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Painlevé-Kuratowski convergences of the approximate
solution sets for vector quasiequilibrium problems

NGUYEN VAN HUNG1, DINH HUY HOANG2 and VO MINH TAM1

ABSTRACT. In this paper, we study vector quasiequilibrium problems. After that, the Painlevé-Kuratowski
upper convergence, lower convergence and convergence of the approximate solution sets for these problems are
investigated by using a sequence of mappings ΓC -converging. As applications, we also consider the Painlevé-
Kuratowski upper convergence of the approximate solution sets in the special cases of variational inequality
problems of the Minty type and Stampacchia type. The results presented in this paper extend and improve
some main results in the literature.

1. INTRODUCTION

The stability of the exact solution sets for various kinds of the optimization problems,
variational inequality problems and equilibrium problems have been discussed in many
different aspects, as the lower semicontinuity, upper semicontinuity and the convergence
of efficient solution sets, etc, (see e.g. [1, 2, 3, 4, 5, 8, 9, 11, 13, 14, 16, 17, 19, 21]). However,
in practically, there are many problems which theirs exact solutions may not exist. The
reason is that the data of these problems are not sufficiently. So the approximate soluti-
ons are investigated by using the approximate methods to solve the mathematical models
and produce approximations to the exact solutions. Similar to the stability of exact solu-
tion sets, there are many authors have been studied the stability of approximate solution
sets for various kinds of the optimization-related problems (see e.g. [6, 7, 20], and the
references therein).

In 1994, the Painlevé-Kuratowski convergence and Attouch-Wets convergence of the
efficient and weak efficient solution sets for optimization problem was established by
Luc et al. [10]. Since then, many authors considered the convergence of the solution
sets for various kinds of the optimization problems, variational inequality problems and
equilibrium problems. The notion of gamma convergence for sequences of vector-valued
functions was introduced by Oppezzi and Rossi [13], which extend the continuous con-
vergence for sequences of vector-valued functions. To develop the results in [13], Op-
pezzi and Rossi [14] generalized Mosco convergence for convex vector optimization pro-
blems in infinite dimensional space by using the concept of gamma convergence for a
sequence of vector-valued functions. Recently, Lalitha and Chatterjee [5] developed the
Painlevé-Kuratowski convergence of the solution sets for the a nonconvex vector optimi-
zation problem by using a sequence of mappings converging continuously and nonlinear
scalarization function defined in terms of an improvement set. Very recently, Li et al. [7]
established Painlevé-Kuratowski convergence of the approximate solution sets for gene-
ralized Ky Fan inequality problems by continuous convergence of the bifunction sequence
and Painlevé-Kuratowski convergence of the set sequence.
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Motivated by the research works mentioned above, in this paper, we establish the
Painlevé-Kuratowski convergence of the approximate solution sets for vector quasiequi-
librium problems by using a sequence of mappings ΓC-converging. Let X,Y, Z be three
Banach spaces. We assume that C is a pointed closed convex cone in Y with nonempty
interior, i.e., intC 6= ∅. Let A ⊆ X be a nonempty, compact and convex subset and
B ⊆ Z be a nonempty subset. Let K : A → 2A, T : A → 2B be set-valued mappings
and f : A×B×A→ Y be a vector-valued function. We consider the two following vector
quasiequilibrium problems:
(QVEP1) finding x ∈ K(x) such that

f(x, z, y) ∈ Y \ −intC,∀y ∈ K(x),∀z ∈ T (y),

(QVEP2) finding x ∈ K(x) such that ∃z ∈ T (x) satisfying

f(x, z, y) ∈ Y \ −intC,∀y ∈ K(x).

For sequences of set-valued mappings Kn : A → 2A, Tn : A → 2B and vector-valued
mappings fn : A × B × A → Y , we consider the two following sequences of vector
quasiequilibrium problems:
(QVEP1

n) finding xn ∈ Kn(xn) such that

fn(xn, z, y) ∈ Y \ −intC, ∀y ∈ Kn(xn),∀z ∈ Tn(y),

(QVEP2
n) finding xn ∈ Kn(xn) such that ∃zn ∈ Tn(xn) satisfying

fn(xn, zn, y) ∈ Y \ −intC, ∀y ∈ Kn(xn).

The approximate solution set of (QVEP1) is defined by

S1(f, T,K, ε) = {x ∈ K(x) : f(x, z, y) + εe ∈ Y \ −intC, ∀y ∈ K(x),∀z ∈ T (y)}.

Similarly, the approximate solution sets of (QVEP2), (QVEP1
n) and (QVEP2

n) are defined
by S2(f, T,K, ε), S1(fn, Tn,Kn, εn) and S2(fn, Tn,Kn, εn) respectively, where e ∈ intC,
ε ≥ 0 and {εn} is a nonnegative scalar-valued sequence.

Throughout this paper, the following notations are used. We denote by εn ↘ ε when
εn > ε for all n and εn → ε. We always assume that all solution sets considered in this
paper are not equal empty sets.

2. PRELIMINARIES

First of all, we recall some concepts of the convergence of set sequences and mapping
sequences.

Definition 2.1. (See [18]) If X is a first countable topological space and D,Dn ⊆ X ,
n ∈ N, let

lim inf
n→∞

Dn := {x ∈ X : ∃n̄ ∈ N and xn ∈ Dn,∀n ≥ n̄, s.t. lim
n→∞

xn = x},

lim sup
n→∞

Dn := {x ∈ X : ∃{nk}k∈N and xk ∈ Dnk
, s.t. lim

k→∞
xk = x}.

We say that a sequence of sets {Dn} is said to upper converge (resp. lower converge) in the
sense of Painlevé-Kuratowski to D if lim sup

n→∞
Dn ⊆ D (resp. D ⊆ lim inf

n→∞
Dn). {Dn} is said

to converge in the sense of Painlevé-Kuratowski toD, denoted asDn
P.K.−→D, if lim sup

n→∞
Dn ⊆

D ⊆ lim inf
n→∞

Dn.
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Definition 2.2. (See [18]) Let Gn : X → 2Y be a sequence of set-valued mappings and
G : X → 2Y be a set-valued mapping. {Gn} is said to outer converge continuously (resp. inn-
er converge continuously) toG at x0 if lim sup

n→∞
Gn(xn) ⊆ G(x0) (resp. G(x0) ⊆ lim inf

n→∞
Gn(xn))

∀xn → x0. {Gn} is said to converge continuously to G at x0 if lim sup
n→∞

Gn(xn) ⊆ G(x0) ⊆

lim inf
n→∞

Gn(xn) ∀xn → x0. If {Gn} converges continuously to G at every x0 ∈ X , then it

is said that {Gn} converges continuously to G on X .
G is said to be closed at x0, if for each sequence {(xn, yn)} ⊆ graphG := {(x, y)|y ∈

G(x)}, (xn, yn) → (x0, y0), it follows that (x0, y0) ∈ graphG. G is said to be closed in X if
it is closed at each x0 ∈ X .

Definition 2.3. (See [13]) Let fn, f : X → Y and let U(x) be the family of neighborhoods

of x. We say that fn ΓC-converges to f , denoted as fn
ΓC−→ f , if for every x ∈ X :

(i) ∀U ∈U(x),∀η∈ intC,∃nη,U ∈ N such that ∀n ≥ nη,U ,∃xn∈U , fn(xn) ∈ f(x)+η−C;
(ii) ∀η ∈ intC, ∃Uη ∈ U(x), kη ∈ N such that ∀x′ ∈ Uη,∀n ≥ kη , fn(x′) ∈ f(x)− η + C.

If only the condition (i) (resp. (ii)) is satisfied, fn outer (resp. inner) ΓC-converges to f ,

denoted as fn
Γu
C−→ f (resp. fn

Γi
C−→ f )

Definition 2.4. (See [12], Definition 4.7) A sequence of mappings {fn}where fn : X → Y
is said to converge continuously to a mapping f : X → Y if ∀x ∈ X and ∀V neighborhood
of f(x) in Y , there exists k ∈ N and U ∈ U(x) such that fn(y) ∈ V for every n ≥ k and for
every y ∈ U .

Lemma 2.1. (See [15], Lemma 4.1) Let C ⊆ Y be a pointed cone having intC 6= ∅. If η ∈ intC
and y ∈ Y , then the sets {z ∈ Y : z ∈ y − η + C\{0}} and {z ∈ Y : z ∈ y + η − C\{0}} are
neighborhoods of y.

Remark 2.1. From Definitions 2.3, 2.4 and Lemma 2.1, clearly such a continuous conver-
gence implies ΓC-convergence, but the reverse implication does not hold.

Indeed, we assume that {fn} converges continuously to f , then for every x ∈ X , if U ∈
U(x) and η ∈ intC, it follows from Lemma 2.1 that V = {z ∈ Y : z ∈ f(x) + η − C\{0}} is
a neighborhood of f(x). By {fn} converges continuously to f , there exist nη,U and xn ∈ U
such that fn(xn) ∈ V , for every n ≥ nη,U , i.e. fn(xn) ∈ f(x) + η−C\{0} ⊆ f(x) + η−C}.
Hence, condition (i) of Definition 2.3 holds.

Let us consider a countable base F(x) = {Un, n ∈ N} of neighborhoods of x such that
Un+1 ⊆ Un. Now, we prove that condition (ii) of Definition 2.3 holds. By contradiction
we suppose that there exists η ∈ intC such that for every Un ∈ F(x) there exists xkn ∈ Un
with kn > n such that fkn(xkn) 6∈ f(x)− η + C. Then we can define

x′k =

{
x if k 6= kn,∀n
xkn if k = kn.

So it follows that x′k → x and fk(x′k) 6∈ f(x)−η+C. This implies fk(x′k) 6∈ f(x)−η+C\{0}.
Then fk(x′k) 6∈ V ′ = {z ∈ Y : z ∈ f(x)− η +C\{0}} (by Lemma 2.1, V ′ is a neighborhood
of f(x)) which is a contradiction (as the condition {fn} converges continuously to f ).

The following example shows that the converse is not true.

Example 2.1. (See [13], Remark 2.8) Let X = R, Y = R2, C = R2
+, fn(x) = (x, nxe−2n2x2

)
and

f(x) =

{
(x, 0) x 6= 0;(

0,− 1
2e
− 1

2

)
x = 0.
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We have fn ΓC-converges to f , but {fn} does not converge continuously to f . Indeed, we
may consider the two sequences: xn = 1

2n , x
′
n = − 1

2n , clearly xn → 0 and x′n → 0, but
fn(xn)→ (0, 1

2e
− 1

2 ) and fn(x′n)→ (0,− 1
2e
− 1

2 ).

3. MAIN RESULTS

In this section, we establish the sufficient conditions for Painlevé-Kuratowski upper
convergence, Painlevé-Kuratowski lower convergence and Painlevé-Kuratowski conver-
gence of the approximate solution sets for (QVEP1), (QVEP1

n) and (QVEP2), (QVEP2
n).

Theorem 3.1. Suppose that
(i) Kn converges continuously to K with compact values in A;

(ii) Tn inner converges continuously to T in A;
(iii) −fn ΓiC-converges to −f .

Then, for any εn → ε0, lim sup
n→∞

S1(fn, Tn,Kn, εn) ⊆ S1(f, T,K, ε0).

Proof. Suppose to the contrary that there exists εn → ε0,

lim sup
n→∞

S1(fn, Tn,Kn, εn) * S1(f, T,K, ε0),

i.e., there exists x0 ∈ lim sup
n→∞

S1(fn, Tn,Kn, εn), but x0 not belong to S1(f, T,K, ε0). As

x0 ∈ lim sup
n→∞

S1(fn, Tn,Kn, εn), there exists a sequence {xnk
}, xnk

∈ S1(fnk
, Tnk

,Knk
, εnk

),

xnk
→ x0, as k →∞. Then, for each y ∈ Knk

(xnk
), we have

fnk
(xnk

, z, y) + εnk
e ∈ Y \ −intC, ∀z ∈ Tnk

(y).(3.1)

By Kn outer converges continuously to K with compact values, we have x0 ∈ K(x0).
Now we prove that x0 ∈ S1(f, T,K, ε0). If x0 6∈ S1(f, T,K, ε0), there exist y0 ∈ K(x0) and
z0 ∈ T (y0) such that

(3.2) f(x0, z0, y0) + ε0e 6∈ Y \ −intC.

Since Kn inner converges continuously to K, for all y0 ∈ K(x0), there exists a sequence
{ynk
}, ynk

∈ Knk
(xnk

) such that ynk
→ y0, as k →∞. As Tn inner converges continuously

to T , for all z0 ∈ T (y0), there exists a sequence {znk
}, znk

∈ Tnk
(ynk

) such that znk
→ z0,

as k →∞. As xnk
∈ S1(fn, Tn,Kn, εn), we have

(3.3) fnk
(xnk

, znk
, ynk

) + εnk
e ∈ Y \ −intC.

By the condition (iii), −fn
Γl
C−→−f and (xnk

, znk
, ynk

)→ (x0, z0, y0), it follows from Defini-
tion 2.3 (ii) that for any η ∈ intC,

(3.4) −fnk
(xnk

, znk
, ynk

) ∈ −f(x0, z0, y0)− η + C.

We choose η = |εnk
− ε0|e, then from (3.3) and (3.4), we have

f(x0, z0, y0) + εnk
e+ |εnk

− ε0|e ∈ fnk
(xnk

, znk
, ynk

) + εnk
e+ C

⊆ Y \ −intC + C ⊆ Y \ −intC(3.5)

Letting k →∞, εnk
→ ε0 and by the closedness of Y \ −intC that from (3.5),

(3.6) f(x0, z0, y0) + ε0e ∈ Y \ −intC,

which contradicts (3.2) and so completed the proof. �

Passing to the (QVEP2), (QVEP2
n), we obtain a similar conclusion as that Theorem 3.1.

Theorem 3.2. Suppose that
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(i) Kn converges continuously to K with compact values in A;
(ii) Tn outer converges continuously to T with compact values in A;

(iii) −fn ΓiC-converges to −f .
Then, for any εn → ε0, lim sup

n→∞
S2(fn, Tn,Kn, εn) ⊆ S2(f, T,K, ε0).

Remark 3.2. (i) Let X and Y be two normed linear spaces and K(x) = K,Kn(x) =
Kn,∀x ∈ X, εn = ε0 = 0. Let f(x, z, y) = g(y) − g(x), fn(x, z, y) = gn(y) − gn(x)
(with g, gn be functions from X into Y ) for any x, y ∈ X . The problems (QVEP)2

and (QVEP)2n reduce to vector optimization problems (P) and (P)n, respectively
which were studied in [5]. Then, Theorem 3.3 and Theorem 4.6 in [5] are special
cases of Theorem 3.2. Moreover, the assumption (iii) in our Theorem 3.2 is weaker
than the assumption (iii) in Theorem 3.3 and Theorem 4.6 in [5] (see, Example 2.1).

(ii) LetX = Rm, Y = Rl,K(x) ≡ K,Kn(x) ≡ Kn,∀x ∈ X , f(x, z, y) = f(x, y), fn(x, z, y)
= fn(x, y) for any x, y ∈ X . The problems (QVEP)2 and (QVEP)2n reduce to the
generalized Ky Fan inequality GKF(C, f)2 and GKF(Cn, fn)2, respectively which
were studied in [7]. Then, Theorem 3.2 improves and extends Lemma 3.1 and
Theorem 3.1 in [7]. Our Theorem 3.1 is new.

Next, we establish the sufficient conditions for Painlevé-Kuratowski lower convergence
for (QVEP)1 and (QVEP)1n.

Theorem 3.3. Suppose that
(i) Kn converges continuously to K with compact values in A;

(ii) Tn outer converges continuously to T with compact values in A;
(iii) fn ΓiC-converges to f .

Then, for any εn ↘ ε0, S1(f, T,K, ε0) ⊆ lim inf
n→∞

S1(fn, Tn,Kn, εn).

Proof. Letting any x0 ∈ S1(f, T,K, ε0). Then for all y ∈ K(x0),

(3.7) f(x0, z, y) + ε0e ∈ Y \ −intC, ∀z ∈ T (y).

By the condition (i), there exists xn ∈ Kn(xn) such that xn → x0. To prove that x0 ∈
lim inf
n→∞

S1(fn, Tn,Kn, εn). We first prove the following property for the sequence {xn}:

(3.8) ∀ε > ε0,∃nε,∀n ≥ nε : xn ∈ S1(fn, Tn,Kn, ε)

On the contrary, suppose that

(3.9) ∃ε∗ > ε0,∀k, ∃nk ≥ k : xnk
6∈ S1(fnk

, Tnk
,Knk

, ε∗).

Since xnk
6∈ S1(fnk

, Tnk
,Knk

, ε∗), there exists ynk
∈ Knk

(xnk
) and for some znk

∈ Tnk
(ynk

)
such that

(3.10) fnk
(xnk

, znk
, ynk

) + ε∗e ∈ −intC.

Since Kn outer converges continuously to K with compact values, we can assume, wit-
hout loss of generality, that ynk

→ y0 ∈ K(x0). Since Tn outer converges continuously to
T with compact values, we can assume, without loss of generality, that znk

→ z0 ∈ T (y0).
Since fn ΓiC-converges to f and (xnk

, znk
, ynk

) → (x0, z0, y0) as k → ∞, it follows from
Definition 2.3 (ii) that for any η ∈ intC,

fnk
(xnk

, znk
, ynk

) ∈ f(x0, z0, y0)− η + C.

Since the arbitrariness of η ∈ intC, we choose η = (ε∗ − ε0)e, then by (3.10) we have

fnk
(xnk

, znk
, ynk

) + ε∗e ∈ f(x0, z0, y0) + ε0e+ C
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or

(3.11) f(x0, z0, y0) + ε0e ∈ fnk
(xnk

, znk
, ynk

) + ε∗e− C ⊆ −intC − C ⊆ −intC.

which contradicts (3.7) and so we obtain (3.8).
We now consider a sequence {εm} such that εm ↘ ε0 as m→∞. From (3.8) we have

∀m > 0,∃nm,∀n ≥ nm : xn ∈ S1(fn, Tn,Kn, εm)

where the mapping m 7→ nm can be assumed to be strictly increasing. For every n ≥ n1,
there exists a unique m such that nm ≤ n ≤ nm+1. Calling it m(n) and setting εn := εm(n),
we have ∀n ≥ n1, xn ∈ S1(fn, Tn,Kn, εn) and, as m 7→ nm is increasing, we have εn ↘ ε0.
Hence, x0 ∈ lim inf

n→∞
S1(fn, Tn,Kn, εn). Thus, the proof is complete. �

Passing to the (QVEP2), (QVEP2
n), we obtain a similar conclusion as that Theorem 3.3.

Theorem 3.4. Suppose that
(i) Kn converges continuously to K with compact values in A;

(ii) Tn inner converges continuously to T in A;
(iii) fn ΓiC-converges to f .

Then, for any εn ↘ ε0, S2(f, T,K, ε0) ⊆ lim inf
n→∞

S2(fn, Tn,Kn, εn).

Combining Theorems 3.1 and 3.3, we derive the sufficient conditions for the Painlevé-
Kuratowski convergence of solution sets for (QVEP1) and (QVEP1

n).

Theorem 3.5. Suppose that all conditions in Theorems 3.1 and 3.3 are satisfied. Then, for any
εn ↘ ε0, S1(fn, Tn,Kn, εn)

P.K.−→S1(f, T,K, ε0).

Combining Theorems 3.2 and 3.4, we derive the sufficient conditions for the Painlevé-
Kuratowski convergence of solution sets for (QVEP2) and (QVEP2

n).

Theorem 3.6. Suppose that all conditions in Theorems 3.2 and 3.4 are satisfied. Then, for any
εn ↘ ε0, S2(fn, Tn,Kn, εn)

P.K.−→S2(f, T,K, ε0).

Remark 3.3. (i) In special case as in Remark 3.2(i). Then, Theorem 3.4 improves and
extends Theorem 3.5 in [5].

(ii) In special case as in Remark 3.2(ii). Then, Theorem 3.4 and Theorem 3.6 improve
and extend Theorem 3.3(a) and Theorem 3.4, respectively in [7].

(iii) Our Theorems 3.3 and 3.5 are new.

4. APPLICATIONS

Since vector quasiequilibrium problems contain many problems related to optimiza-
tion, namely, optimization problems, variational inequality problems, fixed-point pro-
blems, etc, the obtained results of the previous sections can be employed to derive the
corresponding results for such special cases. In this section we discuss only some corolla-
ries for vector quasivariational inequality problems in the types of Minty and Stampacchia
as examples.

Let X and Y be two Banach spaces, C,A,K, T,Kn, Tn be as in Sect. 2 and Z = L(X;Y )
be the space of all linear continuous operators from X into Y . Denoted by 〈z, x〉 the
value of a linear operator z ∈ L(X;Y ) at x ∈ X . We consider the two following vector
quasivariational inequality problems in the types of Minty and Stampacchia.
(MQVIP) finding x ∈ K(x) such that

〈z, y − x〉 ∈ Y \ −intC,∀y ∈ K(x),∀z ∈ T (y),
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(SQVIP) finding x ∈ K(x) such that ∃z ∈ T (x) satisfying

〈z, y − x〉 ∈ Y \ −intC, ∀y ∈ K(x).

We also consider the two following vector quasivariational inequality problems in the
types of Minty and Stampacchia (in short, (MQVIP)n and (SQVIP)n, respectively).
(MQVIP)n finding xn ∈ Kn(xn) such that

〈z, y − xn〉 ∈ Y \ −intC,∀y ∈ Kn(xn),∀z ∈ Tn(y),

(SQVIP)n finding xn ∈ Kn(xn) such that ∃zn ∈ Tn(xn) satisfying

〈zn, y − xn〉 ∈ Y \ −intC, ∀y ∈ Kn(xn).

The approximate solution set of (MQVIP) is defined by

Ψ1(T,K, ε) = {x ∈ K(x) : 〈z, y − x〉+ εe ∈ Y \ −intC,∀y ∈ K(x),∀z ∈ T (y)}.
Similarly, the approximate solution sets of (SQVIP), (MQVIP)n and (SQVIP)n are defi-

ned by Ψ2(T,K, ε), Ψ1(Tn,Kn, εn) and Ψ2(Tn,Kn, εn), respectively.

Corollary 4.1. Suppose that
(i) Kn converges continuously to K with compact values in A;

(ii) Tn inner converges continuously to T in A.
Then, for any εn → ε0, lim sup

n→∞
Ψ1(Tn,Kn, εn) ⊆ Ψ1(T,K, ε0).

Proof. Setting f(x, z, y) = 〈z, y−x〉 and fn(xn, zn, y) = 〈zn, y−xn〉, the problems (MQVIP)
and (MQVIP)n become the particular cases of (QVEP)1 and (QVEP)1n, respectively. It is
clear that all assumptions of Theorem 3.1 are fulfill, and hence by applying Theorem 3.1
we establish the conclusion of Corollary 4.1. �

Passing to the (SQVIP), (SQVIP)n, we obtain a similar conclusion as that Corollary 4.1.

Corollary 4.2. Suppose that
(i) Kn converges continuously to K with compact values in A;

(ii) Tn outer converges continuously to T with compact values in A.
Then, for any εn → ε0, lim sup

n→∞
Ψ2(Tn,Kn, εn) ⊆ Ψ2(T,K, ε0).
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