{1}, \ldots, t_{k} \geq 0\right\}
$$

In what follows we consider two real linear spaces X and Y. As usual in set-valued analysis (see, e.g., Aubin and Frankowska [1] or Berge [3]), for any set-valued function $F: X \rightarrow \mathcal{P}(Y)$ we denote by

$$
\operatorname{dom} F=\{x \in X \mid F(x) \neq \emptyset\}
$$

the domain of F. The image of any set $A \in \mathcal{P}(X)$ by F is defined as

$$
F(A)=\bigcup_{x \in A} F(x)
$$

Remark 2.1. Every vector-valued function $f: D \rightarrow Y$, defined on a nonempty set $D \subseteq X$, can be identified with a set-valued function $F: X \rightarrow \mathcal{P}(Y)$, given by

$$
F(x)=\left\{\begin{array}{cl}
\{f(x)\} & \text { if } x \in D \tag{2.2}\\
\emptyset & \text { if } x \in X \backslash D
\end{array}\right.
$$

It is easy to see that $\operatorname{dom} F=D$ and, for any set $A \in \mathcal{P}(X)$, we have

$$
f(A)=\{f(x) \mid x \in A\}=F(A)
$$

Among different notions of affine set-valued functions known in the literature (see, e.g., Deutsch and Singer [6] or Nikodem and Popa [9], and the references therein) the following one is appropriate for the purpose of our paper. It is a particular instance of the original definition proposed by Tan [13, Def. 2] (where the functions were defined on some affine subset of X, not necessarily the whole space X).

Definition 2.2. A set-valued function $G: X \rightarrow \mathcal{P}(Y)$ is said to be affine if

$$
\begin{equation*}
G\left(t x_{1}+(1-t) x_{2}\right)=t G\left(x_{1}\right)+(1-t) G\left(x_{2}\right) \tag{2.3}
\end{equation*}
$$

for all $x_{1}, x_{2} \in X$ and $t \in \mathbb{R}$.
Remark 2.2. According to Nikodem and Popa [9, Prop. 2.11], if $G: X \rightarrow \mathcal{P}(Y)$ is a set-valued function such that $\operatorname{dom} G=X$, then G is affine if and only if

$$
G\left(t x_{1}+(1-t) x_{2}\right) \supseteq t G\left(x_{1}\right)+(1-t) G\left(x_{2}\right)
$$

for all $x_{1}, x_{2} \in X$ and $t \in \mathbb{R}$. In other words, if dom $G=X$, then G is affine in the sense of Definition 2.2 if and only if G is affine in the sense of Deutsch and Singer [6, Def. 1.1].

Remark 2.3. It is easy to see that a set-valued function $G: X \rightarrow \mathcal{P}(Y)$ is affine if and only if for any $k \in \mathbb{N}, x_{1}, \ldots, x_{k} \in X$ and $t_{1}, \ldots, t_{k} \in \mathbb{R}$ with $t_{1}+\ldots+t_{k}=1$, we have

$$
G\left(t_{1} x_{1}+\ldots+t_{k} x_{k}\right)=t_{1} G\left(x_{1}\right)+\ldots+t_{k} G\left(x_{k}\right)
$$

3. Ratios of affine functions

Definition 3.3. Let $D \subseteq X$ be a nonempty convex set. We say that $F: X \rightarrow \mathcal{P}(Y)$ is a setvalued ratio of affine functions with respect to D if there exist a set-valued affine function $G: X \rightarrow \mathcal{P}(Y)$ with dom $G=X$ and a real-valued affine function $h: X \rightarrow \mathbb{R}$, such that

$$
\begin{equation*}
D \subseteq\{x \in X \mid h(x)>0\} \tag{3.4}
\end{equation*}
$$

and

$$
F(x)=\left\{\begin{array}{cl}
\frac{G(x)}{h(x)} & \text { if } x \in D \tag{3.5}\\
\emptyset & \text { if } x \in X \backslash D .
\end{array}\right.
$$

Remark 3.4. If $F: X \rightarrow \mathcal{P}(Y)$ is a set-valued ratio of affine functions w.r.t. D, then $\operatorname{dom} F=D$, since $\operatorname{dom} G=X$.

Example 3.1. Let $L: X \rightarrow Y$ be a linear operator and $M \subseteq Y$ a nonempty affine set. It is easy to see that the set-valued function $G: X \rightarrow \mathcal{P}(Y)$, defined by

$$
G(x)=L(x)+M, \forall x \in X,
$$

is affine and $\operatorname{dom} G=X$. Let $h: X \rightarrow \mathbb{R}$ be an affine function, other than the null functional. Consider any nonempty convex set $D \subseteq X$ satisfying (3.4), as for instance $D=\{x \in X \mid h(x)>0\}$. Then, the set-valued function $F: X \rightarrow \mathcal{P}(Y)$, defined by (3.5) is a ratio of affine functions w.r.t. D.

Example 3.2. We have seen that Definition 1.1 was formulated within finite-dimensional Euclidean spaces. Naturally, it can be adapted to our general framework. Let $g: X \rightarrow Y$ be an affine vector-valued function. As in the previous example, let $h: X \rightarrow \mathbb{R}$ be an affine function, other than the null functional, and let $D \subseteq X$ be a nonempty convex set satisfying (3.4). Then, the function $f: D \rightarrow Y$, defined by

$$
f(x)=\frac{g(x)}{h(x)}, \forall x \in D
$$

is a vector-valued ratio of affine functions, which can be identified, in view of Remark 2.1, with the set-valued function $F: X \rightarrow \mathcal{P}(Y)$ given by (2.2), which actually is a ratio of affine functions w.r.t. D of type (3.5), where the set-valued affine function $G: X \rightarrow Y$ is given by $G(x)=\{g(x)\}$ for all $x \in X$.

The following result is a generalization of property (P1) mentioned in the Introduction.
Theorem 3.1. Let $D \subseteq X$ be a nonempty convex set. If $F: X \rightarrow \mathcal{P}(Y)$ is a set-valued ratio of affine functions w.r.t. D, then for any set $S \subseteq D$ we have

$$
\begin{equation*}
\operatorname{conv} F(S)=F(\operatorname{conv} S) \tag{3.6}
\end{equation*}
$$

Proof. Assuming that F is a ratio of affine functions w.r.t. D, we can choose $G: X \rightarrow \mathcal{P}(Y)$ and $h: X \rightarrow \mathbb{R}$ satisfying the conditions of Definition 3.3.

Consider an arbitrary set $S \subseteq D$. First we prove the inclusion

$$
\begin{equation*}
\operatorname{conv} F(S) \subseteq F(\operatorname{conv} S) \tag{3.7}
\end{equation*}
$$

In order to do this, let $y \in \operatorname{conv} F(S)$. Then there exist $k \in \mathbb{N},\left(t_{1}, \ldots, t_{k}\right) \in \Delta_{k-1}$ and $y_{1}, \ldots, y_{k} \in F(S)$ such that $y=\sum_{j=1}^{k} t_{j} y_{j}$. Since for every $j \in\{1, \ldots, k\}$ we have $y_{j} \in F(S)$,
we can find $s_{j} \in S$ such that $y_{j} \in F\left(s_{j}\right)$. Taking into account that $s_{1}, \ldots, s_{k} \in S \subseteq D$, we infer by (3.5) that

$$
\begin{equation*}
y \in \sum_{j=1}^{k} t_{j} F\left(s_{j}\right)=\sum_{j=1}^{k} \frac{t_{j}}{h\left(s_{j}\right)} G\left(s_{j}\right) . \tag{3.8}
\end{equation*}
$$

Consider the numbers

$$
u=\left(\sum_{j=1}^{k} \frac{t_{j}}{h\left(s_{j}\right)}\right)^{-1}
$$

and

$$
v_{j}=\frac{u t_{j}}{h\left(s_{j}\right)}, \forall j \in\{1, \ldots, k\}
$$

Define the point

$$
x=\sum_{j=1}^{k} v_{j} s_{j}
$$

and notice that $x \in \operatorname{conv} S$, since $\left(v_{1}, \ldots, v_{k}\right) \in \Delta_{k-1}$. By affinity of h, we deduce that

$$
\begin{equation*}
h(x)=h\left(\sum_{j=1}^{k} v_{j} s_{j}\right)=\sum_{j=1}^{k} v_{j} h\left(s_{j}\right)=\sum_{j=1}^{k} u t_{j}=u . \tag{3.9}
\end{equation*}
$$

On the other hand, since G is affine, in view of Remark 2.3 we have

$$
\begin{equation*}
G(x)=G\left(\sum_{j=1}^{k} v_{j} s_{j}\right)=\sum_{j=1}^{k} v_{j} G\left(s_{j}\right)=\sum_{j=1}^{k} \frac{u t_{j}}{h\left(s_{j}\right)} G\left(s_{j}\right) . \tag{3.10}
\end{equation*}
$$

From (3.8) and (3.10) it follows that $u y \in G(x)$. By (3.9), we obtain

$$
y \in \frac{G(x)}{h(x)}=F(x) \subseteq F(\operatorname{conv} S),
$$

where the equality is due to (3.5) and the fact that $x \in \operatorname{conv} S \subseteq D$, by convexity of D. Thus (3.7) holds true.

Now we are going to prove the inclusion

$$
\begin{equation*}
F(\operatorname{conv} S) \subseteq \operatorname{conv} F(S) \tag{3.11}
\end{equation*}
$$

To this aim, let $y \in F(\operatorname{conv} S)$. Then, we can choose a point $x \in \operatorname{conv} S$ such that $y \in F(x)$. Since $S \subseteq D$ and D is convex, we deduce that $x \in D$. Therefore, by (3.5) we get

$$
y \in F(x)=\frac{G(x)}{h(x)} .
$$

More precisely, there exist $k \in \mathbb{N},\left(t_{1}, \ldots, t_{k}\right) \in \Delta_{k-1}$ and $s_{1}, \ldots, s_{k} \in S$ such that

$$
x=\sum_{j=1}^{k} t_{j} s_{j} .
$$

Denote $u=h(x)$ and notice that $u>0$ by (3.4), since $x \in D$. From the above relations and the affinity of G, it follows that

$$
\begin{equation*}
y \in \frac{G(x)}{h(x)}=u^{-1} G(x)=u^{-1} G\left(\sum_{j=1}^{k} t_{j} s_{j}\right)=u^{-1} \sum_{j=1}^{k} t_{j} G\left(s_{j}\right) . \tag{3.12}
\end{equation*}
$$

Now, for any $j \in\{1, \ldots, k\}$, denote $v_{j}=u^{-1} t_{j} h\left(s_{j}\right)$. Since $s_{1}, \ldots, s_{k} \in S \subseteq D$, it follows by (3.4) and (3.5) that $\left(v_{1}, \ldots, v_{k}\right) \in \Delta_{k-1}$ and, respectively,

$$
\begin{equation*}
u^{-1} \sum_{j=1}^{k} t_{j} G\left(s_{j}\right)=\sum_{j=1}^{k} u^{-1} t_{j} G\left(s_{j}\right)=\sum_{j=1}^{k} v_{j} \frac{G\left(s_{j}\right)}{h\left(s_{j}\right)}=\sum_{j=1}^{k} v_{j} F\left(s_{j}\right) \subseteq \operatorname{conv} F(S) \tag{3.13}
\end{equation*}
$$

By (3.13) and (3.12) we infer that $y \in \operatorname{conv} F(S)$, hence (3.11) is also true.
From relations (3.7) and (3.11) we conclude (3.6).
As a consequence of the previous theorem, we establish now a generalization of property (P 2) mentioned in the Introduction.
Corollary 3.1. Let $D \subseteq X$ be a nonempty convex set. If $F: X \rightarrow \mathcal{P}(Y)$ is a set-valued ratio of affine functions w.r.t. D, then for any nonempty convex set $A \subseteq D$ the set $F(A)$ is convex.
Proof. Let $A \subseteq D$ be a convex set. Since F is a ratio of affine functions, by Theorem 3.1 it follows that $\operatorname{conv} F(A)=F(\operatorname{conv} A)=F(A)$, hence the conclusion is true.

We conclude the paper by illustrating how the classical results by Rothblum [10], mentioned in the Introduction, can be recovered from our general approach.
Example 3.3. Let $D \subseteq \mathbb{R}^{n}$ be a nonempty convex set. According to Rothblum [10], a function $f: D \rightarrow \mathbb{R}^{m}$ is a ratio of affine functions if there exist a vector-valued function $g=\left(g_{1}, \ldots, g_{m}\right): D \rightarrow \mathbb{R}^{m}$ and a real-valued function $h: D \rightarrow \mathbb{R}$, which are affine on D in the sense that for any $k \in \mathbb{N}, x_{1}, \ldots, x_{k} \in D$ and $t_{1}, \ldots, t_{k} \in[0,+\infty)$ with $t_{1}+\ldots+t_{k}=1$, we have

$$
\begin{aligned}
& g\left(t_{1} x_{1}+\ldots+t_{k} x_{k}\right)=t_{1} g\left(x_{1}\right)+\ldots+t_{k} g\left(x_{k}\right) \\
& h\left(t_{1} x_{1}+\ldots+t_{k} x_{k}\right)=t_{1} h\left(x_{1}\right)+\ldots+t_{k} h\left(x_{k}\right) .
\end{aligned}
$$

Notice that, g and h are affine on D if and only if all real-valued functions g_{1}, \ldots, g_{m} and h are both convex and concave on D. It is easy to see that every ratio of affine functions in the sense of Rothblum actually is a ratio of affine functions in the sense of Definition 1.1, where $X=\mathbb{R}^{n}$ and $Y=\mathbb{R}^{m}$. Therefore, in view of Example 3.2, f can be identified with a set-valued ratio of affine functions $F: \mathbb{R}^{n} \rightarrow \mathcal{P}\left(\mathbb{R}^{m}\right)$, and consequently, Theorem 3.1 and Corollary 3.1 generalize two classical results of Rothblum, namely Propositions 1 and 2 in [10], respectively.
Acknowledgements. This work was supported by a research fellowship STAR-UBB, granted by Babeş-Bolyai University, Cluj-Napoca. The author wish to thank his supervisor, professor Nicolae Popovici, for suggesting the definition of set-valued ratios of affine functions in order to generalize some results known in the literature for vector-valued functions.

References

[1] Aubin, J.-P. and Frankowska, H., Set-Valued Analysis, Birhäuser, Boston, 1990
[2] Bhatia, D. and Mehra, A., Fractional programming involving set-valued functions, Indian J. Pure Appl. Math., 29 (1998), 525-539
[3] Berge, C., Topological spaces including a treatment of multi-valued functions, vector spaces and convexity, Oliver \& Boyd, Edinburgh-London, 1963
[4] Cambini, A. and Martein, L., Generalized Convexity and Optimization: Theory and Applications, SpringerVerlag, Berlin, 2009
[5] Das, K. and Nahak, C., Set-valued fractional programming problems under generalized cone convexity, Opsearch, 53 (2016), No. 1, 157-177
[6] Deutsch, F. and Singer, I., On single-valuedness of convex set-valued maps, Set-Valued Anal., 1 (1993), 97-103
[7] Göpfert, A., Riahi, H., Tammer, C. and Zălinescu, C., Variational Methods in Partially Ordered Spaces, SpringerVerlag, New York, 2003
[8] Khan, A. A., Tammer, C. and Zălinescu, C., Set-Valued Optimization: An Introduction with Applications, Springer, Heidelberg, 2015
[9] Nikodem, K. and Popa, D., On single-valuedness of set-valued maps satisfying linear inclusions, Banach J. Math. Anal., 3 (2009), 44-51
[10] Rothblum, U.-G., Ratios of affine functions, Math. Programming 32 (1985), No. 3, 357-365
[11] Schaible, S., Bicriteria quasiconcave programs, Cahiers du Centre d'Etudes de Recherche Oprationnelle, 25 (1983), 93-101
[12] Stancu-Minasian, I.-M., Fractional programming. Theory, methods and applications, Mathematics and its Applications, Kluwer-Dordrecht, 409 (1997)
[13] Tan, D.-H., A note on multivalued affine mappings, Studia Univ. Babeş-Bolyai Math., Cluj-Napoca, 33 (1988), 55-59

Babeş-Bolyai University
Faculty of Mathematics and Computer Science
Kogălniceanu 1, 400084, CluJ-Napoca, Romania
E-mail address: orzanalexandru@yahoo.com

