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On some parameters in the space of regulated functions and
their applications

KINGA CICHOŃ, MIECZYSŁAW CICHOŃ and MOHAMED M. A. METWALI

ABSTRACT. In this paper, we study a class of discontinuous functions being a space of solutions for some
differential and integral equations. We investigate functions having finite one-sided limits, i.e. regulated functi-
ons. In the space of such functions, we introduce some new concepts like a modulus of equi-regularity or a
measure of noncompactness, allowing us to unify the proofs for the results about existence for both continuous
and discontinuous solutions. An example of applications for quadratic integral equations, essentially improving
earlier ones, completes the paper.

1. INTRODUCTION

It is known, that for differential and integral equations we are looking for solutions in
different function spaces. Functions being at least continuous are usually considered as
solutions for differential problems, but for impulsive equations or generalized differential
equations, one cannot expect continuous solutions. If necessary, some authors consider,
as a solution space, the space of functions with bounded variation BV ([0, 1], X) (cf. [27],
for instance) or with generalized bounded variation (see [4] for recent results). This addi-
tional regularity requirement leads to some extra assumptions for considered functions,
which are required for ensuring the boundedness of the variation of solutions. If we don’t
need such a property of solutions and we can drop it, we should look for solutions in a lar-
ger space (cf. [29]). On the other hand, for integral equations, the continuity of solutions
seems to be too restrictive.

The main goal of the paper is to study the space of regulated functions, i.e. having
finite one-side limits at every point, similarly as the classical space of continuous functi-
ons. It allows us to investigate in a unified manner continuous and regulated solutions.
To do it we study the space of regulated functions and we introduce some indices corre-
sponding to those known for the space of continuous functions. We define a modulus of
equi-regularity and a measure of noncompactness in this space. Our approach allows to
studying on a unified manner continuous and discontinuous solutions for some differen-
tial and integral problems.

A usefulness of our approach will be clarified by presenting an application. We will
study some quadratic integral equations. When studying such problems we are able to
prove the existence for both continuous and discontinuous solutions ([9, 17], for instance).
If we need to find continuous solutions, then we can use some known properties of the
space of continuous functions (like a compactness criterion, for instance). For disconti-
nuous solutions, the problem is more subtle. If we try to keep the advantage of the first
approach and the applicability of the second one, we should investigate the regularity of
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solutions for considered problems. We propose to investigate one of the spaces of discon-
tinuous functions as solutions, namely regulated functions.

We will investigate the existence of regulated solutions of the considered quadratic
Kurzweil-Stieltjes integral equation:

(1.1) x(t) = g(t) + λ · T (x)(t) ·
∫ 1

0

f(s, x(s)) dsK(t, s),

where the integral is considered to be the Kurzweil-Stietjes one (cf. [29], for instance).
When we are looking for continuous solutions and f(·, x(·)) is continuous it is sufficient
to consider the Riemann-Stieltjes or the Lebesgue-Stieltjes integral (cf. [11, 22]), but in our
case the situation is more delicate (some common points of discontinuity for both functi-
ons are allowed). Note that such problems were also studied in the space of functions
with bounded variation ([26, 27], for instance). Note that our results can be also applied
for nonlinear generalized fractional quadratic integral equations studied recently in [1]
and then their discontinuous solutions can be investigated. It is well-known, that even in
the simplest case for Stieltjes-type integrals of the form F (t) =

∫
[0,t]

fdg the function F for
some discontinuous f and g being discontinuous is still sufficiently regular, i.e. regulated
(cf. Section 3).

Recall that the space G([0, 1]) of all regulated functions on an interval [0, 1] consists
of functions having finite one-side limits at every point and consequently it contains the
space of continuous functions as well as the space of functions with bounded variation
(see [21, 22] for more details).

2. REGULATED FUNCTIONS.

Let X be a Banach space. A function u : [0, 1] → X is said to be regulated if there exist
the limits u(t+) and u(s−) for every points t ∈ [0, 1) and s ∈ (0, 1].

Lemma 2.1. [21] The set of discontinuities of a regulated function is at most countable. Regulated
functions are bounded and the space G([0, 1], X) of regulated functions on [0, 1] into the Banach
space X is a Banach space too, endowed with the topology of uniform convergence, i.e. with the
norm ‖u‖∞ = sup

t∈[0,1]
‖u(t)‖.

Not all functions with countable set of discontinuity points are regulated. As an ex-
ample we can specify the characteristic function χ{1,1/2,1/3,...} 6∈ G([0, 1],R). In fact,
a function is regulated if and only if it is a uniform limit of step functions. Clearly,
C([0, 1], X) ⊂ G([0, 1], X) and BV ([0, 1], X) ⊂ G([0, 1], X). When (X, ‖ · ‖) is a Banach
algebra with the multiplication ∗ the space G([0, 1], X) becomes a Banach too endowed
with the pointwise product, i.e. (f · g)(x) = f(x) ∗ g(x) (cf. [13, 18]). In contrast to the case
of continuous functions, it is worthwhile to note that the composition of regulated functi-
ons need not to be regulated. The simplest example is a composition (g ◦ f) of functions
f, g : [0, 1]→ R: f(x) = x · sin 1

x and g(x) = sgn x (both are regulated), which have no one-
side limits at 0. Thus, even a composition of a regulated and continuous functions need
not be regulated and one cannot expect, that we can simply replace continuous functions
by regulated ones.

When we need to study some properties of regulated functions the notion of equi-
regularity plays an important role.

Definition 2.1. A set A ⊂ G([0, 1], X) is said to be equi-regulated at t0 ∈ [0, 1] if for every
ε > 0 there exists δ > 0 such that for every x ∈ A

i): if t0 − δ < s < t0 then ‖x(s)− x(t−0 )‖ < ε;
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ii): if t0 < τ < t0 + δ then ‖x(τ)− x(t+0 )‖ < ε.

If such a number δ does not depend on the choice of t0, then we will call the set uni-
formly equi-regulated.

Let us begin by considering a kind of modulus of equi-regularity in G([0, 1], X) in such
a way to obtain similar properties as the modulus of continuity for the space C([0, 1], X).
Recall its definition:

ωCδ (A) = sup
x∈A
{‖x(t)− x(s)‖ : t, s ∈ [0, 1], |t− s| < δ} = sup

x∈A
sup

t,s∈[0,1],|t−s|<δ
‖x(t)− x(s)‖

and

(2.2) ωC(A) = lim
δ→0

ωCδ (A).

It is sometimes called uniform modulus of equicontinuity, in contrast to the pointwise
modulus of equicontinuity:

ωCδ (A, t) = sup
x∈A
{‖x(t)− x(s)‖ : s ∈ [0, 1], |t− s| < δ} = sup

x∈A
sup

s∈[0,1],|t−s|<δ
‖x(t)− x(s)‖.

Let us mention an important fact, that for X = R the above formula for ωC(A) define a
measure of noncompactness in the space C([0, 1],R). Moreover, the Hausdorff measure
of noncompactness of a bounded subset A, i.e. βC(A) in this space is equal to 1

2ω
C(A) ([2,

Section 1.1.10], for instance).
For the space C([0, 1], X) of vector-valued functions the following formula µc(A) =

ωC(A)+supt∈[0,1] µ(A(t)) defines a measure of noncompactness provided that µ is a mea-
sure of noncompactness in X . As measures of noncompactness form a useful tool for the
studies of several integral or differential problems (see [8, 11, 17], for instance) and the
particular form of such a measure in some function spaces are very useful in such studies,
we will extend these notions to the space G([0, 1], X). We will stress on illustrative form
of a paper.

Definition 2.2. For a bounded subset A ⊂ G([0, 1], X), t ∈ [0, 1] and δ > 0 we define

ωGδ (A, t) = sup
x∈A

sup
s∈(0,1],t−δ<s<t

‖x(s)− x(t−)‖

+ sup
x∈A

sup
s∈[0,1),t<s<t+δ

‖x(s)− x(t+)‖,

(with the convention x(1+) = x(1) and x(0−) = x(0)) and

ωGδ (A) = sup
x∈A

sup
t∈[0,1]

sup
s∈(0,1],t−δ<s<t

‖x(s)− x(t−)‖

+ sup
x∈A

sup
t∈[0,1]

sup
s∈[0,1),t<s<t+δ

‖x(s)− x(t+)‖.

Then a function
ωG(A) = lim

δ→0
ωGδ (A).

will be called a (uniform) modulus of equi-regularity of the set A. Similarly we define the
pointwise modulus of equi-regularity at the point t0 ∈ (0, 1) by

ωG(A, t0) = lim
δ→0

(
sup
x∈A

sup
s∈[0,1],t0−δ<s<t0

‖x(s)− x(t−0 )‖

+ sup
x∈A

sup
s∈[0,1],t0<s<t0+δ

‖x(s)− x(t+0 )‖

)
.
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A version of these definitions for an arbitrary compact interval [a, b] is immediate. As
a consequence of the above definition and [19, Corollary 2.4] we get:

Proposition 2.1. For a subset A of G([0, 1], X) we have ωG(A) = 0 if and only if A is uni-
formly equi-regulated. Consequently, for any relatively compact subsets B of G([0, 1], X) we have
ωG(B) = 0.

In the case when both indices are well-defined, i.e. when A ⊂ C([0, 1], X), we have:

Lemma 2.2. Let A be a subset of C([0, 1], X). Then:

ωG(A) ≤ 2ωC(A).

Proof. Clearly for any x ∈ A and δ > 0

sup
t,s∈[0,1],t−δ<s<t

‖x(t)− x(s)‖ ≤ sup
t,s∈[0,1],|t−s|<δ

‖x(t)− x(s)‖

and similar estimation for the right neighbourhood of t. Thus

sup
x∈A

sup
t,s∈[0,1],t−δ<s<t

‖x(t)− x(s)‖ ≤ ωCδ (A),

sup
x∈A

sup
t,s∈[0,1],t<s<t+δ

‖x(t)− x(s)‖ ≤ ωCδ (A)

and then
ωGδ (A) ≤ 2 · ωCδ (A).

Taking a limit when δ → 0 we get the thesis. �

To the best of our knowledge, there was the only a few attempts to study such a type of
moduli. In [24] such a definition for the space of cádlàg functions D([0, 1]) ⊂ G([0, 1]) was
presented (in a different manner, based on partitions of the interval). It is also discussed
for D([0, 1]) in [14, Chapter 3, Section 14].

Corollary 2.1. If the set A ⊂ C([0, 1], X) is uniformly equicontinuous, then it is uniformly
equi-regulated (as a subset of G([0, 1], X)).

Our modulus is, in some sense, uniform. Following the idea from [30, Proposition 12.2]
for ωC we immediately get the following lemma:

Lemma 2.3. Let A be a subset of G([0, 1], X). Then

sup
t0∈(0,1)

ωG(A, t0) ≤ ωG(A) ≤ 2 · sup
t0∈(0,1)

ωG(A, t0).

The above estimation is best possible. Namely, we have

Example 2.1. Consider the set of simple functions defined on [−1, 1] by the following
manner: xn(t) = −1 for t ≤ − 1

n , xn(t) = 1 for t > 1
n and xn(t) = 0 for t ∈ ( 1n ,

1
n ).

Let A = {xn : n ≥ 2} ⊂ G([0, 1],R). Then ωG(A, t) = 0 for t 6= 0, ωG(A, 0) = 2, but the
uniform modulus ωG(A) = 4 (cf. the Nussbaum example in [30, Example 12.3]).

As a consequence of the above theorem we get a result of Ambrosetti-type (cf. [16,
Theorem 3.1], for the Kuratowski measure of noncompactness in G([0, 1])):

Corollary 2.2. If A ⊂ G([0, 1], X) is bounded and equi-regulated, then t → ωG(A, t) is a
regulated function.

Example 2.2. Some examples of sets A ⊂ G([0, 1], X).
A) A being uniformly equicontinuous subset of C([0, 1], X) is also equi-regulated,
B) Let A = {χE : E − finite subset of X}. Then ωG(A) = 0.
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C) Let A = {χ[a,1] : a ∈ [0, 1]}. Then ωG(A) = 0. Note that ωC(A) is also defined, but
ωC(A) = 1.

D) Let A = {yn : n ∈ N} with yn(t) =
∫ t
0
fn(s) dg(s), with V ar10 fn ≤ M for all n and

continuous g with ‖g‖∞ ≤ L. Then ωG(A) ≤M · L.

A mapping µ defined on a family of all nonempty and bounded subsets of E with non-
negative values is said to be a regular measure of noncompactness in a Banach space E
(cf. [8]) if it satisfies the following conditions:

(i) µ(X) = 0 ⇔ X is relatively compact in E,
(ii) X ⊂ Y ⇒ µ(X) ≤ µ(Y ),
(iii) µ(X) = µ(conv X) = µ(X),
(iv) µ(λX) = |λ|µ(X), for λ ∈ R.
(v) µ(X + Y ) ≤ µ(X) + µ(Y ),
(vi) µ(X ∪ {y}) = µ(X).

In fact, in the book [8] the definition of a regular measure of noncompactness is less
restrictive and only axioms (i), (ii) and (vi) are required. Note that all measures of non-
compactness considered in this paper have always all the above properties, so we will use
more restrictive definition given above.

In an axiomatic theory of measures of noncompactness one more axiom (called the ge-
neralized Cantor intersection property) is usually considered. It is the following property
of measures of noncompactness:

(vii) Let Xn be a sequence of nonempty, bounded and closed subsets of X such that
Xn ⊃ Xn+1 (n = 1, 2, ...) and limn→∞ µ(Xn) = 0. Then the set X∞ =

⋂∞
n=1Xn is

nonempty

This property, in particular, is necessary in the proof of the Darbo fixed point theorem
(also for for axiomatic measures of noncompactness (cf. [6]). Since we are interested in
particular functions being measures of noncompactness in the sense of the above defini-
tion, the last axiom will follow from other properties. Namely, we have

Lemma 2.4. ([28, p.19]) If a measure of noncompactness µ has the properties (i), (ii) and (vi),
then it has also the property (vii).

In applications, it is important to find an analytical formula for measures of noncom-
pactness (cf. [2, 30]). To the best of our knowledge, such a formula does not exist for the
space of regulated functions. We fulfil this gap and we will show how to apply this new
notion. By µX denote an arbitrary regular measure of noncompactness satisfying (i)-(vi)
in the space X (cf. also [6]).

Theorem 2.1. The following function µG is a regular measure of noncompactness satisfying (i)-
(vii) in the space G([0, 1], X):

µG(A) = ωG(A) + sup
t∈[0,1]

µX(A(t)),

provided µX is a regular measure of noncompactness on X satisfying (i)-(vi).

Proof. (i) As the functions are non-negative, we have: µG(A) = 0 if and only if ωG(A) = 0
and supt∈[0,1] µX(A(t)) = 0. By Proposition 2.1 the set A is equi-regulated. Since µX is a
regular measure of noncompactness, all the sets A(t) are relatively compact. By using the
compactness characterization in G([0, 1], X) (see [19]) we get the thesis.

Conditions (i) - (vi) follow from the known properties of the supremum and the norm
in X . Recall that µX has the required properties (cf. [8] for more details). �
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In the sequel we will always assume, that µX has properties (i)-(vi), and consequently
µG will have the same properties on G([0, 1], X) (including (vii) due to Lemma 2.4).

As an immediate consequence we have:

Corollary 2.3. If a bounded subset A of G([0, 1], X) is equi-regulated, then so is conv A.

Denote by βE the classical Hausdorff measure of noncompactness in the space E, i.e.
βE(A) = inf{r > 0 : ∃x1,x2,...,xk∈E such that A ⊂

⋃
iBr(xi)}. Then we are able to esti-

mate the Hausdorff measure of noncompactness βG in G([0, 1], X) by the above defined
measures.

Theorem 2.2. For any subset A of G([0, 1], X) we have

βG(A) ≤ ωG(A) + sup
t∈[0,1]

βX(A(t))

and
βG(A) ≤ sup

t∈[0,1]

[
ωG(A, t) + βX(A(t))

]
.

Proof. We follow the idea of Nussbaum [25] and Väth [30, Theorem 12.5]. Let ε > 0 be
arbitrary. By the definition of ωG(A) there exists a δ > 0 such that for each s ∈ (t − δ, t)
and τ ∈ (t, t+ δ) we have ‖x(s)−x(t−)‖+ ‖x(t+)−x(τ)‖ ≤ ωG(A)+ ε/2 for every x ∈ A.

Since [0, 1] is compact we can take a finite set {t1, t2, ..., tk} ⊂ [0, 1] such that [0, 1] ⊂⋃k
i=1(ti − δ, ti + δ). Take a partition of unity subordinated to this cover: λ1, λ2, ..., λk with∑k
i=1 λi(t) = 1 for any t ∈ [0, 1].
Denote by c the number supt∈[0,1] βX(A(t)). By using the definition of the Hausdorff

measure of noncompactness βX we are able to find a finite covering of each set A(tn)
(n = 1, 2, ..., k) by balls with radius r > 0 less than c + ε/2, say (Br(w

n
m))m=1,...,p with

centers denoted by (wnm).
For any point tn and each choice of the points wnm define a function

yp(t) =

p∑
m=1

λi(t)w
n
m.

Clearly, yp ∈ G([0, 1], X). Now define a (finite) set N as the set of all such functions yp
(n = 1, ..., k, m = 1, ..., p).

To prove the first inequality it suffices to show, that the set of balls (Br0(yp)) ⊂ G([0, 1], X)
with yp ∈ N is a finite covering for A, where r0 = ωG(A) + c+ ε.

Indeed, for any x ∈ A and any tn, by the definition of βX(A(tn)), there exist vn ∈ N
such that ‖x(tn)− vn‖ ≤ βX(A(tn)) + ε for n = 1, 2, ..., p. By using that elements, define a
function from N

zp(t) =

p∑
i=1

λi(t)vi.

Take arbitrary s ∈ (tn − δ, tn) and τ ∈ (tn, tn + δ). Let cn = supt∈[0,1] βX(A(tn)). Then

‖vn − x(s)‖ ≤ ‖vn − x(tn−)‖+ ‖x(tn−)− x(s)‖ ≤ (cn + ε/2) + ωG(A) + ε/2

and

‖vn − x(τ)‖ ≤ ‖vn − x(tn+)‖+ ‖x(tn+)− x(τ)‖ ≤ (cn + ε/2) + ωG(A) + ε/2.

Thus for any t ∈ (tn − δ, tn + δ) we have ‖vn − x(t)‖ ≤ (cn + ε/2) + ωG(A) + ε/2.
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As zp is constructed in a basis of a partition of unity zp(t) = 0 outside of this interval,
i.e. for the remaining n we have λn(t) = 0. We need to estimate the distance between x
and zp in G([0, 1], X).. For any t ∈ [0, 1] we have

‖x(t)− zp(t)‖ =

∣∣∣∣∣
p∑
i=1

λi(t) · (vn − x(t))

∣∣∣∣∣
≤

p∑
i=1

λi(t) ·
∣∣cn + ε+ ωG(A)

∣∣
≤ c+ ε+ ωG(A).

As ε > 0 is arbitrary, the function x ∈ Br(vn) with r = c+ε+ωG(A) = supt∈[0,1] βX(A(t))+

ωG(A), so we have a finite covering of A by balls of radius less than supt∈[0,1] βX(A(t)) +

ωG(A) and by the definition of the Hausdorff measure of noncompactness

βG(A) ≤ sup
t∈[0,1]

βX(A(t)) + ωG(A).

The proof of the second inequality runs as above. The only exception lies in the fact,
that we need to use an estimation ‖x(s) − x(tn−)‖ + ‖x(tn+) − x(τ)‖ ≤ ωG(A, tn) + ε/2
instead of that one with ωG(A). �

For the Kuratowski measure of noncompactness αX(A) (i.e. the infimum over all ε > 0
for which there exists a finite cover of A by sets with the diameter less than ε, cf. [8]) we
are able to present now a result being an extension for [16, Theorem 3.2]:

Corollary 2.4. For any subset A of G([0, 1], X) we have

αG(A) ≤ ωG(A) + 2 · sup
t∈[0,1]

αX(A(t))

and
αG(A) ≤ 2 · sup

t∈[0,1]

[
ωG(A, t) + αX(A(t))

]
.

The above estimates are direct consequences of Theorem 2.2 and some relationships
between measures of noncompactness (cf. [2, 30]).

As an immediate consequence of Theorem 2.1 we get the Ascoli-type theorem (cf. also
[19, Corollary 2.4]):

Theorem 2.3. A bounded subsetA ofG([0, 1], X) is relatively compact if and only if µG(A) = 0.
Consequently, it is relatively compact iff is equi-regulated andA(t) are relatively compact inX for
t ∈ [0, 1].

In particular, for the case X = R, we will denote G([0, 1],R) by G([0, 1]). We have:

Corollary 2.5. A bounded subset A of G([0, 1]) is relatively compact if and only if ωG(A) = 0.
Consequently, it is relatively compact iff is equi-regulated and A(t) are bounded for t ∈ [0, 1].

Let us summarize this section by presenting some comments about the Nemytskii su-
perposition operator acting on G([0, 1], X). It is one of the most important nonlinear
operators, which is investigated in different function spaces (cf. [3]) (acting conditions,
boundedness, continuity, for instance).

The following theorem is proved by Michalak [23].

Theorem 2.4. [23, Theorem 3.1] A superposition operator F (x) = f(·, x(·)) maps G([0, 1])
into itself if and only if the function f has the following properties:
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(1) the limit lim[0,s)×R3(u,y)→(s,x) f(u, y) exists for every (s, x) ∈ (0, 1]× R,
(2) the limit lim(t,1]×R3(u,y)→(s,x) f(u, y) exists for every (t, x) ∈ [0, 1)× R.

In particular, it means that for the composition operator (autonomous superposition
operator) F (x)(t) = f(x(t)) maps G([0, 1]) into itself iff f is continuous. It is worthwhile
to recall that an earlier condition (sufficient, but not necessary) was presented in [5].

Corollary 2.6. [5, Theorem 2.3] Suppose that the function h(·, u) is regulated on [0, 1] for all
u ∈ R, and the function h(t, ·) is continuous on R, uniformly with respect to t ∈ I . Then the
superposition operator F (u)(t) = h(t, u(t)) maps G([0, 1]) into itself and is (norm) bounded.

We will need also a continuity property for the superposition operator:

Theorem 2.5. [23, Corollary 3.6] A superposition operator F (x) = f(·, x(·)) maps G([0, 1])
into itself is continuous if and only if a function f̃ : R→ G([0, 1]) given by the formula f̃(x)(t) =
f(t, x) is continuous.

Finally, let us present an acting condition for linear operators onG([0, 1]). Put I = [0, 1].

Theorem 2.6. [26, Theorem 1] Assume, that K : I × I → R satisfies
(1) K(t, ·) is a function of bounded variation for every t ∈ I say by M , i.e. ‖K(t, ·)‖BV (I) ≤

M, for some M > 0,
(2) K(·, s) ∈ G(I).

Then the linear operator H(x)(t) =
∫
I
x(s) dsK(t, s) maps G(I) into itself and is bounded with

‖H‖ ≤ 2 supt∈I ‖K(t, ·)‖BV (I).

3. QUADRATIC INTEGRAL EQUATIONS.

We will present an example of applications for the presented theory. For simplicity, we
put in this section X = R, but it is easy to notice that similar results hold true in the case
when X is a commutative Banach algebra of vector-valued functions.

For the considered quadratic problem the use of a fixed point theorem of Darbo type
[8, 11] seems to be most appropriate, but its use in practice require an analytical formula
for a measure of noncompactness in G([0, 1]), i.e. ωG, which is defined in this paper. By
considering quadratic problems one cannot expect, in general, the compactness of consi-
dered operators and further the use of the Banach fixed point theorem seems to be too
restrictive. Thus, some assumptions guaranteeing, that at least one of the operators is a
contraction with respect to a measure of noncompactness are optimal in our method of
the proof. The study of measures of noncompactness seems to be important in such a
case. Let us recall a general form of such fixed point theorems of Darbo type:

Theorem 3.7. Let W be a nonempty, bounded, closed and convex subset of E and let V :
W → W be a continuous transformation which is a contraction with respect to the regular
measure of noncompactness µ satisfying (i)-(vi), i.e. there exists k ∈ [0, 1) such that

µ(V (X)) ≤ kµ(X),

for any nonempty subset X of E. Then V has at least one fixed point in the set W and the set of
all fixed points for V is compact in E.

We will study the problem (1.1) under the assumptions allowing us to prove the exis-
tence of discontinuous solutions, but not necessarily being of bounded variation. As the
existence of finite values for the function t →

∫ t
0
x(s) dg(s) implies that it is a regulated

function ([29]), the space G(I) seems to be a natural space for solutions of the conside-
red problem (1.1). Recall that such a kind of problems, till now, was investigated under



On some parameters in the space of regulated functions 25

the conditions allowing to find either continuous solutions ([11], for instance) or being of
bounded variation ([4], for instance).

Let us describe some operators from the equation (1.1):

x(t) = g(t) + λ · T (x)(t) ·
∫ 1

0

f(s, x(s)) dsK(t, s).

Note that in a special case K(t, s) =
∫ s
0

∫ t
0
p(τ, ρ) dρ dτ for some p we have usual qua-

dratic Hammerstein integral equations, but considered under less restrictive assumpti-
ons. More special cases can be found in the paper [10]. Note that we will study the case
of quadratic integral equations having solutions not necessarily neither continuous nor of
bounded variation (so the operators do not preserve these properties).

Denote by H the operator associated with the right-hand side of equation (1.1) i.e.
H(x) = g+H1(x), where H1(x) = λ · T (x) ·B(x) = λ · T (x) · (D ◦F )(x), where D(x)(t) =∫
I
x(s) dsK(t, s) is the linear integral operator andF (x)(t) = f(t, x(t)) is the superposition

operator generated by f .
The operator A can be treated as a pointwise product (multiplication) of the operator

T and the Hammerstein operator B. As G(I) is a Banach algebra with the pointwise
multiplication (cf. [19]), we will consider the case when all mentioned operators are acting
from G(I) into itself.

We shall treat equation (1.1) under the following assumptions listed below:
(i) g ∈ G(I),

(ii) Assume, that K : I × I → R satisfies K(t, ·) is a function of bounded variation for
every t ∈ I with ‖K(t, ·)‖BV (I) ≤M , for some M > 0, K(·, s) ∈ G(I) and

(3.3) lim
ε→0+

(
sup

{
V ar10[K(t−, ·)−K(τ, ·)] : t ∈ (0, 1], τ ∈ (t− ε, t)

})
= 0

(3.4) lim
ε→0+

(
sup

{
V ar10[K(t+, ·)−K(τ, ·)] : t ∈ [0, 1), τ ∈ (t, t+ ε)

})
= 0,

(iii) f : I×R→ R is regulated in the first variable and satisfies the Lipschitz condition
in the second one with Lipschitz constant L,

(iv) T : G(I)→ G(I) is continuous and ‖T (x)‖∞ ≤ m1+m2‖x‖∞ for any x ∈ G(I) and
for some non-negative constantsm1,m2 and assume, that T satisfies the condition:

(3.5) supωGε ({T (x) : x ∈ A}) ≤ Q · ωGε (A)

for some Q ∈ R+,
(v) for any r > 0 satisfying the quadratic inequality s ≤ ‖g‖∞ + λ(m1 + m2 · s) ·

M · (‖f(t, 0)‖∞ + L · s) , s ∈ [0, r], assume, that

2 · λ · (‖f(t, 0)‖∞ + L · r) ·M ·Q < 1.

Remark 3.1. Let us remark, that the condition (3.5) is satisfied when T is compact (by
Theorem 2.1) as acting between G(I) and G(I) or C(I) (by Lemma 2.2) or when T is
Lipschitz with constant Q. If T maps bounded sets into equi-regulated sets in G(I) or
equicontinuous sets in C(I), then this condition is also satisfied (see also Section 2).

Theorem 3.8. Let assumptions (i)–(v) be satisfied. Then the set of solutions for the equation (1.1)
is nonempty and compact as a subset of G(I).

Proof. First of all observe that the considered operators are well-defined on G(I). Our
assumption (iii) form a sufficient acting condition for F (see Theorem 2.4 and Corollary
2.6) and then F (G(I)) ⊂ G(I). Taking into account Theorem 2.6, the assumption (ii)
implies, that B maps G(I) into itself. Since g ∈ G(I), we get H : G(I)→ G(I).
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We need to prove, that the operator satisfies the assumptions of Theorem 3.7. To do
it, we will construct an invariant bounded, closed and convex set W ⊂ G(I). Then we
will prove, that H is continuous on W and is a contraction with respect to the measure of
noncompactness ωG.

Fix an arbitrary x ∈ G(I) and t ∈ I . Since by (iii) f(t, x) satisfies the Lipschitz condition
with constant L, we get ‖f(t, x)‖ ≤ ‖f(t, x)−f(t, 0)‖+‖f(t, 0)‖ ≤ L · ‖x‖+‖f(t, 0)‖. Thus

‖f(t, x)‖ ≤ a(t) + L · ‖x‖

for the regulated real-valued and non-negative function a(t) = ‖f(t, 0)‖.
In view of the assumptions (i)-(iv) and by using the properties of the Henstock-Stieltjes

integral, we have

|(H(x))(t)| ≤ |g(t)|+ λ · |T (x)(t)| ·
∫ 1

0

|f(s, x(s))| dsK(t, s)

≤ |g(t)|+ λ‖T (x)(t)‖∞‖K(t, ·)‖BV (I)‖F (x)‖∞
≤ |g(t)|+ λ(m1 +m2‖x‖∞) ·M · ‖F (x)‖∞
≤ |g(t)|+ λ(m1 +m2‖x‖∞) ·M · (‖a‖∞ + L‖x‖∞).

Then ‖(H(x))‖∞ ≤ ‖g‖∞ + λ(m1 +m2‖x‖∞) ·M · (‖a‖∞ + L‖x‖∞). Note that for the
quadratic inequality s ≤ ‖g‖∞ + λ(m1 +m2 · s) ·M · (‖a‖∞ + L · s), there always exists a
number r > 0 such that for any s ∈ [0, r] this inequality holds true, so the above estima-
tions give us that H transforms the ball Br into itself. Obviously, the set Br is nonempty
bounded closed and convex and we can put W = Br in Theorem 3.7.

Now, we show thatH is continuous on the setBr ⊂ G(I). As T is continuous (assump-
tion (iv)), for arbitrary number ε > 0 there exists an δ > 0 be such that ‖T (x)−T (y)‖∞ < ε
whenever ‖x− y‖∞ < δ, x, y ∈ Br ⊂ G(I). Without loss of generality, we assume δ < ε.

Then, for t ∈ I and ‖x− y‖∞ < δ, we have the following estimates:

|(H(x))(t)− (H(y))(t)|

≤ λ|T (x)(t) ·
∫ 1

0

f(s, x(s)) dsK(t, s)− T (y)(t) ·
∫ 1

0

f(s, y(s)) dsK(t, s)|

≤ λ|T (x)(t) ·
∫ 1

0

f(s, x(s)) dsK(t, s)− T (y)(t) ·
∫ 1

0

f(s, x(s)) dsK(t, s)|

+ λ|T (y)(t) ·
∫ 1

0

f(s, x(s)) dsK(t, s)− T (y)(t) ·
∫ 1

0

f(s, y(s)) dsK(t, s)|

≤ λ|T (x)(t)− T (y)(t)| · |
∫ 1

0

f(s, x(s)) dsK(t, s)|

+ λ|T (y)(t)| · |
∫ 1

0

(f(s, x(s))− f(s, y(s))) dsK(t, s)

≤ λ‖T (x)− T (y)‖∞ · ‖F (x)‖∞‖K(t, ·)‖BV (I)

+ λ‖T (y)‖∞|
∫ 1

0

(f(s, x(s))− f(s, y(s))) dsK(t, s)|

≤ λ · ε · (‖a‖∞ + L · r) + λ(m1 +m2r) · |
∫ 1

0

L · |x(s)− y(s)| dsK(t, s)|

≤ λ · ε · (‖a‖∞ + L · r) ·M + λ(m1 +m2r) · L · δ · ‖K(t, ·)‖BV (I)

≤ λ · ε · (‖a‖∞ + L · r) ·M + λ(m1 +m2r) · L · ε ·M.
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Thus we obtain the following inequality for x, y ∈ Br:
‖H(x)−H(y)‖∞ ≤ λ · ε · (‖a‖∞ + L · r) ·M + λ(m1 +m2r) · L · ε ·M,

which implies the continuity of the operator H on the set Br.
In what follows, let us take a nonempty set A ⊂ Br. Further, fix arbitrarily a number

ε > 0 and choose an arbitrary x ∈ A, t ∈ (0, 1] and τ ∈ (t − ε, t). Since x is regulated and
H : G(I) → G(I), one-side limits H(x)(t−) and H(x)(t+) exist at every point t. Let us
estimate :

|H(x)(t−)−H(x)(τ)|

≤ |g(t−)− g(τ)|+ λ · |
(
T (x)(t−) ·

∫ 1

0

f(s, x(s)) dsK(t−, s)

)
−

(
T (x)(τ) ·

∫ 1

0

f(s, x(s)) dsK(τ, s)

)
|

≤ |g(t−)− g(τ)|+ λ · |
(
T (x)(t−)− T (x)(τ)

)
| · |
∫ 1

0

f(s, x(s)) dsK(t−, s)|

+ λ|T (x)(τ)| · |
(∫ 1

0

f(s, x(s)) dsK(t−, s)−
∫ 1

0

f(s, x(s)) dsK(τ, s)

)
|

≤ |g(t−)− g(τ)|+ λ|
∫ 1

0

f(s, x(s)) dsK(t−, s)| · |T (x)(t−)− T (x)(τ)|

+ λ|T (x)(τ)| · |
∫ 1

0

f(s, x(s)) ds[K(t−, s)−K(τ, s)] |

≤ ωGε ({g}, t) + λ(‖a‖∞ + L · r) ·M · |T (x)(t−)− T (x)(τ)|

+ λ(m1 +m2r) · (‖F (x)‖∞) · V ar10[K(t−, ·)−K(τ, ·)]
≤ ωGε ({g}, t) + λ(‖a‖∞ + L · r) ·M · ωGε ({T (x)}, t)
+ λ(m1 +m2r) · (‖a‖∞ + L · r) · sup

τ∈(t−ε,t)
{V ar10[K(t−, ·)−K(τ, ·)]}

≤ ωGε ({g}) + λ(‖a‖∞ + L · r) ·M ·Q · ωGε (A) + λ(m1 +m2r) · (‖a‖∞ + L · r) · γ−r (ε),
where

γ−r (ε) = sup
t∈(0,1],ρ∈(t−ε,t)

{
V ar10[K(t−, ·)−K(ρ, ·)]

}
.

Recall, that here ωGε ({g}, t) = sups∈(0,1],t−ε<s<t ‖g(s)− g(t−)‖+ sups∈[0,1),t<s<t+ε ‖g(s)−
g(t+)‖ (cf. Definition 2.2) and ωGε ({g}) denotes the modulus of a set {g} being compact
(as a singelton), so in view of Proposition 2.1 and by Theorem 2.3, limε→0 ω

G
ε ({g}) = 0.

Similarly, for t ∈ [0, 1) and ρ ∈ (t, t+ ε) we are able to obtain the same estimation

|H(x)(t+)−H(x)(ρ)| ≤ ωGε ({g})+λ(‖a‖∞+br)·MQωGε (A)+λ(m1+m2r)(‖a‖∞+L·r)γ+r (ε).
for

γ+r (ε) = sup
t∈[0,1),τ∈(t,t+ε)

{
V ar10[K(t+, ·)−K(τ, ·)]

}
.

Thus

ωGε (H(A)) ≤ sup
x∈A

sup
t∈(0,1],τ∈(t−ε,t)

|H(x)(t−)−H(x)(τ)|

+ sup
x∈A

sup
t∈[0,1),ρ∈(t,t+ε)

|H(x)(t+)−H(x)(ρ)|

≤ 2 · ωGε ({g}) + 2λ(‖a‖∞ + L · r)
(
MQωGε (A) + (m1 +m2r)γr(ε)

)
.
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Here γr(ε) = max(γ−r (ε), γ
+
r (ε)).

By passing to the limit with ε→ 0 we get

ωG(H(A)) ≤ 2λ(‖a‖∞ + L · r) ·
(
M ·Q · ωG(A) + (m1 +m2r) · lim

ε→0
γr(ε)

)
.

Notice that, in view of our assumption (ii) we have that γr(ε)→ 0 as ε→ 0.
Finally, by the assumption (v) the number r is sufficiently small to get 2λ(‖a‖∞ + L ·

r) ·M ·Q < 1 and

µG(H(A)) ≤ ωG(H(A)) ≤ 2λ(‖a‖∞ + L · r) ·M ·Q · ωG(A).

Now, taking into account the above inequality, H is a contraction with respect µG and as
claimed above, the assumption (v) allows us to apply Theorem 3.7, which completes the
proof. �

Remark 3.2. We should present some comments about the assumption (ii). Observe, that
the conditions (3.3) and (3.4) do not result from other assumptions. Define a function
K : I × I → R in the following way:

K(t, s) =

{
(t− 1/2) sin s

t−1/2 for t, s ∈ I, t 6= 1/2,

1 for t = 1/2, s ∈ I

(cf. [10, Example 8] for a basic idea). Clearly V ar10K(t, ·) ≤ (sin 1) <∞, so ‖K(t, ·)‖BV (I) ≤
(sin 1) and K(·, s) ∈ G(I) (but not continuous at t = 1/2). However, the remaining parts
of this assumption, i.e. conditions (3.3) and (3.4) are not satisfied, so they are independent
on the initial part of (ii).

Take two points t = 1
2 + 1

2n and τ = 1
2 + 1

n for some big enough, but fixed n ∈ N.
Let s0 = 1/2 < s1 < s2 < ... < sk0 < sk0+1 = 1 be the points from [1/2, 1], where
k0 = Ent

(
n
2π

)
(i.e. the integer part of n

2π ) and such that s2k = 2π+2kπ
n , s2k−1 = π/2+2π+2kπ

n ,
for k = 0, 1, 2, ..., k0. Thus

V ar10[K(t−, ·)−K(τ, ·)] ≥
k0∑
k=0

|
[(
K(t−, sk+1)−K(τ, sk+1)

)
−
(
K(t−, sk)−K(τ, sk)

)]
|.

Let us observe that the choice of points sk, we get sin sk
ρ = 0 for even k and ρ = t, τ ,

sin sk
t = 1, sin sk

τ = 1 for odd k, so |K(t−, sk+1)−K(τ, sk+1)−K(t−, sk) +K(τ, sk)| ≥ 1
2n

and finally V ar10 [K(t−, ·)−K(τ, ·)] ≥ k0
2n =

Ent( n2π )
n . Observe, that the last term is not

convergent to zero as n → ∞. Indeed, we have nx ≤ Ent (nx) + 1 for any x > 0, so
Ent(nx)
nx ≥ Ent(nx)

Ent(nx)+1 and finally Ent(nx)
n ≥ x · Ent(nx)

Ent(nx)+1 = x ·
(
1− 1

Ent(nx)+1

)
.

Thus limn→∞
Ent(nx)

n ≥ x. For x = 1
2π we get our thesis, so (3.3) is not satisfied. Similar

calculation holds true for (3.4).

Remark 3.3. Recall that forK(t, s) =
∫ s
0

∫ t
0
p(τ, ρ) dρ dτ with sufficiently regular function

p our equations is a usual quadratic Hammerstein integral equations, nonetheless it can
be solved in G(I). Moreover, some interesting special cases of our problem (1.1) can be
obtained by putting some special functions K. All the result can be obtained in G(I) and
even discontinuity of g is sufficient to earlier results could not be applied.

a) (cf. [12, Section 4]) For K(t, s) = 1
α [tα − (t− s)α] for s ≤ t and K(t, s) = 0 for

s > t, t, s ∈ I we have dsK(t, s) = ds
(t−s)(1−α) for s ≤ t and dsK(t, s) = 0 elsewhere.

Put T (x)(t) = x(t). In such a case we have fractional quadratic integral equation x(t) =

g(t)+λ ·x(t) ·
∫ 1

0
1

(t−s)(1−α) f(s, x(s)) ds which can be considered for x ∈ C(I) or x ∈ G(I).
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b) For a given continuously differentiable function h let us consider the kernel
K(t, s) = 1

α [h(t)α − (h(t)− h(s))α] for s ≤ t and K(t, s) = 0 for s > t, t, s ∈ I we have
dsK(t, s) = h′(s)ds

(h(t)−h(s))1−α for s ≤ t and dsK(t, s) = 0 elsewhere. Put T (x)(t) = g(t, x(t)).
In such a case we have generalized fractional quadratic integral equation considered in
[1] which can be now investigated both in C(I) (as in [1]) or G(I).

c) (cf. [10, p.47-48], [12, Section 5]) Put K(t, s) = t · ln t+s
t for t ∈ (0, 1] and s ∈ I

and K(t, s) = 0 for t = 0, s ∈ I . Let f(t, x) = x · ϕ(t), T (x) = x and g(t) ≡ 1. Thus
dsK(t, s) = t

t+sds and we get the classical Chandrasekhar quadratic integral equation

x(t) = 1 + x(t) ·
∫ 1

0
t
t+sϕ(s)x(s) ds (cf. [9, 10, 17]).

For more examples of functions K we refer to [7, Section 3], [10, Section 5] or to [12].
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[7] Banaś, J., Some properties of Urysohn-Stieltjes integral operators, Int. J. Math. Math. Sci., 21, (1998), 79–88
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