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Bounds for some entropies and special functions

ADINA BARAR!, GABRIELA RALUCA MOCANU? and IOAN Raga!

ABSTRACT. We consider a family of probability distributions depending on a real parameter and including
the binomial, Poisson and negative binomial distributions. The corresponding index of coincidence satisfies a
Heun differential equation and is a logarithmically convex function. Combining these facts we get bounds for
the index of coincidence, and consequently for Rényi and Tsallis entropies of order 2.

1. INTRODUCTION

Force R, letI. := [0,—1]if c < 0,and I, := [0, +00) if ¢ > 0.
Let a € R and k € Ny; the binomial coefficients are defined as usual by

(a) _ala=1)...(a=k+1)

k k!

if ke N,and (}) :== 1.

Consider also a real number n > 0 such thatn > cif ¢ > 0, and n = —cl for some [ € N
if ¢ < 0.

For k € Ny and x € I, define

P (@) == <_k°’> (—cx)*(1 + cx)~ e 7%, ifc £ 0,

k
O oy il oy (@),
P (@) o= M py (2) = e ™™

These functions were intensively used in Approximation Theory: see [3], [8], [22] and
the references therein.
In particular,

Zpgf,]k(l‘) =1,
k=0

so that (pgf]k(x)) oo is a parameterized probability distribution.

Its index of coincidence (see [7]) is

Spe(x) == i (pLC]k(a:))Z, xel,.

k=0
The Rényi entropy of order 2 and the Tsallis entropy of order 2 are given, respectively,
by (see [18], [20])

R, c(x) :=—1logSnc(z); Thelz):=1-28,(x),

Received: 26.06.2017. In revised form: 15.01.2018. Accepted: 22.01.2018

2010 Mathematics Subject Classification. 94A17, 33E30, 33C05, 33C45.

Key words and phrases. Probability distribution, entropies, Heun functions, logarithmically convex functions.
Corresponding author: Gabriela Raluca Mocanu; gabriela.mocanu@academia-cj.ro

9



10 Adina Barar, Gabriela Raluca Mocanu and Ioan Rasa

while the associated Shannon entropy is

ank logpnk( ), z€l.

Thecasesc=—-1,¢=0,c=1 Correspond, respectively, to the binomial, Poisson, and
negative binomial distributions; see also [13], [14].

It was proved in [12], [15] that the index of coincidence S,, . satisfies the Heun differen-
tial equation

(14 cx)(1+2cx)S) () + (4(n+ )zl +cx) +1) S, .(z) +
(1.1) +2n(1 + 2cz)Spc(x) =0, z € L.

It was conjectured in [11] and proved in several papers (for details see [1], [4],
[10], [12], [15], [16] and the references given there) that S,, . is a convex function, i.e.,

1.2) S/ (x) >0, ze€l.

It is easy to combine (1.1) and (1.2) in order to get

(1.3) Sne(®) < (An+ )zl +cx) +1) 2% | ze .
Particular cases and related results can be found in [12], [15]. Let us remark also that
Sp.c(0) = 1.

The upper bound for S, ., given by (1.3), leads obviously to lower bounds for the Rényi
entropy R, . and the Tsallis entropy 75, ..
The following conjecture was formulated in [12] and [15]:

Conjecture 1.1. For c € R, S,, . is a logarithmically convex function, i.e., log Sy, . is convex.
For ¢ > 0, U. Abel, W. Gawronski and Th. Neuschel obtained a stronger result:
Theorem 1.1. ([1]) For ¢ > 0 the function S, . is completely monotonic, i.e.,
(1Y SYM(x) >0, x>0, j>0.
Consequently, for ¢ > 0, S,, .. is logarithmically convex.
The following corollary can be found in [16]:

Corollary 1.1. ([16])
i) Let ¢ > 0. Then R, . is increasing and concave, while T,
[0, +00).
ii) T, . is concave for all ¢ € R.

n,c i completely monotonic on

Let us remark that the complete monotonicity for the Shannon entropy H,, . was inves-
tigated in [16], and for other entropies in [23].

In Sections 2 and 3 we shall use (1.1) in connection with the log-convexity of S), ¢, ¢ > 0,
in order to obtain upper-bounds for S, ., sharper than (1.3); they can be immediately
converted into sharp lower-bounds for the Rényi entropy and the Tsallis entropy.

Theorem 3.3 provides an upper bound for the modified Bessel function of first kind of
order 0.

Section 4 is devoted to the case ¢ < 0. In this case Conjecture 1.1 was proved in [17], so
that it is again possible to obtain upper-bounds for S, ., sharper than (1.3).

On the other hand (see [10]), S,,—1 is related to the Legendre polynomials P,; using
results from [10] we obtain bounds for S, _; and FP,.

Sharp bounds on other entropies can be found in [2], [7], [19], [21] and the references
therein.
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2. THECASEc¢ >0

According to Theorem 1.1, log Sy, (), « € [0, +00), is a convex function, i.e.,

(2.4) Sp o) > (Sho(@)” /Snelw), @ €[0,+00).
Denote X := z(1 + cz), and therefore X’ = 1 + 2cx. Then (1.1) becomes
(2.5) XX'S) (x) + (A(n+ )X +1) S, .(z) +2nX'S, o(x) = 0.
From (2.4) and (2.5) we infer that
SL e\’ s/
(2.6) XX’ (SZ> +@An+c)X +1) % +2nX' <0.
This implies

7,C(:zr \/1+8CX+16(n2+02)X2—1—4(n+c)X

@7) o(@) = 2X X' ’

and, since S,, .(0) =1,

(2.8) log Sy, c( dx.

/ V1+8cX +16(n2+ c2)X2 —1—4(n+c)X
2X X'
Note that X'? = 1 + 4cX. Now (2.8) becomes

/ V1+8cX +16(n2 +c2)X2—1—4(n+c)X
92X (1 + 4cX)

dX.

(2.9) log S, (

where T :=t + ct?,t > 0.
Moreover, denoting p := v/n? + ¢ and R := \/16p2T2 + 8T + 1, we have

Theorem 2.2. The following inequalities hold in the case ¢ > 0:

S2.(0) < 2 1 "R+ 4p°T + ¢ p/c<
“1+4cT'+ R \ R+4nT p+c -

2.10 < 144 e (14 svmrer)
(2.10) _1+4CT(+(n+c)) <+ n+c) .
Consequently,
7L2 6277L7L'
(2.11) Sn,c(t):(’)(tv e ) t = oo.

Proof. The first inequality in (2.10) follows from (2.9) by a straightforward calculation. In
order to get the second one it suffices to use the inequalities 1 + 4cT' < R < 1+4pT. O

Remark 2.1. The inequality (2.4) is stronger than (1.2); therefore, the bound for .5, . given
in (2.10) is sharper than the bound given in (1.3). In particular, (1.3) yields

Sne(t) =0 (t775), t— o,
and comparing with (2.11) we see that

vVn2+c2—n—c n
<_

c n+c
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3. THE CASE ¢ = 0.

The relations (2.4) - (2.9) are still valid with obvious simplifications induced by ¢ = 0.
In particular, (2.9) reduces to

t 2,2 1
log S o(t) < / V14 16n%z% —1 4nde’
0 2z
and this yields
2 V1+16n2t2 — 1 — 4nt
(3.12) 2ot < =22 ( ” ") s

- 14+ V1 + 1602 ’
This bound for S, ¢ is sharper than the bound furnished by (1.3) with ¢ = 0.
By using (3.12) we get also

Theorem 3.3. Let Iy(t), t > 0, be the modified Bessel function of first kind of order 0. Then

Qexp(\/1+4t271) £>0

3.13 I2(t) < ,

Proof. According to [15, (12)],

(3.14) To(t) = 'S o (;) .

Now (3.13) is a consequence of (3.12) and (3.14). a

4. THE CASE ¢ < 0.

As mentioned in the Introduction, in this case Conjecture 1.1 was proved in [17]. Con-
sequently, with the same notation and the same proof as in Theorem 2.2, we get

Theorem 4.4. The following inequality holds for all ¢ < 0 and t € [0, —1]:

S? ()< 2 1 n/e pR+ 4p*T + ¢ ole
M= 144+ R \ R+ 4nT p+ec '

Since the log-convexity of S, . implies the convexity, the above inequality is sharper
than (1.3). Remember that if ¢ < 0, then n = —cl for some [ € N. It follows that

S olt) = Si_1(—ct), te {0’_1]

c
Consequently, in what follows we shall investigate only the function S, _;(z) with
n € Nand z € [0, 1].
G. Nikolov proved in [10, Theorem 3] that the Legendre polynomials P, (¢) satisfy the
inequalities
/ 2
n(n+1) < P! (%) < n*(2n+1)

(4.15) U+ (n—DVE—1" Put) = (n+1)t+(2n2— )V -1

. t> 1.

Let

222 —2x 41 1-2X 1
X:=2x(1- t= = 0
.I‘( x)v 1_ 922 X xe{, )

Then t > 1 and (see [13, (2.9)], [15, Section 4])
Pi(t) nX' 1-4XS), _(x)

(4.16) P.(f)  2X 4X S, _1(z)
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From (4.15) and (4.16) we obtain
/ S’ /
2nX - m—1() - 2n(n+1)X v {O 1}

4.17 - — —.
(417) 1+ (n=3)X = Sp—1(x) = n+14“n?-2n-4)X’ 2

Lett € [0, 1]. By integrating in (4.17) with respect to z € [0, #] it follows that

n(n+1)

4n? —2n —4 T 2nZonz
n n T) )

2

@18) (14 (n—3)T) 75 < S, (1) < (1 +

n+1

where T' = t(1 — t) and for n = 3 the left-hand side is e~%7". Since Sp.—1(1—1t) = Sp,—1(2),
(4.18) is valid for ¢ € [0,1].

Remark 4.2. For ¢ = —1, (1.3) is a consequence of the inequality
/
n,—1 (.13) nX' 1
. . < - NE
(4.19) So 1@~ 1+dm-Dx € [O’ 2}

Comparing (4.19) with (4.17), we get

2n(n+1)X’ 2nX' 1
- S— ) S 077 )
ntl+@dn?—2n—4HX = 1+4n-1)X 2

and so the second inequality (4.18) is sharper than (1.3) with ¢ = —1.
Remark 4.3. According to [15, (29)],

57,,,_1(15)1/1(x+(1x)(12t)2)" @ e
™ Jo €T

Vel —ax)
It follows that
1
qud)zz/ihwwlfxxrf%dem
™ Jo

which leads to
1— (1 —4T)n+!
2r(n+1)T

This inequality is comparable with the first inequality (4.18).
The following results ca be found also in [13].
Consider the inequality

P! (t) < 2n2

Py(t) “t+(2n—1)V12 -1’

which was established in [10, Theorem 2]. As remarked in [10], (4.15) is stronger than (4.20).
From (4.20) we get by integration

n(2n=1) o iy
Po(t) < (t+ /2 —1) 200D (t +(@2n-1)VEe— 1) 0 > 12

The stronger inequality

< Sn,fl(t)a te [03 1]

(4.20) t>1

- b

__n(n+1)

n(@n2-1) m2 -1 22 _n-2
Pu(t) < (t+ V2 —1)27=n=2 <t+ - t2—1> , t>1

n+1

is a consequence of (4.15).
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5. CONCLUDING REMARKS AND FURTHER WORK

The index of coincidence S, . is intimately related with the Renyi entropy R,, ., Tsallis
entropy T, . and Legendre polynomial P,. We established new bounds for S,, . and, con-
sequently, for R,, ., T}, . and P,. Certain convexity properties of S,, . were instrumental in
our proofs. In fact, S, . has also other useful convexity properties. For example, for each
integer j in [1,n], Sp,—1 is (2j — 1)-strongly convex with modulus

(0
J n—J
(see the pertinent definition in [5]), and for each j > 1, S, ¢ is approximately (2j — 1)-
concave with modulus
5 (4j) 1
2j) (29)!

(see the definition in [9]).

On the other hand, according to (1.1), S, is a Heun function. By comparing two

different expressions of this Heun function it is possible to derive combinatorial identities
generalizing some classical ones from [6]. Sample results are

) () (1 72) - () (). ozhzn
G N G [ B 0 [ G [ IS D

=

All these investigations will be presented in forthcoming papers.
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