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A new class of fractional type set-valued functions

ALEXANDRU ORZAN

ABSTRACT. The so-called ratios of affine functions, introduced by Rothblum (1985) in the framework of
finite-dimensional Euclidean spaces, represent a special class of fractional type vector-valued functions, which
transform convex sets into convex sets. The aim of this paper is to show that a similar convexity preserving
property holds within a new class of fractional type set-valued functions, acting between any real linear spaces.

1. INTRODUCTION

Several classes of fractional type real-valued functions, such as ratios between a convex
function and a concave one (in particular, a quadratic function and an affine one, or two
affine functions), are known to play an important role in scalar optimization. Also, vector-
valued functions having fractional type scalar components have been studied intensively
within vector optimization (see, e.g., Cambini and Martein [4], Göpfert et al. [7], Schaible
[11] and Stancu-Minasian [12], and the references therein). It seems that, although the
set-valued optimization is an important field (see, e.g., Khan, Tammer and Zălinescu [8]),
only a few concepts of fractional type set-valued functions have been introduced so far in
the literature (see, e.g., Bhatia and Mehra [2], or the recent paper by Das and Nahak [5]).

An interesting class of fractional type vector-valued functions has been introduced by
Rothblum [10] within finite-dimensional Euclidean spaces. We present here a slightly
modified version.

Definition 1.1. A vector-valued function f : D → Rm, defined on a nonempty convex set
D ⊆ Rn, is said to be a ratio of affine functions if there exist a vector-valued affine function
g : Rn → Rm and a real-valued affine function h : Rn → R, such that

D ⊆ {x ∈ Rn | h(x) > 0}
and

(1.1) f(x) =
g(x)

h(x)
, ∀x ∈ D.

As shown in [10], these functions have several important properties, among which two
are of special interest for our purposes:

(P1) conv f(S) = f(convS) for any set S ⊆ D;
(P2) f(A) is convex for any convex set A ⊆ D.
The principal aim of our paper is to generalize (P1) and (P2) within a special class of

fractional type set-valued functions, defined similarly to (1.1), this time by means of an
appropriate concept of affine set-valued function brought in the literature by Tan [13].

In the preliminary Section 2 we recall a few notions of set-valued analysis and we state
some useful properties of affine set-valued functions. Then, in Section 3 we introduce a
new concept of set-valued ratio of affine functions and establish our main results.
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2. PRELIMINARIES

For any real linear space E, we denote by P(E) the collection of all subsets of E. Then,
for any S, S′ ∈ P(E) and λ ∈ R, we adopt the following notational conventions:

S + S′ = {x ∈ E | ∃ (s, s′) ∈ S × S′ : x = s+ s′};
λS = {x ∈ E | ∃ s ∈ S : x = λs};
S

λ
=

1

λ
S, whenever λ 6= 0.

The convex hull of S is denoted by convS. In order to use convex combinations, in the
sequel it will be convenient to consider, for any k ∈ N = {1, 2, . . . }, the standard simplex
of the Euclidean space Rk, namely

∆k−1 = {(t1, ..., tk) ∈ Rk | t1 + ...+ tk = 1, t1, ..., tk ≥ 0}.
In what follows we consider two real linear spaces X and Y . As usual in set-valued

analysis (see, e.g., Aubin and Frankowska [1] or Berge [3]), for any set-valued function
F : X → P(Y ) we denote by

domF = {x ∈ X | F (x) 6= ∅}
the domain of F . The image of any set A ∈ P(X) by F is defined as

F (A) =
⋃
x∈A

F (x).

Remark 2.1. Every vector-valued function f : D → Y , defined on a nonempty setD ⊆ X ,
can be identified with a set-valued function F : X → P(Y ), given by

(2.2) F (x) =

{
{f(x)} if x ∈ D
∅ if x ∈ X \D.

It is easy to see that domF = D and, for any set A ∈ P(X), we have

f(A) = {f(x) | x ∈ A} = F (A).

Among different notions of affine set-valued functions known in the literature (see,
e.g., Deutsch and Singer [6] or Nikodem and Popa [9], and the references therein) the
following one is appropriate for the purpose of our paper. It is a particular instance of
the original definition proposed by Tan [13, Def. 2] (where the functions were defined on
some affine subset of X , not necessarily the whole space X).

Definition 2.2. A set-valued function G : X → P(Y ) is said to be affine if

(2.3) G(tx1 + (1− t)x2) = tG(x1) + (1− t)G(x2)

for all x1, x2 ∈ X and t ∈ R.

Remark 2.2. According to Nikodem and Popa [9, Prop. 2.11], if G : X → P(Y ) is a
set-valued function such that domG = X , then G is affine if and only if

G(tx1 + (1− t)x2) ⊇ tG(x1) + (1− t)G(x2)

for all x1, x2 ∈ X and t ∈ R. In other words, if domG = X , then G is affine in the sense of
Definition 2.2 if and only if G is affine in the sense of Deutsch and Singer [6, Def. 1.1 ].

Remark 2.3. It is easy to see that a set-valued function G : X → P(Y ) is affine if and only
if for any k ∈ N, x1, ..., xk ∈ X and t1, ..., tk ∈ R with t1 + ...+ tk = 1, we have

G(t1x1 + ...+ tkxk) = t1G(x1) + ...+ tkG(xk).
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3. RATIOS OF AFFINE FUNCTIONS

Definition 3.3. Let D ⊆ X be a nonempty convex set. We say that F : X → P(Y ) is a set-
valued ratio of affine functions with respect to D if there exist a set-valued affine function
G : X → P(Y ) with domG = X and a real-valued affine function h : X → R, such that

(3.4) D ⊆ {x ∈ X | h(x) > 0}

and

(3.5) F (x) =


G(x)

h(x)
if x ∈ D

∅ if x ∈ X \D.

Remark 3.4. If F : X → P(Y ) is a set-valued ratio of affine functions w.r.t. D, then
domF = D, since domG = X .

Example 3.1. Let L : X → Y be a linear operator and M ⊆ Y a nonempty affine set. It is
easy to see that the set-valued function G : X → P(Y ), defined by

G(x) = L(x) +M, ∀x ∈ X,

is affine and domG = X . Let h : X → R be an affine function, other than the null
functional. Consider any nonempty convex set D ⊆ X satisfying (3.4), as for instance
D = {x ∈ X | h(x) > 0}. Then, the set-valued function F : X → P(Y ), defined by (3.5) is
a ratio of affine functions w.r.t. D.

Example 3.2. We have seen that Definition 1.1 was formulated within finite-dimensional
Euclidean spaces. Naturally, it can be adapted to our general framework. Let g : X → Y
be an affine vector-valued function. As in the previous example, let h : X → R be an
affine function, other than the null functional, and let D ⊆ X be a nonempty convex set
satisfying (3.4). Then, the function f : D → Y , defined by

f(x) =
g(x)

h(x)
, ∀x ∈ D,

is a vector-valued ratio of affine functions, which can be identified, in view of Remark 2.1,
with the set-valued function F : X → P(Y ) given by (2.2), which actually is a ratio of
affine functions w.r.t. D of type (3.5), where the set-valued affine function G : X → Y is
given by G(x) = {g(x)} for all x ∈ X .

The following result is a generalization of property (P1) mentioned in the Introduction.

Theorem 3.1. Let D ⊆ X be a nonempty convex set. If F : X → P(Y ) is a set-valued ratio of
affine functions w.r.t. D, then for any set S ⊆ D we have

(3.6) convF (S) = F (convS).

Proof. Assuming that F is a ratio of affine functions w.r.t. D, we can chooseG : X → P(Y )
and h : X → R satisfying the conditions of Definition 3.3.

Consider an arbitrary set S ⊆ D. First we prove the inclusion

(3.7) convF (S) ⊆ F (convS).

In order to do this, let y ∈ convF (S). Then there exist k ∈ N, (t1, . . . , tk) ∈ ∆k−1 and

y1, . . . , yk ∈ F (S) such that y =

k∑
j=1

tjyj . Since for every j ∈ {1, ..., k} we have yj ∈ F (S),
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we can find sj ∈ S such that yj ∈ F (sj). Taking into account that s1, . . . , sk ∈ S ⊆ D, we
infer by (3.5) that

(3.8) y ∈
k∑

j=1

tjF (sj) =

k∑
j=1

tj
h(sj)

G(sj).

Consider the numbers

u =

 k∑
j=1

tj
h(sj)

−1
and

vj =
utj
h(sj)

, ∀ j ∈ {1, ..., k}.

Define the point

x =

k∑
j=1

vjsj

and notice that x ∈ convS, since (v1, . . . , vk) ∈ ∆k−1. By affinity of h, we deduce that

(3.9) h(x) = h(

k∑
j=1

vjsj) =

k∑
j=1

vjh(sj) =

k∑
j=1

utj = u.

On the other hand, since G is affine, in view of Remark 2.3 we have

(3.10) G(x) = G(

k∑
j=1

vjsj) =

k∑
j=1

vjG(sj) =

k∑
j=1

utj
h(sj)

G(sj).

From (3.8) and (3.10) it follows that uy ∈ G(x). By (3.9), we obtain

y ∈ G(x)

h(x)
= F (x) ⊆ F (convS),

where the equality is due to (3.5) and the fact that x ∈ convS ⊆ D, by convexity of D.
Thus (3.7) holds true.

Now we are going to prove the inclusion

(3.11) F (convS) ⊆ convF (S).

To this aim, let y ∈ F (convS). Then, we can choose a point x ∈ convS such that y ∈ F (x).
Since S ⊆ D and D is convex, we deduce that x ∈ D. Therefore, by (3.5) we get

y ∈ F (x) =
G(x)

h(x)
.

More precisely, there exist k ∈ N, (t1, . . . , tk) ∈ ∆k−1 and s1, . . . , sk ∈ S such that

x =

k∑
j=1

tjsj .

Denote u = h(x) and notice that u > 0 by (3.4), since x ∈ D. From the above relations
and the affinity of G, it follows that

(3.12) y ∈ G(x)

h(x)
= u−1G(x) = u−1G(

k∑
j=1

tjsj) = u−1
k∑

j=1

tjG(sj).
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Now, for any j ∈ {1, ..., k}, denote vj = u−1tjh(sj). Since s1, . . . , sk ∈ S ⊆ D, it follows
by (3.4) and (3.5) that (v1, . . . , vk) ∈ ∆k−1 and, respectively,

(3.13) u−1
k∑

j=1

tjG(sj) =

k∑
j=1

u−1tjG(sj) =

k∑
j=1

vj
G(sj)

h(sj)
=

k∑
j=1

vjF (sj) ⊆ convF (S).

By (3.13) and (3.12) we infer that y ∈ convF (S), hence (3.11) is also true.
From relations (3.7) and (3.11) we conclude (3.6). �

As a consequence of the previous theorem, we establish now a generalization of pro-
perty (P2) mentioned in the Introduction.

Corollary 3.1. Let D ⊆ X be a nonempty convex set. If F : X → P(Y ) is a set-valued ratio of
affine functions w.r.t. D, then for any nonempty convex set A ⊆ D the set F (A) is convex.

Proof. Let A ⊆ D be a convex set. Since F is a ratio of affine functions, by Theorem 3.1 it
follows that convF (A) = F (convA) = F (A), hence the conclusion is true. �

We conclude the paper by illustrating how the classical results by Rothblum [10], men-
tioned in the Introduction, can be recovered from our general approach.

Example 3.3. Let D ⊆ Rn be a nonempty convex set. According to Rothblum [10], a
function f : D → Rm is a ratio of affine functions if there exist a vector-valued function
g = (g1, . . . , gm) : D → Rm and a real-valued function h : D → R, which are affine on D
in the sense that for any k ∈ N, x1, ..., xk ∈ D and t1, ..., tk ∈ [0,+∞) with t1 + ...+ tk = 1,
we have

g(t1x1 + ...+ tkxk) = t1g(x1) + ...+ tkg(xk);

h(t1x1 + ...+ tkxk) = t1h(x1) + ...+ tkh(xk).

Notice that, g and h are affine onD if and only if all real-valued functions g1, . . . , gm and
h are both convex and concave on D. It is easy to see that every ratio of affine functions in
the sense of Rothblum actually is a ratio of affine functions in the sense of Definition 1.1,
where X = Rn and Y = Rm. Therefore, in view of Example 3.2, f can be identified with a
set-valued ratio of affine functions F : Rn → P(Rm), and consequently, Theorem 3.1 and
Corollary 3.1 generalize two classical results of Rothblum, namely Propositions 1 and 2 in
[10], respectively.
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