An iterative process for a hybrid pair of generalized I-asymptotically nonexpansive single-valued mappings and generalized nonexpansive multi-valued mappings in Banach spaces

Ali Farajzadeh ${ }^{1}$, Preeyanuch Chuasuk ${ }^{2}$, Anchalee Kaewcharoen ${ }^{2}$ and Mohammad Mursaleen ${ }^{3}$

Abstract

In this paper, an iterative process for a hybrid pair of a finite family of generalized I-asymptotically nonexpansive single-valued mappings and a finite family of generalized nonexpansive multi-valued mappings is established. Moreover, the weak convergence theorems and strong convergence theorems of the proposed iterative process in Banach spaces are proven. The examples are established for supporting our main results. The obtained results can be viewed as an improvement and extension of the several results in the literature.

1. Introduction

The fixed point theory for multi-valued nonexpansive mappings using the PompeiuHausdorff metric was initiated by and Nadler [8] and Markin [7]. Since then there exist extensive literatures on multi-valued fixed point theory which have applications in diverse areas, such as control theory, convex optimization, differential inclusion, and economics (see [5] and references cited therein). Different iterative processes have been used to approximate fixed points of nonexpansive and multi-valued nonexpansive mappings. Sastry and Babu [12] proved that Mann and Ishikawa iterations for a multi-valued mapping T with a fixed point p converges to a fixed point of T.

Let X be a Banach space and let D be a nonempty subset of X. Let $C B(D)$ and $K C(D)$ denote the families of nonempty closed bounded subsets and nonempty compact convex subsets of D, respectively. The Pompeiu-Hausdorff metric on $C B(D)$ is defined by

$$
H(A, B)=\max \left\{\sup _{x \in A} \operatorname{dist}(x, B), \sup _{y \in B} \operatorname{dist}(y, A)\right\} \text { for } A, B \in C B(D),
$$

where $\operatorname{dist}(x, B)=\inf \{\|x-y\|: y \in B\}$ is the distance from a point x to a subset B, for more details see [2]. Let t be a single-valued mapping of D into D and T be a multivalued mapping of D into $C B(D)$. The set of fixed points of t and T will be denoted by $F(t)=\{x \in D: x=t x\}$ and $F(T)=\{x \in D: x \in T x\}$, respectively. A point x is called a common fixed point of t and T if $x=t x \in T x$.

In 2011, Sokhuma and Kaewkhao [14] introduced the following iterative process of a pair of a nonexpansive single-valued mapping t and a nonexpansive multi-valued mapping T :

$$
\left\{\begin{array}{l}
y_{n}=\left(1-\alpha_{n}\right) x_{n}+\alpha_{n} z_{n}, \tag{1.1}\\
x_{n+1}=\left(1-\beta_{n}\right) x_{n}+\beta_{n} t y_{n}, n \in \mathbb{N},
\end{array}\right.
$$

Received: 27.07.2016. In revised form: 31.03.2017. Accepted: 07.04.2017
2010 Mathematics Subject Classification. 47H10, 54H25.
Key words and phrases. Generalized I-asymptotically nonexpansive mappings, generalized nonexpansive multivalued mappings, Banach spaces, common fixed points.

Corresponding author: Anchalee Kaewcharoen; anchaleeka@nu.ac.th
where $x_{1} \in D, z_{n} \in T x_{n}$ and $0<a \leq \alpha_{n}, \beta_{n} \leq b<1$. They assured the existence of a strong convergence theorem for the iterative process (1.1) in uniformly convex Banach spaces.

In 2011, Eslamian and Abkar [4] introduced the following iterative process for a pair of a finite family of asymptotically nonexpansive single-valued mappings $\left\{t_{i}\right\}_{i=1}^{N}$ and a finite family of quasi-nonexpansive multi-valued mappings $\left\{T_{i}\right\}_{i=1}^{N}$:

$$
\left\{\begin{array}{l}
y_{n}=\beta_{n}^{(0)} x_{n}+\sum_{i=1}^{N} \beta_{n}^{(i)} z_{n}^{(i)}, \tag{1.2}\\
x_{n+1}=\alpha_{n}^{(0)} x_{n}+\sum_{i=1}^{N} \alpha_{n}^{(i)} t_{i}^{n} y_{n}, n \in \mathbb{N}
\end{array}\right.
$$

where $x_{1} \in D, z_{n}^{(i)} \in T_{i} x_{n}$, and $\left\{\alpha_{n}^{(i)}\right\},\left\{\beta_{n}^{(i)}\right\}$ are sequences in $[0,1]$ for all $i=1,2, \ldots, N$ such that $\sum_{i=0}^{N} \alpha_{n}^{(i)}=\sum_{i=0}^{N} \beta_{n}^{(i)}=1$.

In 2015, Suantai and Phuengrattana [16] extended the results of [3, 4, 14] in uniformly convex Banach spaces. They introduced the following iterative process for a pair of a finite family of generalized asymptotically nonexpansive single-valued mappings $\left\{t_{i}\right\}_{i=1}^{N}$ and a finite family of quasi-nonexpansive multi-valued mappings $\left\{T_{i}\right\}_{i=1}^{N}$:

$$
\left\{\begin{array}{l}
y_{n}=\beta_{n}^{(0)} x_{n}+\sum_{i=1}^{N} \beta_{n}^{(i)} z_{n}^{(i)}, \tag{1.3}\\
x_{n+1}=\alpha_{n}^{(0)} x_{n}+\sum_{i=1}^{N} \alpha_{n}^{(i)} t_{i}^{n} y_{n}, n \in \mathbb{N}
\end{array}\right.
$$

where $x_{1} \in D, z_{n}^{(i)} \in T_{i} x_{n}$, and $\left\{\alpha_{n}^{(i)}\right\},\left\{\beta_{n}^{(i)}\right\}$ are sequences in $[0,1]$ for all $i=1,2, \ldots, N$ such that $\sum_{i=0}^{N} \alpha_{n}^{(i)}=\sum_{i=0}^{N} \beta_{n}^{(i)}=1$.

They [16] proved the weak convergence theorems and strong convergence theorems of the iterative process defined in (1.3) in Banach spaces.

Definition 1.1. ([17]) Let $t: D \rightarrow D$ and $I: D \rightarrow D$ be single-valued mappings. We say that t is generalized I-asymptotically nonexpansive if there exist sequences $\left\{k_{n}\right\} \subset[1, \infty)$ and $\left\{s_{n}\right\} \subset[0, \infty)$ with $\lim _{n \rightarrow \infty} k_{n}=1$ and $\lim _{n \rightarrow \infty} s_{n}=0$ such that

$$
\left\|t^{n} x-t^{n} y\right\| \leq k_{n}\|I x-I y\|+s_{n}
$$

for all $x, y \in D$ and $n \in \mathbb{N}$.
If I is an identity mapping, then a single-valued mapping t reduces to a generalized asymptotically nonexpansive mapping. If $s_{n}=0$, for all $n \in \mathbb{N}$, and I is an identity mapping, then a single-valued mapping t is called an asymptotically nonexpansive mapping. In particular, if $k_{n}=1, s_{n}=0$, for all $n \in \mathbb{N}$, and I is an identity mapping, a single-valued mapping t reduces to a nonexpansive mapping. The fixed point theorems for generalized I-asymptotically nonexpansive single-valued mappings in uniformly convex Banach spaces can be found in [17].

Since the class of generalized I-asymptotically nonexpansive single-valued mappings is larger than the class of generalized asymptotically nonexpansive single-valued mappings, we are interested in extending and improving the above work for a pair of a finite family ofgeneralized I-asymptotically nonexpansive single-valued mappings $\left\{t_{i}\right\}_{i=1}^{N}$ and a finite family of quasi-nonexpansive multi-valued mappings $\left\{T_{i}\right\}_{i=1}^{N}$.

In this paper, an iterative process for a hybrid pair of a finite family of generalized I asymptotically nonexpansive single-valued mappings and a finite family of generalized nonexpansive multi-valued mappings is established. Moreover, the weak convergence theorems and strong convergence theorems of the proposed iterative process in Banach spaces are proven. The obtained results can be viewed as an improvement and extension of the several results in $[3,4,6,14,16,20]$.

2. Preliminaries

In this section, we recall some definitions, propositions and lemmas that will be used in the sequel.

Recall that a multi-valued mapping $T: D \rightarrow C B(D)$ is called to be quasi-nonexpansive if $F(T) \neq \emptyset$ and

$$
H(T x, T p) \leq\|x-p\|
$$

for all $x \in D$ and $p \in F(T)$.
In 2011, Abkar and Eslamian [1] introduced a new condition on multi-valued mappings called condition $\left(E_{\mu}\right)$ as follows.

Definition 2.2. ([1]) A multi-valued mapping $T: D \rightarrow C B(D)$ is said to satisfy condition $\left(E_{\mu}\right)$ where $\mu \geq 0$ if for each $x, y \in D$,

$$
\operatorname{dist}(x, T y) \leq \mu \operatorname{dist}(x, T x)+\|x-y\|
$$

We say that T satisfies condition (E) whenever T satisfies $\left(E_{\mu}\right)$ for some $\mu \geq 1$.
Remark 2.1. We observe that if T is nonexpansive, then T satisfies the condition $\left(E_{1}\right)$.
Recall that a Banach space X is said to be uniformly convex if for each $\varepsilon>0$ there is $\delta>0$ such that for all $x, y \in X$ with $\|x\| \leq 1,\|y\| \leq 1$, and $\|x-y\| \geq \varepsilon$ imply $\|x+y\| \leq 2(1-\delta)$.

A Banach space X is said to satisfy the Opial property (see [9]) whenever $\left\{x_{n}\right\}$ converges weakly to $x \in X$, then the following inequality holds:

$$
\limsup _{n \rightarrow \infty}\left\|x_{n}-x\right\|<\limsup _{n \rightarrow \infty}\left\|x_{n}-y\right\|
$$

for each $y \in X$ with $y \neq x$. A Hilbert space is one of the examples of Banach spaces which satisfies the Opial property and $L^{p}[0,2 \pi]$ fails to satisfy the Opial property for all p with $1<p \neq 2$ (see [16]).

Proposition 2.1. ([18]) Let X be a uniformly convex Banach space and let $r>0$. Then there exists a strictly increasing continuous convex function $g:[0, \infty) \rightarrow[0, \infty)$ with $g(0)=0$ such that

$$
\|\lambda x+(1-\lambda) y\|^{2} \leq \lambda\|x\|^{2}+(1-\lambda)\|y\|^{2}-\lambda(1-\lambda) g(\|x-y\|),
$$

for all $x, y \in B_{r}=\{z \in X:\|z\| \leq r\}$ and $\lambda \in[0,1]$.
Definition 2.3. ([10]) Let F be a nonempty subset of a Banach space X and let $\left\{x_{n}\right\}$ be a sequence in X. We say that $\left\{x_{n}\right\}$ is of monotone type (I) with respect to F if there exist sequences $\left\{\delta_{n}\right\}$ and $\left\{\varepsilon_{n}\right\}$ of nonnegative real numbers such that $\sum_{n=1}^{\infty} \delta_{n}<\infty, \sum_{n=1}^{\infty} \varepsilon_{n}<$ ∞, and $\left\|x_{n+1}-p\right\| \leq\left(1+\delta_{n}\right)\left\|x_{n}-p\right\|+\varepsilon_{n}$ for all $n \in \mathbb{N}$ and $p \in F$.

Proposition 2.2. ([10]) Let F be a nonempty subset of a Banach space X and let $\left\{x_{n}\right\}$ be a sequence in X. If $\left\{x_{n}\right\}$ is of monotone type (I) with respect to F and $\liminf _{n \rightarrow \infty} \operatorname{dist}\left(x_{n}, F\right)=0$, then $\lim _{n \rightarrow \infty} x_{n}=p$ for some $p \in X$ satisfying $\operatorname{dist}(p, F)=0$. In particular, if F is closed, then $p \in F$.

Lemma 2.1. ([19]) Let $\left\{a_{n}\right\},\left\{b_{n}\right\}$ and $\left\{c_{n}\right\}$ be sequences of nonnegative real numbers satisfying

$$
a_{n+1} \leq\left(1+c_{n}\right) a_{n}+b_{n}, \text { for all } n \in \mathbb{N},
$$

where $\sum_{n=1}^{\infty} b_{n}<\infty$ and $\sum_{n=1}^{\infty} c_{n}<\infty$. Then:
(i) $\lim _{n \rightarrow \infty} a_{n}$ exists;
(ii) if $\liminf _{n \rightarrow \infty} a_{n}=0$, then $\lim _{n \rightarrow \infty} a_{n}=0$.

Lemma 2.2. ([13]) Let X be a uniformly convex Banach space, let $\left\{\lambda_{n}\right\}$ be a sequence of real numbers such that $0<a \leq \lambda_{n} \leq b<1$, for all $n \in \mathbb{N}$, and let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be sequences of X satisfying, for some $r \geq 0$,
(i) $\lim \sup _{n \rightarrow \infty}\left\|x_{n}\right\| \leq r$;
(ii) $\lim \sup _{n \rightarrow \infty}\left\|y_{n}\right\| \leq r$;
(iii) $\lim _{n \rightarrow \infty}\left\|\lambda_{n} x_{n}+\left(1-\lambda_{n}\right) y_{n}\right\|=r$.

Then $\lim _{n \rightarrow \infty}\left\|x_{n}-y_{n}\right\|=0$.
Lemma 2.3. ([15]) Let X be a Banach space which satisfies the Opial property and $\left\{x_{n}\right\}$ be a sequence in X. Let $u, v \in X$ be such that $\lim _{n \rightarrow \infty}\left\|x_{n}-u\right\|$ and $\lim _{n \rightarrow \infty}\left\|x_{n}-v\right\|$ exist. If $\left\{x_{n_{i}}\right\}$ and $\left\{x_{n_{j}}\right\}$ are subsequences of $\left\{x_{n}\right\}$ which converge weakly to u and v, respectively, then $u=v$.

3. Main results

Let D be a nonempty closed convex subset of a Banach space X. Suppose that $\left\{I_{i}\right\}_{i=1}^{N}$ is a finite family of asymptotically nonexpansive self-mappings of D into itself with sequence of real numbers $\left\{\nu_{n}^{(i)}\right\} \subset[1, \infty)$ with $\lim _{n \rightarrow \infty} \nu_{n}^{(i)}=1$. Therefore

$$
\left\|I_{i}^{n} x-I_{i}^{n} y\right\| \leq \nu_{n}^{(i)}\|x-y\|
$$

for all $x, y \in D$, for all $i=1,2, \ldots, N$ and for all $n \in \mathbb{N}$. Assume that $\left\{t_{i}\right\}_{i=1}^{N}$ is a finite family of generalized I_{i}-asymptotically nonexpansive self-mappings of D into itself with the sequences of real numbers $\left\{k_{n}^{(i)}\right\} \subset[1, \infty)$ and $\left\{s_{n}^{(i)}\right\} \subset[0, \infty)$ with $\lim _{n \rightarrow \infty} k_{n}^{(i)}=1$ and $\lim _{n \rightarrow \infty} s_{n}^{(i)}=0$. Therefore

$$
\left\|t_{i}^{n} x-t_{i}^{n} y\right\| \leq k_{n}^{(i)}\left\|I_{i}^{n} x-I_{i}^{n} y\right\|+s_{n}^{(i)}
$$

for all $x, y \in D$, for all $i=1,2, \ldots, N$ and for all $n \in \mathbb{N}$.
Letting $k_{n}=\max _{1 \leq i \leq N}\left\{k_{n}^{(i)}\right\}$ and $s_{n}=\max _{1 \leq i \leq N}\left\{s_{n}^{(i)}\right\}$. It follows that $\lim _{n \rightarrow \infty} k_{n}=1$, and $\lim _{n \rightarrow \infty} s_{n}=0$ and

$$
\left\|t_{i}^{n} x-t_{i}^{n} y\right\| \leq k_{n}\left\|I_{i}^{n} x-I_{i}^{n} y\right\|+s_{n}
$$

for all $x, y \in D$, for all $i=1,2, \ldots, N$ and for all $n \in \mathbb{N}$.
Let $\nu_{n}=\max _{1 \leq i \leq N}\left\{\nu_{n}^{(i)}\right\}$. It is clear that $\lim _{n \rightarrow \infty} \nu_{n}=1$ and

$$
\left\|I_{i}^{n} x-I_{i}^{n} y\right\| \leq \nu_{n}\|x-y\|
$$

for all $x, y \in D$, for all $i=1,2, \ldots, N$ and for all $n \in \mathbb{N}$.
Put $r_{n}=\max \left\{k_{n}, \nu_{n}\right\}$. Thus we have $\lim _{n \rightarrow \infty} r_{n}=1,\left\|I_{i}^{n} x-I_{i}^{n} y\right\| \leq r_{n}\|x-y\|$ and

$$
\left\|t_{i}^{n} x-t_{i}^{n} y\right\| \leq k_{n}\left\|I_{i}^{n} x-I_{i}^{n} y\right\|+s_{n} \leq r_{n}^{2}\|x-y\|+s_{n}
$$

for all $x, y \in D$, for all $i=1,2, \ldots, N$ and for all $n \in \mathbb{N}$.
The following lemma plays a crucial role in the sequel.
Lemma 3.4. Let D be a nonempty closed convex subset of a Banach space X. Let $\left\{t_{i}\right\}_{i=1}^{N}$ be a finite family of generalized I_{i}-asymptotically nonexpansive single-valued mappings of D into itself with sequences $\left\{k_{n}\right\} \subset[1, \infty)$ and $\left\{s_{n}\right\} \subset[0, \infty)$ such that $\sum_{n=1}^{\infty}\left(r_{n}^{3}-1\right)<\infty$ and $\sum_{n=1}^{\infty} s_{n}<\infty$ and $\left\{I_{i}\right\}_{i=1}^{N}$ be a finite family of asymptotically nonexpansive single-valued mappings of D into itself with sequence $\left\{\nu_{n}\right\} \subset[1, \infty)$. Let $\left\{T_{i}\right\}_{i=1}^{N}$ be a finite family of quasi-nonexpansive multivalued mappings of D into $C B(D)$. Assume that $\mathcal{F}=\bigcap_{i=1}^{N} F\left(t_{i}\right) \cap \bigcap_{i=1}^{N} F\left(I_{i}\right) \cap \bigcap_{i=1}^{N} F\left(T_{i}\right)$ is nonempty closed and $T_{i} p=\{p\}$ for all $p \in \mathcal{F}$ and $i=1,2, \ldots, N$. Let $x_{1} \in D$ and the sequence $\left\{x_{n}\right\}$ be generated by

$$
\left\{\begin{array}{l}
y_{n}=\beta_{n}^{(0)} x_{n}+\sum_{i=1}^{N} \beta_{n}^{(i)} I_{i}^{n} z_{n}^{(i)}, \quad z_{n}^{(i)} \in T_{i} x_{n} \tag{3.4}\\
x_{n+1}=\alpha_{n}^{(0)} x_{n}+\sum_{i=1}^{N} \alpha_{n}^{(i)} t_{i}^{n} y_{n}, \quad n \in \mathbb{N},
\end{array}\right.
$$

where $\left\{\alpha_{n}^{(i)}\right\}$ and $\left\{\beta_{n}^{(i)}\right\}$ are sequences in $[0,1]$ for all $i=1,2, \ldots, N$ such that $\sum_{i=0}^{N} \alpha_{n}^{(i)}=1$ and $\sum_{i=0}^{N} \beta_{n}^{(i)}=1$. Then $\lim _{n \rightarrow \infty}\left\|x_{n}-p\right\|$ exists for all $p \in \mathcal{F}$.

Proof. Assume that $p \in \mathcal{F}$. Therefore

$$
\begin{aligned}
\left\|x_{n+1}-p\right\| & =\left\|\alpha_{n}^{(0)} x_{n}+\sum_{i=1}^{N} \alpha_{n}^{(i)} t_{i}^{n} y_{n}-p\right\| \\
& =\left\|\alpha_{n}^{(0)} x_{n}+\sum_{i=1}^{N} \alpha_{n}^{(i)} t_{i}^{n} y_{n}-\sum_{i=0}^{N} \alpha_{n}^{(i)} p\right\| \\
& =\left\|\alpha_{n}^{(0)} x_{n}+\sum_{i=1}^{N} \alpha_{n}^{(i)} t_{i}^{n} y_{n}-\alpha_{n}^{0} p-\sum_{i=1}^{N} \alpha_{n}^{(i)} p\right\| \\
& \leq \alpha_{n}^{(0)}\left\|x_{n}-p\right\|+\sum_{i=1}^{N} \alpha_{n}^{(i)}\left\|t_{i}^{n} y_{n}-p\right\| \\
& \leq \alpha_{n}^{(0)}\left\|x_{n}-p\right\|+\sum_{i=1}^{N} \alpha_{n}^{(i)}\left(r_{n}^{2}\left\|y_{n}-p\right\|+s_{n}\right)
\end{aligned}
$$

for all $i=1,2, \ldots, N$.
Since

$$
\begin{aligned}
\left\|y_{n}-p\right\| & =\left\|\beta_{n}^{(0)} x_{n}+\sum_{i=1}^{N} \beta_{n}^{(i)} I_{i}^{n} z_{n}^{(i)}-p\right\| \\
& =\left\|\beta_{n}^{(0)} x_{n}+\sum_{i=1}^{N} \beta_{n}^{(i)} I_{i}^{n} z_{n}^{(i)}-\sum_{i=0}^{N} \beta_{n}^{(i)} p\right\| \\
& \leq \beta_{n}^{(0)}\left\|x_{n}-p\right\|+\sum_{i=1}^{N} \beta_{n}^{(i)}\left\|I_{i}^{n} z_{n}^{(i)}-p\right\| \\
& \leq \beta_{n}^{(0)}\left\|x_{n}-p\right\|+\sum_{i=1}^{N} \beta_{n}^{(i)} r_{n}\left\|z_{n}^{(i)}-p\right\| \\
& =\beta_{n}^{(0)}\left\|x_{n}-p\right\|+\sum_{i=1}^{N} \beta_{n}^{(i)} r_{n} \operatorname{dist}\left(z_{n}^{(i)}, T_{i} p\right) \\
& \leq \beta_{n}^{(0)}\left\|x_{n}-p\right\|+\sum_{i=1}^{N} \beta_{n}^{(i)} r_{n} H\left(T_{i} x_{n}, T_{i} p\right) \\
& \leq \beta_{n}^{(0)}\left\|x_{n}-p\right\|+\sum_{i=1}^{N} \beta_{n}^{(i)} r_{n}\left\|x_{n}-p\right\|,
\end{aligned}
$$

we obtain that

$$
\begin{aligned}
\left\|x_{n+1}-p\right\| & \leq \alpha_{n}^{(0)}\left\|x_{n}-p\right\|+\sum_{i=1}^{N} \alpha_{n}^{(i)}\left(r_{n}^{2}\left\|y_{n}-p\right\|+s_{n}\right) \\
& \leq \alpha_{n}^{(0)}\left\|x_{n}-p\right\|+\sum_{i=1}^{N} \alpha_{n}^{(i)}\left(r_{n}^{2}\left(\beta_{n}^{(0)}\left\|x_{n}-p\right\|+\sum_{i=1}^{N} \beta_{n}^{(i)} r_{n}\left\|x_{n}-p\right\|\right)+s_{n}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\alpha_{n}^{(0)}+r_{n}^{2} \sum_{i=1}^{N} \alpha_{n}^{(i)} \beta_{n}^{(0)}\right)\left\|x_{n}-p\right\|+r_{n}^{3} \sum_{i=1}^{N} \alpha_{n}^{(i)} \sum_{i=1}^{N} \beta_{n}^{(i)}\left\|x_{n}-p\right\|+\sum_{i=1}^{N} \alpha_{n}^{(i)} s_{n} \\
& \leq\left(\alpha_{n}^{(0)}+r_{n}^{2} \sum_{i=1}^{N} \alpha_{n}^{(i)} \beta_{n}^{(0)}\right)\left\|x_{n}-p\right\|+r_{n}^{3} \sum_{i=1}^{N} \alpha_{n}^{(i)} \sum_{i=1}^{N} \beta_{n}^{(i)}\left\|x_{n}-p\right\|+s_{n} \\
& \leq \alpha_{n}^{(0)}\left\|x_{n}-p\right\|+r_{n}\left(r_{n}^{2} \sum_{i=1}^{N} \alpha_{n}^{(i)} \beta_{n}^{(0)}\right)\left\|x_{n}-p\right\|+r_{n}^{3} \sum_{i=1}^{N} \alpha_{n}^{(i)} \sum_{i=1}^{N} \beta_{n}^{(i)}\left\|x_{n}-p\right\|+s_{n} \\
& \left.=\alpha_{n}^{(0)}\left\|x_{n}-p\right\|+r_{n}^{3} \sum_{i=1}^{N} \alpha_{n}^{(i)} \sum_{i=0}^{N} \beta_{n}^{(i)}\right)\left\|x_{n}-p\right\|+s_{n} \\
& =\alpha_{n}^{(0)}\left\|x_{n}-p\right\|+r_{n}^{3} \sum_{i=1}^{N} \alpha_{n}^{(i)}\left\|x_{n}-p\right\|+s_{n} \\
& \leq r_{n}^{3} \alpha_{n}^{(0)}\left\|x_{n}-p\right\|+r_{n}^{3} \sum_{i=1}^{N} \alpha_{n}^{(i)}\left\|x_{n}-p\right\|+s_{n} \\
& =r_{n}^{3} \sum_{i=0}^{N} \alpha_{n}^{(i)}\left\|x_{n}-p\right\|+s_{n} \\
& =r_{n}^{3}\left\|x_{n}-p\right\|+s_{n} \\
& =\left(1+\left(r_{n}^{3}-1\right)\right)\left\|x_{n}-p\right\|+s_{n} .
\end{aligned}
$$

It now follows from Lemma 2.1, we have $\lim _{n \rightarrow \infty}\left\|x_{n}-p\right\|$ exists for all $p \in \mathcal{F}$. This completes the proof.

Theorem 3.1. Let D be a nonempty closed convex subset of a Banach space X. Let $\left\{t_{i}\right\}_{i=1}^{N}$ be a finite family of generalized I_{i}-asymptotically nonexpansive single-valued mappings of D into itself with sequences $\left\{k_{n}\right\} \subset[1, \infty)$ and $\left\{s_{n}\right\} \subset[0, \infty)$ such that $\sum_{n=1}^{\infty}\left(r_{n}^{3}-1\right)<\infty$ and $\sum_{n=1}^{\infty} s_{n}<$ ∞ and $\left\{I_{i}\right\}_{i=1}^{N}$ be a finite family of asymptotically nonexpansive single-valued mappings of D into itself with sequence $\left\{\nu_{n}\right\} \subset[1, \infty)$. Let $\left\{T_{i}\right\}_{i=1}^{N}$ be a finite family of quasi-nonexpansive multivalued mappings of D into $C B(D)$. Assume that $\mathcal{F}=\bigcap_{i=1}^{N} F\left(t_{i}\right) \cap \bigcap_{i=1}^{N} F\left(I_{i}\right) \cap \bigcap_{i=1}^{N} F\left(T_{i}\right)$ is nonempty closed and $T_{i} p=\{p\}$ for all $p \in \mathcal{F}$ and $i=1,2, \ldots, N$. Let $x_{1} \in D$ and the sequence $\left\{x_{n}\right\}$ be generated by

$$
\left\{\begin{array}{l}
y_{n}=\beta_{n}^{(0)} x_{n}+\sum_{i=1}^{N} \beta_{n}^{(i)} I_{i}^{n} z_{n}^{(i)}, \quad z_{n}^{(i)} \in T_{i} x_{n} \tag{3.5}\\
x_{n+1}=\alpha_{n}^{(0)} x_{n}+\sum_{i=1}^{N} \alpha_{n}^{(i)} t_{i}^{n} y_{n}, \quad n \in \mathbb{N},
\end{array}\right.
$$

where $\left\{\alpha_{n}^{(i)}\right\}$ and $\left\{\beta_{n}^{(i)}\right\}$ are sequences in $[0,1]$ for all $i=1,2, \ldots, N$ such that $\sum_{i=0}^{N} \alpha_{n}^{(i)}=1$ and $\sum_{i=0}^{N} \beta_{n}^{(i)}=1$. Then the sequence $\left\{x_{n}\right\}$ converges strongly to a point in \mathcal{F} if and only if $\lim \inf _{n \rightarrow \infty} \operatorname{dist}\left(x_{n}, \mathcal{F}\right)=0$.

Proof. The necessity is obvious. For proving the converse, suppose that $\lim \inf _{n \rightarrow \infty}$ dist $\left(x_{n}, \mathcal{F}\right)=0$. It follows from the proof of Lemma 3.4 that the sequence can conclude that the sequence $\left\{x_{n}\right\}$ is of monotone type (I) with respect to \mathcal{F}. By Proposition 2.2, we obtain that the sequence $\left\{x_{n}\right\}$ converges to a point in \mathcal{F}.

Recall that a single-valued mapping $t: D \rightarrow D$ is said to be a uniformly L-Lipschitzian mapping if there exists a constant $L>0$ such that $\left\|t^{n} x-t^{n} y\right\| \leq L\|x-y\|$ for all $x, y \in D$ and $n \in \mathbb{N}$.

The following lemma is a main tool for proving our results.
Lemma 3.5. Let D be a nonempty closed convex subset of a uniformly convex Banach space X. Let $\left\{t_{i}\right\}_{i=1}^{N}$ be a finite family of uniformly L-Lipschitzian and generalized I_{i}-asymptotically nonexpansive single-valued mappings of D into itself with sequences $\left\{k_{n}\right\} \subset[1, \infty)$ and $\left\{s_{n}\right\} \subset[0, \infty)$ such that $\sum_{n=1}^{\infty}\left(r_{n}^{3}-1\right)<\infty$ and $\sum_{n=1}^{\infty} s_{n}<\infty$ and $\left\{I_{i}\right\}_{i=1}^{N}$ be a finite family of uniformly Γ-Lipschitzian and asymptotically nonexpansive single-valued mappings of D into itself with sequence $\left\{\nu_{n}\right\} \subset[1, \infty)$. Let $\left\{T_{i}\right\}_{i=1}^{N}$ be a finite family of quasi-nonexpansive multi-valued mappings of D into $C B(D)$. Assume that $\mathcal{F}=\bigcap_{i=1}^{N} F\left(t_{i}\right) \cap \bigcap_{i=1}^{N} F\left(I_{i}\right) \cap \bigcap_{i=1}^{N} F\left(T_{i}\right)$ is nonempty closed and $T_{i} p=\{p\}$ for all $p \in \mathcal{F}$ and $i=1,2, \ldots, N$. Let $x_{1} \in D$ and the sequence $\left\{x_{n}\right\}$ be generated by

$$
\left\{\begin{array}{l}
y_{n}=\beta_{n}^{(0)} x_{n}+\sum_{i=1}^{N} \beta_{n}^{(i)} I_{i}^{n} z_{n}^{(i)}, \quad z_{n}^{(i)} \in T_{i} x_{n} \tag{3.6}\\
x_{n+1}=\alpha_{n}^{(0)} x_{n}+\sum_{i=1}^{N} \alpha_{n}^{(i)} t_{i}^{n} y_{n}, \quad n \in \mathbb{N},
\end{array}\right.
$$

where $\left\{\alpha_{n}^{(i)}\right\}$ and $\left\{\beta_{n}^{(i)}\right\}$ are sequences in $[0,1]$ for all $i=1,2, \ldots, N$ such that $\sum_{i=0}^{N} \alpha_{n}^{(i)}=1$ and $\sum_{i=0}^{N} \beta_{n}^{(i)}=1$. Then we have the followings:
(i) $\lim _{n \rightarrow \infty}\left\|x_{n}-I_{i}^{n} z_{n}^{(i)}\right\|=0$ for all $i=1,2, \ldots, N$;
(ii) $\lim _{n \rightarrow \infty}\left\|x_{n}-t_{i} x_{n}\right\|=0$ for all $i=1,2, \ldots, N$;
(iii) if $\lim _{n \rightarrow \infty}\left\|z_{n}^{(i)}-I_{i}^{(i)} z_{n}^{(i)}\right\|=0$, then $\lim _{n \rightarrow \infty}\left\|x_{n}-I_{i} x_{n}\right\|=0$ for all $i=1,2, \ldots, N$.

Proof. (i) Let $p \in \mathcal{F}$. We conclude from Lemma 3.4 that $\lim _{n \rightarrow \infty}\left\|x_{n}-p\right\|$ exists. Assume that $\lim _{n \rightarrow \infty}\left\|x_{n}-p\right\|=c$. This implies that

$$
\begin{aligned}
\left\|t_{i}^{n} y_{n}-p\right\| & \leq r_{n}^{2}\left\|y_{n}-p\right\|+s_{n} \\
& =r_{n}^{2}\left\|\beta_{n}^{(0)} x_{n}+\sum_{i=1}^{N} \beta_{n}^{(i)} I_{i}^{n} z_{n}^{(i)}-p\right\|+s_{n} \\
& \leq r_{n}^{2} \beta_{n}^{(0)}\left\|x_{n}-p\right\|+r_{n}^{2} \sum_{i=1}^{N} \beta_{n}^{(i)}\left\|I_{i}^{n} z_{n}^{(i)}-p\right\|+s_{n} \\
& \leq r_{n}^{2} \beta_{n}^{(0)}\left\|x_{n}-p\right\|+r_{n}^{2} \sum_{i=1}^{N} \beta_{n}^{(i)} \nu_{n}\left\|z_{n}^{(i)}-p\right\|+s_{n} \\
& \leq r_{n}^{2} \beta_{n}^{(0)}\left\|x_{n}-p\right\|+r_{n}^{3} \sum_{i=1}^{N} \beta_{n}^{(i)}\left\|z_{n}^{(i)}-p\right\|+s_{n} \\
& =r_{n}^{2} \beta_{n}^{(0)}\left\|x_{n}-p\right\|+r_{n}^{3} \sum_{i=1}^{N} \beta_{n}^{(i)} \operatorname{dist}\left(z_{n}^{(i)}, T_{i} p\right)+s_{n} \\
& \leq r_{n}^{2} \beta_{n}^{(0)}\left\|x_{n}-p\right\|+r_{n}^{3} \sum_{i=1}^{N} \beta_{n}^{(i)} H\left(T_{i} x_{n}, T_{i} p\right)+s_{n} \\
& \leq r_{n}^{3} \beta_{n}^{(0)}\left\|x_{n}-p\right\|+r_{n}^{3} \sum_{i=1}^{N} \beta_{n}^{(i)}\left\|x_{n}-p\right\|+s_{n} \\
& =r_{n}^{3}\left\|x_{n}-p\right\|+s_{n} .
\end{aligned}
$$

It follows that

$$
\limsup _{n \rightarrow \infty}\left\|t_{i}^{n} y_{n}-p\right\| \leq \limsup _{n \rightarrow \infty}\left(r_{n}^{2}\left\|y_{n}-p\right\|+s_{n}\right) \leq \limsup _{n \rightarrow \infty}\left(r_{n}^{3}\left\|x_{n}-p\right\|+s_{n}\right) .
$$

Since $\lim _{n \rightarrow \infty} r_{n}=1$ and $\lim _{n \rightarrow \infty} s_{n}=0$, we have

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\|t_{i}^{n} y_{n}-p\right\| \leq \limsup _{n \rightarrow \infty}\left\|y_{n}-p\right\| \leq \limsup _{n \rightarrow \infty}\left\|x_{n}-p\right\|=c \tag{3.7}
\end{equation*}
$$

Because of $\lim _{n \rightarrow \infty}\left\|x_{n+1}-p\right\|=\lim _{n \rightarrow \infty}\left\|\alpha_{n}^{(0)}\left(x_{n}-p\right)+\sum_{i=1}^{N} \alpha_{n}^{(i)}\left(t_{i}^{n} y_{n}-p\right)\right\|$ and by Lemma 2.2, we obtain that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-t_{i}^{n} y_{n}\right\|=0 \text { for all } i=1,2, \ldots, N \tag{3.8}
\end{equation*}
$$

Since

$$
\begin{aligned}
\left\|x_{n+1}-p\right\| & \leq \alpha_{n}^{(0)}\left\|x_{n}-p\right\|+\sum_{i=1}^{N} \alpha_{n}^{(i)}\left\|t_{i}^{n} y_{n}-p\right\| \\
& =\left(1-\sum_{i=1}^{N} \alpha_{n}^{(i)}\right)\left\|x_{n}-p\right\|+\sum_{i=1}^{N} \alpha_{n}^{(i)}\left\|t_{i}^{n} y_{n}-p\right\| \\
& \left.\leq\left(1-\sum_{i=1}^{N} \alpha_{n}^{(i)}\right)\left\|x_{n}-p\right\|+\sum_{i=1}^{N} \alpha_{n}^{(i)}\left(r_{n}^{2}\left\|y_{n}-p\right\|\right)+s_{n}\right),
\end{aligned}
$$

we have

$$
\left\|x_{n+1}-p\right\|-\left\|x_{n}-p\right\| \leq \sum_{i=1}^{N} \alpha_{n}^{(i)}\left(r_{n}^{2}\left\|y_{n}-p\right\|-\left\|x_{n}-p\right\|+s_{n}\right)
$$

This implies that

$$
\begin{aligned}
\frac{\left\|x_{n+1}-p\right\|-\left\|x_{n}-p\right\|}{b N}+\left\|x_{n}-p\right\| & \leq \frac{\left\|x_{n+1}-p\right\|-\left\|x_{n}-p\right\|}{\sum_{i=1}^{N} \alpha_{n}^{(i)}}+\left\|x_{n}-p\right\| \\
& \leq r_{n}^{2}\left\|y_{n}-p\right\|-\left\|x_{n}-p\right\|+s_{n}+\left\|x_{n}-p\right\| \\
& =r_{n}^{2}\left\|y_{n}-p\right\|+s_{n} .
\end{aligned}
$$

By (3.7), this yields

$$
\begin{aligned}
c & =\liminf _{n \rightarrow \infty}\left(\frac{\left\|x_{n+1}-p\right\|-\left\|x_{n}-p\right\|}{b N}+\left\|x_{n}-p\right\|\right) \\
& \leq \liminf _{n \rightarrow \infty}\left(r_{n}^{2}\left\|y_{n}-p\right\|+s_{n}\right) \\
& =\liminf _{n \rightarrow \infty}\left\|y_{n}-p\right\| \\
& \leq \limsup _{n \rightarrow \infty}\left\|y_{n}-p\right\| \leq c .
\end{aligned}
$$

Since

$$
\left\|I_{i}^{n} z_{n}^{(i)}-p\right\| \leq \nu_{n}\left\|z_{n}^{(i)}-p\right\|=\nu_{n} \operatorname{dist}\left(z_{n}^{(i)}, T_{i} p\right) \leq \nu_{n} H\left(T_{i} x_{n}, T_{i} p\right) \leq \nu_{n}\left\|x_{n}-p\right\|,
$$

it follows that

$$
\limsup _{n \rightarrow \infty}\left\|I_{i}^{n} z_{n}^{(i)}-p\right\| \leq \limsup _{n \rightarrow \infty} \nu_{n}\left\|x_{n}-p\right\|=c
$$

Therefore

$$
c=\lim _{n \rightarrow \infty}\left\|y_{n}-p\right\|=\lim _{n \rightarrow \infty}\left\|\beta_{n}^{(0)}\left(x_{n}-p\right)+\sum_{i=1}^{N} \beta_{n}^{(i)}\left(I_{i}^{n} z_{n}^{(i)}-p\right)\right\| .
$$

By Lemma 2.2, we have

$$
\lim _{n \rightarrow \infty}\left\|x_{n}-I_{i}^{n} z_{n}^{(i)}\right\|=0 \text { for all } i=1,2, \ldots, N
$$

(ii) Since t_{i} is generalized I_{i}-asymptotically nonexpansive, for all $i=1,2, \ldots, N$, we obtain that

$$
\begin{aligned}
\left\|t_{i}^{n} x_{n}-x_{n}\right\| & =\left\|t_{i}^{n} x_{n}-t_{i}^{n} y_{n}+t_{i}^{n} y_{n}-x_{n}\right\| \\
& \leq\left\|t_{i}^{n} x_{n}-t_{i}^{n} y_{n}\right\|+\left\|t_{i}^{n} y_{n}-x_{n}\right\| \\
& \leq r_{n}^{2}\left\|x_{n}-y_{n}\right\|+s_{n}+\left\|t_{i}^{n} y_{n}-x_{n}\right\| .
\end{aligned}
$$

Using the definition of $\left\{x_{n}\right\}$, we have $y_{n}-x_{n}=\sum_{i=1}^{N} \beta_{n}^{(i)}\left(I_{i}^{n} z_{n}^{(i)}-x_{n}\right)$. This implies that

$$
\begin{aligned}
\left\|t_{i}^{n} x_{n}-x_{n}\right\| & \leq r_{n}^{2} \sum_{i=1}^{N} \beta_{n}^{(i)}\left\|I_{i}^{n} z_{n}^{(i)}-x_{n}\right\|+\left\|t_{i}^{n} y_{n}-x_{n}\right\|+s_{n} \\
& \leq r_{n}^{2}\left\|I_{i}^{n} z_{n}^{(i)}-x_{n}\right\|+\left\|t_{i}^{n} y_{n}-x_{n}\right\|+s_{n}
\end{aligned}
$$

By (i) and (3.8), we obtain that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-t_{i}^{n} x_{n}\right\|=0 \text { for all } i=1,2, \ldots, N \tag{3.9}
\end{equation*}
$$

For each $i=1,2, \ldots, N$, we have

$$
\begin{aligned}
\left\|x_{n}-t_{i} x_{n}\right\| & \leq\left\|x_{n}-x_{n+1}\right\|+\left\|x_{n+1}-t_{i}^{n+1} x_{n+1}\right\|+\left\|t_{i}^{n+1} x_{n+1}-t_{i}^{n+1} x_{n}\right\|+\left\|t_{i}^{n+1} x_{n}-t_{i} x_{n}\right\| \\
& \leq\left\|x_{n}-x_{n+1}\right\|+\left\|x_{n+1}-t_{i}^{n+1} x_{n+1}\right\|+L\left\|x_{n+1}-x_{n}\right\|+\left\|t_{i}^{n+1} x_{n}-t_{i} x_{n}\right\| \\
& \leq(1+L)\left\|x_{n}-x_{n+1}\right\|+\left\|x_{n+1}-t_{i}^{n+1} x_{n+1}\right\|+L\left\|t_{i}^{n} x_{n}-x_{n}\right\| \\
& \leq(1+L) \sum_{i=1}^{N} \alpha_{n}^{(i)}\left\|x_{n}-t_{i}^{n} y_{n}\right\|+\left\|x_{n+1}-t_{i}^{n+1} x_{n+1}\right\|+L\left\|t_{i}^{n} x_{n}-x_{n}\right\| .
\end{aligned}
$$

By using (3.8) and (3.9), we can conclude that $\lim _{n \rightarrow \infty}\left\|x_{n}-t_{i} x_{n}\right\|=0$ for all $i=1,2, \ldots, N$. (iii) Since

$$
\begin{aligned}
\left\|I_{i}^{n} x_{n}-x_{n}\right\| & \leq\left\|I_{i}^{n} x_{n}-I_{i}^{n} z_{n}^{(i)}\right\|+\left\|I_{i}^{n} z_{n}^{(i)}-x_{n}\right\| \\
& \leq \nu_{n}\left\|x_{n}-z_{n}^{(i)}\right\|+\left\|I_{i}^{n} z_{n}^{(i)}-x_{n}\right\| \\
& \leq \nu_{n}\left(\left\|x_{n}-I_{i}^{n} z_{n}^{(i)}\right\|+\left\|I_{i}^{n} z_{n}^{(i)}-z_{n}^{(i)}\right\|\right)+\left\|I_{i}^{n} z_{n}^{(i)}-x_{n}\right\|
\end{aligned}
$$

and by (i), we obtain that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|I_{i}^{n} x_{n}-x_{n}\right\|=0 \tag{3.10}
\end{equation*}
$$

Since

$$
\begin{aligned}
\left\|x_{n}-I_{i} x_{n}\right\| & \leq\left\|x_{n}-x_{n+1}\right\|+\left\|x_{n+1}-I_{i}^{n+1} x_{n+1}\right\|+\left\|I_{i}^{n+1} x_{n+1}-I_{i}^{n+1} x_{n}\right\|+\left\|I_{i}^{n+1} x_{n}-I_{i} x_{n}\right\| \\
& \leq\left\|x_{n}-x_{n+1}\right\|+\left\|x_{n+1}-I_{i}^{n+1} x_{n+1}\right\|+\Gamma\left\|x_{n+1}-x_{n}\right\|+\left\|I_{i}^{n+1} x_{n}-I_{i} x_{n}\right\| \\
& \leq(1-\Gamma)\left\|x_{n}-x_{n+1}\right\|+\left\|x_{n+1}-I_{i}^{n+1} x_{n+1}\right\|+\Gamma\left\|I_{i}^{n} x_{n}-x_{n}\right\| \\
& \leq(1-\Gamma) \sum_{i=1}^{N} \alpha_{n}^{(i)}\left\|x_{n}-t_{i}^{n} y_{n}\right\|+\left\|x_{n+1}-I_{i}^{n+1} x_{n+1}\right\|+\Gamma\left\|I_{i}^{n} x_{n}-x_{n}\right\|,
\end{aligned}
$$

and by (3.8) and (3.10), we can conclude that $\lim _{n \rightarrow \infty}\left\|x_{n}-I_{i} x_{n}\right\|=0$ for all $i=1,2, \ldots, N$.

Next, we prove a strong convergence theorem of the proposed iterative process in uniformly convex Banach spaces.

Theorem 3.2. Let D be a nonempty compact convex subset of a uniformly convex Banach space X. Let $\left\{t_{i}\right\}_{i=1}^{N}$ be a finite family of uniformly L-Lipschitzian and generalized I_{i}-asymptotically nonexpansive single-valued mappings of D into itself with sequences $\left\{k_{n}\right\} \subset[1, \infty)$ and $\left\{s_{n}\right\} \subset[0, \infty)$ such that $\sum_{n=1}^{\infty}\left(r_{n}^{3}-1\right)<\infty$ and $\sum_{n=1}^{\infty} s_{n}<\infty$ and $\left\{I_{i}\right\}_{i=1}^{N}$ be a finite family of uniformly Γ-Lipschitzian and asymptotically nonexpansive single-valued mappings of D into itself with sequence $\left\{\nu_{n}\right\} \subset[1, \infty)$. Let $\left\{T_{i}\right\}_{i=1}^{N}$ be a finite family of quasi-nonexpansive multi-valued mappings of D into $C B(D)$ satisfying condition (E). Assume that $\mathcal{F}=\bigcap_{i=1}^{N} F\left(t_{i}\right) \cap \bigcap_{i=1}^{N} F\left(I_{i}\right) \cap$ $\bigcap_{i=1}^{N} F\left(T_{i}\right)$ is nonempty closed and $T_{i} p=\{p\}$ for all $p \in \mathcal{F}$ and $i=1,2, \ldots, N$. Let $x_{1} \in D$ and the sequence $\left\{x_{n}\right\}$ be generated by

$$
\left\{\begin{array}{l}
y_{n}=\beta_{n}^{(0)} x_{n}+\sum_{i=1}^{N} \beta_{n}^{(i)} I_{i}^{n} z_{n}^{(i)}, \quad z_{n}^{(i)} \in T_{i} x_{n} \tag{3.11}\\
x_{n+1}=\alpha_{n}^{(0)} x_{n}+\sum_{i=1}^{N} \alpha_{n}^{(i)} t_{i}^{n} y_{n}, \quad n \in \mathbb{N}
\end{array}\right.
$$

where $\left\{\alpha_{n}^{(i)}\right\}$ and $\left\{\beta_{n}^{(i)}\right\}$ are sequences in $[0,1]$ for all $i=1,2, \ldots, N$ such that $\sum_{i=0}^{N} \alpha_{n}^{(i)}=1$ and $\sum_{i=0}^{N} \beta_{n}^{(i)}=1$. Suppose that $\lim _{n \rightarrow \infty}\left\|z_{n}^{(i)}-I_{i}^{(i)} z_{n}^{(i)}\right\|=0$ for all $i=1,2, \ldots, N$. Then the sequence $\left\{x_{n}\right\}$ converges strongly to a point in \mathcal{F}.

Proof. Using Lemma 3.4, we obtain that $\left\{x_{n}\right\}$ is bounded. By the compactness of D, there exists a subsequence $\left\{x_{n_{j}}\right\}$ of $\left\{x_{n}\right\}$ converging strongly to $p \in D$. By condition (E), there exists $\mu \geq 1$ such that

$$
\begin{aligned}
\operatorname{dist}\left(p, T_{i} p\right) & \leq\left\|p-x_{n_{j}}\right\|+\operatorname{dist}\left(x_{n_{j}}, T_{i} p\right) \\
& \leq\left\|p-x_{n_{j}}\right\|+\mu \operatorname{dist}\left(x_{n_{j}}, T_{i} x_{n_{j}}\right)+\left\|x_{n_{j}}-p\right\| \\
& =2\left\|x_{n_{j}}-p\right\|+\mu \operatorname{dist}\left(x_{n_{j}}, T_{i} x_{n_{j}}\right) \\
& \leq 2\left\|x_{n_{j}}-p\right\|+\mu\left\|x_{n_{j}}-z_{n_{j}}^{(i)}\right\| \\
& \leq 2\left\|x_{n_{j}}-p\right\|+\mu\left\|x_{n_{j}}-I_{i}^{n_{j}} z_{n_{j}}^{(i)}\right\|+\mu\left\|I_{i}^{n_{j}} z_{n_{j}}^{(i)}-z_{n_{j}}^{(i)}\right\|,
\end{aligned}
$$

for all $i=1,2, \ldots, N$. By using Lemma 3.5 (i), we obtain that $p \in T_{i} p$ for all $i=1,2, \ldots, N$. This implies that $p \in \bigcap_{i=1}^{N} F\left(T_{i}\right)$. Since t_{i} is uniformly L-Lipschitzian, we have

$$
\begin{aligned}
\left\|t_{i} p-p\right\| & \leq\left\|t_{i} p-t_{i} x_{n_{j}}\right\|+\left\|t_{i} x_{n_{j}}-x_{n_{j}}\right\|+\left\|x_{n_{j}}-p\right\| \\
& \leq L\left\|x_{n_{j}}-p\right\|+\left\|t_{i} x_{n_{j}}-x_{n_{j}}\right\|+\left\|x_{n_{j}}-p\right\| \\
& =(L+1)\left\|x_{n_{j}}-p\right\|+\left\|t_{i} x_{n_{j}}-x_{n_{j}}\right\|,
\end{aligned}
$$

for all $i=1,2, \ldots, N$. By Lemma 3.5 (ii), we obtain that $t_{i} p=p$ for all $i=1,2, \ldots, N$. This implies that $p \in \bigcap_{i=1}^{N} F\left(t_{i}\right)$. Since I_{i} is uniformly Γ-Lipschitzian, we have

$$
\begin{aligned}
\left\|I_{i} p-p\right\| & \leq\left\|I_{i} p-I_{i} x_{n_{j}}\right\|+\left\|I_{i} x_{n_{j}}-x_{n_{j}}\right\|+\left\|x_{n_{j}}-p\right\| \\
& \leq \Gamma\left\|x_{n_{j}}-p\right\|+\left\|I_{i} x_{n_{j}}-x_{n_{j}}\right\|+\left\|x_{n_{j}}-p\right\| \\
& =(\Gamma+1)\left\|x_{n_{j}}-p\right\|+\left\|I_{i} x_{n_{j}}-x_{n_{j}}\right\|,
\end{aligned}
$$

for all $i=1,2, \ldots, N$. By Lemma 3.5 (iii), we obtain that $I_{i} p=p$ for all $i=1,2, \ldots, N$. It follows that $p \in \bigcap_{i=1}^{N} F\left(I_{i}\right)$. Thus $p \in \mathcal{F}$. Since $\lim _{n \rightarrow \infty}\left\|x_{n}-p\right\|$ exists, we have $\lim _{n \rightarrow \infty}\left\|x_{n}-p\right\|=\lim _{j \rightarrow \infty}\left\|x_{n_{j}}-p\right\|=0$. Hence $\left\{x_{n}\right\}$ converges strongly to a point in \mathcal{F}.

The following example illustrates Theorem 3.2.
Example 3.1. Let \mathbb{R} be the real line with the usual norm $|\cdot|$ and let $D=[0,1]$. Define single-valued mappings t_{1}, t_{2}, I_{1}, and I_{2} on D as follows:

$$
t_{1} x=\arctan x, t_{2} x=x^{2}, I_{1} x=x \text { and } I_{2} x=\frac{x}{2} .
$$

Define multi-valued mappings T_{1} and T_{2} on D by

$$
T_{1} x=\left[0, \frac{x}{3}\right] \text { and } T_{2} x=\left[\frac{x}{4}, \frac{x}{2}\right] .
$$

Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be generated by

$$
\left\{\begin{array}{l}
y_{n}=\beta_{n}^{(0)} x_{n}+\sum_{i=1}^{2} \beta_{n}^{(i)} I_{i}^{n} z_{n}^{(i)}, \quad z_{n}^{(i)} \in T_{i} x_{n} \tag{3.12}\\
x_{n+1}=\alpha_{n}^{(0)} x_{n}+\sum_{i=1}^{2} \alpha_{n}^{(i)} t_{i}^{n} y_{n}, \quad n \in \mathbb{N},
\end{array}\right.
$$

where $\alpha_{n}^{(0)}=\frac{1}{12 n}, \alpha_{n}^{(1)}=\frac{12 n-1}{36 n}, \alpha_{n}^{(2)}=\frac{12 n-1}{18 n}, \beta_{n}^{(0)}=\frac{1}{10 n}, \beta_{n}^{(1)}=\frac{10 n-1}{30 n}, \beta_{n}^{(2)}=\frac{10 n-1}{15 n}$, for all $n \in \mathbb{N}$. Then the sequence $\left\{x_{n}\right\}$ converges strongly to 0 , where $\{0\}=\bigcap_{i=1}^{2} F\left(t_{i}\right) \cap$ $\bigcap_{i=1}^{2} F\left(I_{i}\right) \cap \bigcap_{i=1}^{2} F\left(T_{i}\right)$.

Solution We first show that t_{1} is a generalized I_{1}-asymptotically nonexpansive and uniformly L-Lipschitzian single-valued mapping. Let $k_{n}=1$ and $s_{n}=\left(\frac{2}{3}\right)^{n}$ for all $n \in \mathbb{N}$. Therefore $\lim _{n \rightarrow \infty} k_{n}=1$ and $\lim _{n \rightarrow \infty} s_{n}=0$. Since

$$
\frac{\left|t_{1}^{n} x-t_{1}^{n} y\right|}{|x-y|} \leq 1+\left(\frac{2}{3|x-y|}\right)^{n} \text { for all } x, y \in D
$$

we have

$$
\left|t_{1}^{n} x-t_{1}^{n} y\right| \leq|x-y|+s_{n} \text { for all } n \in \mathbb{N}
$$

and we can show that t_{1} is a uniformly L-Lipschitzian mapping with $L \geq 2$. Since t_{2} is a single-valued nonexpansive mapping of D, we have t_{2} is a uniformly L-Lipschitzian and generalized I_{2}-asymptotically nonexpansive single-valued mapping of D. Moreover $\bigcap_{i=1}^{2} F\left(t_{i}\right)=\{0\}=\bigcap_{i=1}^{2} F\left(I_{i}\right)$. Both T_{1} and T_{2} are quasi-nonexpansive multi-valued mappings satisfying condition (E) and $\bigcap_{i=1}^{2} F\left(T_{i}\right)=\{0\}$ (see [16]). Thus $\bigcap_{i=1}^{2} F\left(t_{i}\right) \cap$ $\bigcap_{i=1}^{2} F\left(I_{i}\right) \cap \bigcap_{i=1}^{2} F\left(T_{i}\right)=\{0\}$. For every $n \in \mathbb{N}, \alpha_{n}^{(0)}=\frac{1}{12 n}, \alpha_{n}^{(1)}=\frac{12 n-1}{36 n}, \alpha_{n}^{(2)}=\frac{12 n-1}{18 n}$, $\beta_{n}^{(0)}=\frac{1}{10 n}, \beta_{n}^{(1)}=\frac{10 n-1}{30 n}, \beta_{n}^{(2)}=\frac{10 n-1}{15 n}$. Therefore the sequences $\left\{\alpha_{n}^{(0)}\right\},\left\{\alpha_{n}^{(1)}\right\},\left\{\alpha_{n}^{(2)}\right\}$, $\left\{\beta_{n}^{(0)}\right\},\left\{\beta_{n}^{(1)}\right\},\left\{\beta_{n}^{(2)}\right\}$ satisfy all assumptions in Theorem 3.2. By putting $z_{n}^{(1)}=\frac{x_{n}}{3}$, and $z_{n}^{(2)}=\frac{x_{n}}{2}$ for all $n \in \mathbb{N}$ and by using the algorithm 3.12 with the initial point $x_{1}=0.5$. The sequence $\left\{x_{n}\right\}$ converges strongly to 0 , where $\{0\}=\bigcap_{i=1}^{2} F\left(t_{i}\right) \cap \bigcap_{i=1}^{2} F\left(I_{i}\right) \cap \bigcap_{i=1}^{2} F\left(T_{i}\right)$.

Finally, we prove a weak convergence theorem of the proposed iterative process in uniformly convex Banach spaces.

Theorem 3.3. Let D be a nonempty closed convex subset of a uniformly convex Banach spaces X with the Opial property. Let $\left\{t_{i}\right\}_{i=1}^{N}$ be a finite family of uniformly L-Lipschitzian and generalized I_{i}-asymptotically nonexpansive single-valued mappings of D into itself with sequences $\left\{k_{n}\right\} \subset[1, \infty)$ and $\left\{s_{n}\right\} \subset[0, \infty)$ such that $\sum_{n=1}^{\infty}\left(k_{n}^{3}-1\right)<\infty$ and $\sum_{n=1}^{\infty} s_{n}<\infty$ and $\left\{I_{i}\right\}_{i=1}^{N}$ be a finite family of uniformly Γ-Lipschitzian and asymptotically nonexpansive singlevalued mappings of D into itself with sequence $\left\{\nu_{n}\right\} \subset[1, \infty)$. Let $\left\{T_{i}\right\}_{i=1}^{N}$ be a finite family of quasi-nonexpansive multi-valued mappings of D into $K C(D)$ satisfying condition (E). Assume that $\mathcal{F}=\bigcap_{i=1}^{N} F\left(t_{i}\right) \cap \bigcap_{i=1}^{N} F\left(I_{i}\right) \cap \bigcap_{i=1}^{N} F\left(T_{i}\right)$ is nonempty closed and $T_{i} p=\{p\}$ for all $p \in \mathcal{F}$ and $i=1,2, \ldots, N$. Let $x_{1} \in D$ and the sequence $\left\{x_{n}\right\}$ be generated by

$$
\left\{\begin{array}{l}
y_{n}=\beta_{n}^{(0)} x_{n}+\sum_{i=1}^{N} \beta_{n}^{(i)} I_{i}^{n} z_{n}^{(i)}, \quad z_{n}^{(i)} \in T_{i} x_{n} \tag{3.13}\\
x_{n+1}=\alpha_{n}^{(0)} x_{n}+\sum_{i=1}^{N} \alpha_{n}^{(i)} t_{i}^{n} y_{n}, \quad n \in \mathbb{N},
\end{array}\right.
$$

where $\left\{\alpha_{n}^{(i)}\right\}$ and $\left\{\beta_{n}^{(i)}\right\}$ are sequences in $[0,1]$ for all $i=1,2, \ldots, N$ such that $\sum_{i=0}^{N} \alpha_{n}^{(i)}=1$ and $\sum_{i=0}^{N} \beta_{n}^{(i)}=1$. Suppose that $\lim _{n \rightarrow \infty}\left\|z_{n}^{(i)}-I_{i}^{(i)} z_{n}^{(i)}\right\|=0$ for all $i=1,2, \ldots, N$. Then the sequence $\left\{x_{n}\right\}$ converges weakly to a point in \mathcal{F}.

Proof. By using Lemma 3.4, we obtain that $\left\{x_{n}\right\}$ is bounded. Since X is a uniformly convex Banach space, there exists a subsequence $\left\{x_{n_{j}}\right\}$ of $\left\{x_{n}\right\}$ converging weakly to $p \in D$. By Lemma 3.5, we have $\lim _{j \rightarrow \infty}\left\|x_{n_{j}}-I_{i}^{n_{j}} z_{n_{j}}^{(i)}\right\|=0, \lim _{j \rightarrow \infty}\left\|x_{n_{j}}-t_{i} x_{n_{j}}\right\|=0$ and $\lim _{n \rightarrow \infty}\left\|I_{i} x_{n_{j}}-x_{n_{j}}\right\|=0$ for all $i=1,2, \ldots, N$. We will show that $p \in \mathcal{F}$. Since $T_{1} p$ is compact, for all $j \in \mathbb{N}$, we can choose $w_{n_{j}} \in T_{1} p$ such that $\left\|x_{n_{j}}-w_{n_{j}}\right\|=\operatorname{dist}\left(x_{n_{j}}, T_{1} p\right)$ and the sequence $\left\{w_{n_{j}}\right\}$ has a convergent subsequence $\left\{w_{n_{k}}\right\}$ with $\lim _{k \rightarrow \infty} w_{n_{k}}=w \in T_{1} p$. By using condition (E), we obtain that

$$
\operatorname{dist}\left(x_{n_{k}}, T_{1} p\right) \leq \mu \operatorname{dist}\left(x_{n_{k}}, T_{1} x_{n_{k}}\right)+\left\|x_{n_{k}}-p\right\|
$$

This yields

$$
\begin{aligned}
\left\|x_{n_{k}}-w\right\| & \leq\left\|x_{n_{k}}-w_{n_{k}}\right\|+\left\|w_{n_{k}}-w\right\| \\
& =\operatorname{dist}\left(x_{n_{k}}, T_{1} p\right)+\left\|w_{n_{k}}-w\right\| \\
& \leq \mu \operatorname{dist}\left(x_{n_{k}}, T_{1} x_{n_{k}}\right)+\left\|x_{n_{k}}-p\right\|+\left\|w_{n_{k}}-w\right\| \\
& \leq \mu\left\|x_{n_{k}}-z_{n_{k}}^{(1)}\right\|+\left\|x_{n_{k}}-p\right\|+\left\|w_{n_{k}}-w\right\| \\
& \leq \mu\left\|x_{n_{k}}-I_{1}^{n_{k}} z_{n_{k}}^{(1)}\right\|+\mu\left\|I_{1}^{n_{k}} z_{n_{k}}^{(1)}-z_{n_{k}}^{(1)}\right\|+\left\|x_{n_{k}}-p\right\|+\left\|w_{n_{k}}-w\right\| .
\end{aligned}
$$

It follows that

$$
\limsup _{k \rightarrow \infty}\left\|x_{n_{k}}-w\right\| \leq \limsup _{k \rightarrow \infty}\left\|x_{n_{k}}-p\right\|
$$

From the Opial property, we can conclude that $p=w \in T_{1} p$. Similarly, it can be shown that $p \in T_{i} p$ for all $i=1,2, \ldots, N$. Therefore $p \in \bigcap_{i=1}^{N} F\left(T_{i}\right)$. By mathematical induction, we obtain that

$$
\begin{equation*}
\lim _{j \rightarrow \infty}\left\|x_{n_{j}}-t_{i}^{m} x_{n_{j}}\right\|=0 \text { for each } m \in \mathbb{N} \tag{3.14}
\end{equation*}
$$

for all $i=1,2, \ldots, N$. Indeed, the conclusion it true for $m=1$. Suppose the conclusion holds for $m \geq 1$. Since t_{i} is a uniformly L-Lipschitzian single-valued mapping, we obtain that

$$
\begin{aligned}
\left\|x_{n_{j}}-t_{i}^{m+1} x_{n_{j}}\right\| & \leq\left\|x_{n_{j}}-t_{i}^{m} x_{n_{j}}\right\|+\left\|t_{i}^{m} x_{n_{j}}-t_{i}^{m+1} x_{n_{j}}\right\| \\
& =\left\|x_{n_{j}}-t_{i}^{m} x_{n_{j}}\right\|+L\left\|x_{n_{j}}-t_{i} x_{n_{j}}\right\| .
\end{aligned}
$$

This implies that $\lim _{j \rightarrow \infty}\left\|x_{n_{j}}-t_{i}^{m+1} x_{n_{j}}\right\|=0$ for all $i=1,2, \ldots, N$. Therefore (3.14) holds. By (3.14), we have for each $x \in D, m \in \mathbb{N}$ and $i=1,2, \ldots, N$,

$$
\begin{equation*}
\limsup _{j \rightarrow \infty}\left\|x_{n_{j}}-x\right\|=\underset{j \rightarrow \infty}{\limsup }\left\|t_{i}^{m} x_{n_{j}}-x\right\| \tag{3.15}
\end{equation*}
$$

Since t_{i} is generalized I_{i}-asymptotically nonexpansive, we obtain that

$$
\begin{aligned}
\limsup _{j \rightarrow \infty}\left\|t_{i}^{m} x_{n_{j}}-t_{i}^{m} p\right\| & \leq \limsup _{j \rightarrow \infty}\left(k_{m}\left\|I_{i}^{m} x_{n_{j}}-p\right\|+s_{m}\right) \\
& \leq \limsup _{j \rightarrow \infty}\left(k_{m}\left(\nu_{m}\left\|x_{n_{j}}-p\right\|\right)+s_{m}\right) \\
& \leq \limsup _{j \rightarrow \infty}\left(r_{m}^{2}\left\|x_{n_{j}}-p\right\|+s_{m}\right) .
\end{aligned}
$$

It follows that

$$
\begin{equation*}
\limsup _{m \rightarrow \infty}\left(\limsup _{j \rightarrow \infty}\left\|t_{i}^{m} x_{n_{j}}-t_{i}^{m} p\right\|\right) \leq \limsup _{j \rightarrow \infty}\left\|x_{n_{j}}-p\right\| \tag{3.16}
\end{equation*}
$$

By Proposition 2.1, there exists a strictly increasing continuous convex function $g:[0, \infty) \rightarrow$ $[0, \infty)$ such that

$$
\begin{aligned}
\left\|x_{n_{j}}-\frac{p+t_{i}^{m} p}{2}\right\|^{2} & =\left\|\frac{1}{2}\left(x_{n_{j}}-p\right)+\frac{1}{2}\left(x_{n_{j}}-t_{i}^{m} p\right)\right\|^{2} \\
& \leq \frac{1}{2}\left\|x_{n_{j}}-p\right\|^{2}+\frac{1}{2}\left\|x_{n_{j}}-t_{i}^{m} p\right\|^{2}-\frac{1}{4} g\left(\left\|p-t_{i}^{m} p\right\|\right)
\end{aligned}
$$

Therefore

$$
\begin{align*}
\limsup _{j \rightarrow \infty}\left\|x_{n_{j}}-\frac{p+t_{i}^{m} p}{2}\right\|^{2} & \leq \frac{1}{2} \limsup _{j \rightarrow \infty}\left\|x_{n_{j}}-p\right\|^{2}+\frac{1}{2} \limsup _{j \rightarrow \infty}\left\|x_{n_{j}}-t_{i}^{m} p\right\|^{2} \\
& -\frac{1}{4} g\left(\left\|p-t_{i}^{m} p\right\|\right) . \tag{3.17}
\end{align*}
$$

Since X satisfies the Opial property and $\left\{x_{n_{j}}\right\}$ converges weakly to p, we obtain that

$$
\limsup _{j \rightarrow \infty}\left\|x_{n_{j}}-p\right\|^{2} \leq \limsup _{j \rightarrow \infty}\left\|x_{n_{j}}-\frac{p+t_{i}^{m} p}{2}\right\|^{2}
$$

By using (3.17), we have

$$
\begin{aligned}
\frac{1}{4} g\left(\left\|p-t_{i}^{m} p\right\|\right) & \leq \frac{1}{2} \limsup _{j \rightarrow \infty}\left\|x_{n_{j}}-p\right\|^{2}+\frac{1}{2} \limsup _{j \rightarrow \infty}\left\|x_{n_{j}}-t_{i}^{m} p\right\|^{2} \\
& -\limsup _{j \rightarrow \infty}\left\|x_{n_{j}}-\frac{p+t_{i}^{m} p}{2}\right\|^{2} \\
& \leq \frac{1}{2} \limsup _{j \rightarrow \infty}\left\|x_{n_{j}}-p\right\|^{2}+\frac{1}{2} \limsup _{j \rightarrow \infty}\left\|x_{n_{j}}-t_{i}^{m} p\right\|^{2} \\
& -\limsup _{j \rightarrow \infty}\left\|x_{n_{j}}-p\right\|^{2} .
\end{aligned}
$$

Therefore

$$
\begin{equation*}
g\left(\left\|p-t_{i}^{m} p\right\|\right) \leq 2 \limsup _{j \rightarrow \infty}\left\|x_{n_{j}}-t_{i}^{m} p\right\|^{2}-2 \limsup _{j \rightarrow \infty}\left\|x_{n_{j}}-p\right\|^{2} \tag{3.18}
\end{equation*}
$$

Using (3.15), (3.16), and (3.18, these yield

$$
\begin{aligned}
\limsup _{m \rightarrow \infty} g\left(\left\|p-t_{i}^{m} p\right\|\right) & \leq 2 \limsup _{m \rightarrow \infty}\left(\limsup _{j \rightarrow \infty}\left\|x_{n_{j}}-t_{i}^{m} p\right\|^{2}\right)-2 \limsup _{j \rightarrow \infty}\left\|x_{n_{j}}-p\right\|^{2} \\
& \leq 0 .
\end{aligned}
$$

Therefore $\lim _{m \rightarrow \infty} g\left(\left\|p-t_{i}^{m} p\right\|\right)=0$ for all $i=1,2, \ldots, N$. By using the properties of g, we have $\lim _{m \rightarrow \infty}\left\|p-t_{i}^{m} p\right\|=0$ for all $i=1,2, \ldots, N$. This implies that

$$
\begin{aligned}
\left\|t_{i} p-p\right\| & \leq\left\|t_{i} p-t_{i}^{m+1} p\right\|+\left\|t_{i}^{m+1} p-p\right\| \\
& \leq L\left\|p-t_{i}^{m} p\right\|+\left\|t_{i}^{m+1} p-p\right\| .
\end{aligned}
$$

This implies that $t_{i} p=p$ for all $i=1,2, \ldots, N$. Therefore $p \in \bigcap_{i=1}^{N} F\left(t_{i}\right)$. Similarly, we can prove that $p \in \bigcap_{i=1}^{N} F\left(I_{i}\right)$. Thus we obtain $p \in \mathcal{F}$. We now show that $\left\{x_{n}\right\}$ converges weakly to p. Suppose on the contrary. Then there exists a subsequence $\left\{x_{n_{l}}\right\}$ of $\left\{x_{n}\right\}$ such that $\left\{x_{n_{l}}\right\}$ converges weakly to $q \in D$ and $q \neq p$. By the same argument as above, we can show that $q \in \mathcal{F}$. By Lemma 3.4, we obtain that $\lim _{n \rightarrow \infty}\left\|x_{n}-p\right\|$ and $\lim _{n \rightarrow \infty}\left\|x_{n}-q\right\|$ exist. Using Lemma 2.3, we obtain that $q=p$. Hence $\left\{x_{n}\right\}$ converges weakly to a point in \mathcal{F}. This completes the proof.

We now present the following example for supporting Theorem 3.3.

Example 3.2. Let \mathbb{R} be the real line with the usual norm $|\cdot|$ and let $D=[0,+\infty)$. Define single-valued mappings t_{1}, t_{2}, I_{1}, and I_{2} on D as follows:

$$
t_{1} x=\frac{x}{1+x}, t_{2} x=\frac{x}{1+2 x}, I_{1} x=\frac{x}{1+2 x} \text { and } I_{2} x=\frac{x}{1+3 x} .
$$

Define multi-valued mappings T_{1} and T_{2} on D by

$$
T_{1} x=\left[0, \frac{x}{5}\right] \text { and } T_{2} x=\left[\frac{x}{2}, \frac{x}{4}\right] .
$$

Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be generated by

$$
\left\{\begin{array}{l}
y_{n}=\beta_{n}^{(0)} x_{n}+\sum_{i=1}^{2} \beta_{n}^{(i)} I_{i}^{n} z_{n}^{(i)}, \quad z_{n}^{(i)} \in T_{i} x_{n} \tag{3.19}\\
x_{n+1}=\alpha_{n}^{(0)} x_{n}+\sum_{i=1}^{2} \alpha_{n}^{(i)} t_{i}^{n} y_{n}, \quad n \in \mathbb{N}
\end{array}\right.
$$

where $\alpha_{n}^{(0)}=\frac{1}{12 n}, \alpha_{n}^{(1)}=\frac{12 n-1}{36 n}, \alpha_{n}^{(2)}=\frac{12 n-1}{18 n}, \beta_{n}^{(0)}=\frac{1}{10 n}, \beta_{n}^{(1)}=\frac{10 n-1}{30 n}, \beta_{n}^{(2)}=\frac{10 n-1}{15 n}$, for all $n \in \mathbb{N}$. Then the sequence $\left\{x_{n}\right\}$ converges weakly to 0 , where $\{0\}=\bigcap_{i=1}^{2} F\left(t_{i}\right) \cap$ $\bigcap_{i=1}^{2} F\left(I_{i}\right) \cap \bigcap_{i=1}^{2} F\left(T_{i}\right)$.

Solution We first show that t_{1} is a generalized I_{1}-asymptotically nonexpansive and uniformly L-Lipschitzian single-valued mapping. Let $k_{n}=1$ and $s_{n}=\left(\frac{1}{2}\right)^{n}$ for all $n \in \mathbb{N}$. Therefore $\lim _{n \rightarrow \infty} k_{n}=1$ and $\lim _{n \rightarrow \infty} s_{n}=0$. Since

$$
\begin{aligned}
\frac{\left|t_{1}^{n} x-t_{1}^{n} y\right|}{|x-y|} \leq\left|\frac{x}{1+2 x}-\frac{y}{1+2 y}\right| & \leq\left|\frac{x}{1+2 x}-\frac{y}{1+2 y}\right|+\frac{1}{2^{n}} \\
& \leq k_{n}\left|I_{1} x-I_{1} y\right|+\frac{1}{2^{n}}
\end{aligned}
$$

for all $x, y \in D$ and $n \in \mathbb{N}$. Next, we show that t_{2} is a generalized I_{2}-asymptotically nonexpansive and uniformly L-Lipschitzian single-valued mapping. Let $k_{n}=1$ and $s_{n}=$ $\left(\frac{1}{2}\right)^{n}$ for all $n \in \mathbb{N}$. Therefore $\lim _{n \rightarrow \infty} k_{n}=1$ and $\lim _{n \rightarrow \infty} s_{n}=0$. Since

$$
\begin{aligned}
\frac{\left|t_{1}^{n} x-t_{1}^{n} y\right|}{|x-y|} \leq\left|\frac{x}{1+3 x}-\frac{y}{1+3 y}\right| & \leq\left|\frac{x}{1+3 x}-\frac{y}{1+3 y}\right|+\frac{1}{2^{n}} \\
& \leq k_{n}\left|I_{2} x-I_{2} y\right|+\frac{1}{2^{n}}
\end{aligned}
$$

for all $x, y \in D$ and and $n \in \mathbb{N}$. Moreover, we obtain that t_{1}, t_{2}, I_{1} and I_{2} are uniformly L-Lipschitzian single-valued mappings (see [11]). It can verify that T_{1} and T_{1} are quasinonexpansive multi-valued mappings satisfying condition (E). Furthermore, we have $\bigcap_{i=1}^{2} F\left(t_{i}\right) \cap \bigcap_{i=1}^{2} F\left(I_{i}\right) \cap \bigcap_{i=1}^{2} F\left(T_{i}\right)=\{0\}$ For every $n \in \mathbb{N}, \alpha_{n}^{(0)}=\frac{1}{12 n}, \alpha_{n}^{(1)}=\frac{12 n-1}{36 n}$, $\alpha_{n}^{(2)}=\frac{12 n-1}{188}, \beta_{n}^{(0)}=\frac{1}{10 n}, \beta_{n}^{(1)}=\frac{10 n-1}{30 n}, \beta_{n}^{(2)}=\frac{10 n-1}{15 n}$. Therefore the sequences $\left\{\alpha_{n}^{(0)}\right\}$, $\left\{\alpha_{n}^{(1)}\right\}, \alpha_{n}^{(2)},\left\{\beta_{n}^{(0)}\right\},\left\{\beta_{n}^{(1)}\right\},\left\{\beta_{n}^{(2)}\right\}$ satisfy all assumptions in Theorem 3.3. By putting $z_{n}^{(1)}=\frac{x_{n}}{5}$ and $z_{n}^{(2)}=\frac{x_{n}}{2}$ for all $n \in \mathbb{N}$ and by using the algorithm 3.19 with the initial point $x_{1}=5$. Then the sequence $\left\{x_{n}\right\}$ converges weakly to 0 , where $\{0\}=\bigcap_{i=1}^{2} F\left(t_{i}\right) \cap$ $\bigcap_{i=1}^{2} F\left(I_{i}\right) \cap \bigcap_{i=1}^{2} F\left(T_{i}\right)$.

Acknowledgements. This research is supported by Naresuan University. The second and the third authors would like to express their deep thanks to Naresuan University and Science Achievement Scholarship of Thailand.

References

[1] Abkar, A. and Eslamian, M., Common fixed point results in CAT(0) spaces, Nonlinear Anal., 74 (2011), 1835-1840
[2] Berinde, V. and Păcurar, M., The role of the Pompeiu-Hausdorff metric in fixed point theory, Creat. Math. Inform., 22 (2013), 143-150
[3] Eslamian, M., Weak and strong convergence theorems of iterative process for two finite families of mappings, Sci. Bull. Politeh. Univ. Buchar., Ser. A, Appl. Math. Phys., 75 (2013), 81-90
[4] Eslamian, M. and Abkar, A., One-step iterative process for a finite family of multivalued mappings, Math. Comput. Model., 54 (2011), 105-111
[5] Gorniewicz, L., Topological Fixed Point Theory of Multivalued Mappings, Kluwer Academic, Dordrecht (1999)
[6] Hao, Y., Cho, S. Y. and Qin, X., Some weak convergence theorems for a family of asymptotically nonexpansive nonself mappings, Fixed Point Theory Appl., (2010), Article ID 218573(2010)
[7] Markin, J., A fixed point theorem for set valued mappings, Bull. Amer. Math. Soc., 74 (1968), 639-640
[8] Nadler, S. B., Multi-valued contraction mappings, Pacific J. Math., 30 (1969), 475-488
[9] Opial, Z., Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Am. Math. Soc., 73 (1967), 595-597
[10] Saejung, S., Suantai, S. and Yotkaew, P., A note on common fixed point of multistep Noor iteration with errors for a finite family of generalized asymptotically quasi-nonexpansive mappings, Abstr. Appl. Anal., (2009) Article ID 283461(2009)
[11] Sahn, V. K., Convergence results of implicit iterative scheme for two asymptotically quasi-I-nonexpansive mappings in Banach spaces, Glob. J. Pure Appl. Math., 12 (2016), No. 2, 1723-1742
[12] Sastry, K. P. R. and Babu, G. V. R., Convergence of Ishikawa iterates for a multivalued mapping with a fixed point, Czechoslov. Math. J., 55 (2005), 817-826
[13] Schu, J., Weak and strong convergence of fixed points of asymptotically nonexpansive mappings, Bull. Aust. Math. Soc., 43 (1991), 153-159
[14] Sokhuma, K. and Kaewkhao, A., Ishikawa iterative process for a pair of single-valued and multivalued nonexpansive mappings in Banach spaces, Fixed Point Theory Appl., (2011) Article ID 618767(2011)
[15] Suantai, S., Weak and strong convergence criteria of Noor iterations for asymtotically nonexpansive mappings, J. Math. Anal. Appl., 311 (2005), 506-517
[16] Suantai, S. and Phuengrattana, W., A new iterative process for a hybrid pair of generalized asymptotically nonexpansive single-valued and generalized nonexpansive multi-valued mappings in Banach spaces, Fixed Point Theory Appl., (2015) Article ID 101186(2015)
[17] Temir, S., Convergence of an implicit iteration process for a finite family of generalized I-asymptotically nonexpasive mappings, J. Nonlinear Anal. Opt., 4 (2013), 85-98
[18] Xu, H. K, Inequalities in Banach spaces with applications, Nonlinear Anal., 16 (1991), 1127-1138
[19] $\mathrm{Xu}, \mathrm{H} . \mathrm{K}$, Another control condition in an iterative method for nonexpansive mappings, Bull. Aust. Math. Soc., 65 (2002), 109-113
[20] Yildirim, I., Approximating fixed points of two finite families of I-asymptotically quasi-nonexpansive mappings, J. Nonlinear Funct. Anal., (2016) Article ID 42(2016)
${ }^{1}$ Razi University
Department of Mathematics
Faculty of Science
Kermanshah, 67149, Iran
E-mail address: farajzadehali@gmail.com
${ }^{2}$ Naresuan University
Department of Mathematics
Faculty of Science
Phitsanulok 65000, Thailand
E-mail address: preeyanuchc56@nu.ac.th
E-mail address: anchaleeka@nu.ac.th
${ }^{3}$ Aligarh Muslim University
Department of Mathematics
ALIGARH 202002, INDIA
E-mail address: mursaleenm@gmail.com

