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A new modification of Durrmeyer type mixed hybrid
operators

ARUN KAJLA and TUNCER ACAR

ABSTRACT. In 2008 V. Miheşan constructed a general class of linear positive operators generalizing the Szász
operators. In this article, a Durrmeyer variant of these operators is introduced which is a method to approximate
the Lebesgue integrable functions. First, we derive some indispensable auxiliary results in the second section.
We present a quantitative Voronovskaja type theorem, local approximation theorem by means of second order
modulus of continuity and weighted approximation for these operators. The rate of convergence for differential
functions whose derivatives are of bounded variation is also obtained.

1. INTRODUCTION

Miheşan [23] constructed an important generalization of the well known Szász opera-
tors depending on α ∈ R as

G(α)n (f ;x) =

∞∑
k=0

m
(α)
n,k(x)f

(
k

n

)
, x ∈ [0,∞),(1.1)

where α+nx > 0, m
(α)
n,k(x) =

(α)k
k!

(
nx
α

)k(
1 + nx

α

)α+k and (α)k = α(α+1) · · · (α+k−1), (α)0 = 1,

is the rising factorial. The operators G(α)n preserve the linear functions and they reduce to
the following well-known operators in special cases:

(1) If α = −n, x ∈ [0, 1], we get the Bernstein operators [9].
(2) If α = n, we obtain Baskakov operators [8].
(3) If α = nx, x > 0, we get the Lupaş operators [22].
(4) If α→∞, we obtain Szász-Mirakjan operators [26].

A different form of the operators (1.1) were also discussed in [1].
The Szász-Mirakyan operators and their modifications have been intensively studied in
recent years. We can mention some of them as: in [27] Varma and Taşdelen proposed
a modification of Szász operators based on Charlier polynomials and studied some con-
vergence properties of the operators with the help of Korovkin theorem, in [6] Agrawal
et al. considered the Baskakov-Szász type operators depending on a nonnegative para-
meters and estimated order of approximation and simultaneous approximation, in [16]
Gupta and Rassias presented a Durrmeyer type modification of Szász type operators and
derived some direct results e.g. weighted approximation, asymptotic formula and error
estimation in terms of modulus of smoothness, in [12] Goyal et al. constructed one pa-
rameter family of linear positive operators and obtained their approximation theorems,
in [14] Gupta introduced a sequence of mixed operators with weights of the Pǎltǎnea ba-
sis function and gave some approximation properties for the operators, in [5] Acu and
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Gupta defined hybrid operators involving two parameters and they proved the Koro-
vkin type approximation theorem and the rate of approximation for unbounded functi-
ons with derivatives of bounded variation. Very recently, Kajla et al. [21] constructed the
hybrid operators based on inverse Pólya-Eggenberger distribution and investigated their
approximations properties. In the literature, many researchers have derived the approxi-
mation properties of different mixed hybrid operators, among the others, we can refer the
readers to (cf. [3], [7], [10], [11], [15], [19], [20], [24], [25], [28] etc.)

Inspired by the above work, we present a new sequence of mixed hybrid operators as
follows:

For γ > 0 and f ∈ Cγ [0,∞) := {f ∈ C[0,∞) : f(t) = O(tγ), as t → ∞}, c > 0, we
define

H(α)
n,c(f ;x) =

∞∑
k=0

m
(α)
n,k(x)

∫ ∞
0

bcn,k(t)f(t)dt,(1.2)

where bcn,k(t) =
c

B
(
k + 1, nc

) (ct)k

(1 + ct)
n
c +k+1

, m(α)
n,k is given in (1.1) and B(k + 1, n) is the

beta function defined by B(x, y) =

∫ ∞
0

tx−1

(1 + t)x+y
dt =

Γ(x)Γ(y)

Γ(x+ y)
, x, y > 0.

We observe that for f ∈ Cγ [0,∞), the integral in the right hand side of (1.2) exists for
all n > γ, and hence Hαn,c is well-defined. The operators include many well-known
Durrmeyer operators in special cases, hence they allow us to describe the approxima-
tion properties of those operators at the same time. As a special cases, for α → ∞ and
c = 1 these operators reduce the well-known Szász-Beta operators [18]. For α = n and
c = 1 these operators include well known Baskakov-Beta operators [13]. For α = nx and
c = 1 these operators reduce the Lupaş-Beta operators [17].

In the present paper, we investigate approximation properties of the operators Hαn,c
such as, rate of convergence via modulus of continuity, weighted approximation, point-
wise convergence of the operators in terms of quantitative Voronovskaya type theorem
and the rate of approximation for functions having derivatives of bounded variation.

2. DIRECT RESULTS

In this section we prove certain results, which are necessary to derive the main results.
Let ei(t) = ti, i = 0, 6.

Lemma 2.1. For the operators G(α)n (f ;x), we have

(i) G(α)n (e0;x) = 1,

(ii) G(α)n (e1;x) = x,

(iii) G(α)n (e2;x) = x2 + x(nx+α)
nα ,

(iv) G(α)n (e3;x) = x3(1+α)(2+α)
α2 + 3x2(1+α)

nα + x
n2 ,

(v) G(α)n (e4;x) = x4(1+α)(2+α)(3+α)
α3 + 6x3(1+α)(2+α)

nα2 + 7x2(1+α)
n2α + x

n3 ,

(vi) G(α)n (e5;x) = x5(1+α)(2+α)(3+α)(4+α)
α4 + 10x4(1+α)(2+α)(3+α)

nα3 + 25x3(1+α)(2+α)
n2α2 + 15x2(1+α)

n3α +
x
n4 ,

(vii) G(α)n (e6;x) = x6(1+α)(2+α)(3+α)(4+α)(5+α)
α5 + 15x5(1+α)(2+α)(3+α)(4+α)

nα4

+ 65x4(1+α)(2+α)(3+α)
n2α3 + 90x3(1+α)(2+α)

n3α2 + 31x2(1+α)
n4α + x

n5 .
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Proof. The proofs of the parts (i) − (iii) are given in ( [23], Lemma 4.1). The proof of
(iv)− (vii) can be computed following the same idea of proof of ( [23], Lemma 4.1). �

Lemma 2.2. For the operatorsHαn,c(f ;x), we have

(i) H(α)
n,c(e0;x) = 1;

(ii) H(α)
n,c(e1;x) = nx+1

(n−c) ;

(iii) H(α)
n,c(e2;x) = n2x2(1+α)

(n−2c)(n−c)α + 4nx
(n−2c)(n−c) + 2

(n−2c)(n−c) ;

(iv) H(α)
n,c(e3;x) = n3x3(1+α)(2+α)

(n−3c)(n−2c)(n−c)α2 + 9n2x2(1+α)
(n−3c)(n−2c)(n−c)α + 18nx

(n−3c)(n−2c)(n−c)
+ 6

(n−3c)(n−2c)(n−c) ;

(v) H(α)
n,c(e4;x) = n4x4(1+α)(2+α)(3+α)

(n−4c)(n−3c)(n−2c)(n−c)α3 + 16n3x3(1+α)(2+α)
(n−4c)(n−3c)(n−2c)(n−c)α2

+ 72n2x2(1+α)
(n−4c)(n−3c)(n−2c)(n−c)α + 96nx

(n−4c)(n−3c)(n−2c)(n−c) + 24
(n−4c)(n−3c)(n−2c)(n−c) ,

(vi) H(α)
n,c(e5;x) = n5x5(1+α)(2+α)(3+α)(4+α)

(n−5c)(n−4c)(n−3c)(n−2c)(n−c)α4 + 25n4x4(1+α)(2+α)(3+α)
(n−5c)(n−4c)(n−3c)(n−2c)(n−c)α3

+ 200n3x3(1+α)(2+α)
(n−5c)(n−4c)(n−3c)(n−2c)(n−c)α2 + 600n2x2(1+α)

(n−5c)(n−4c)(n−3c)(n−2c)(n−c)α
+ 600nx

(n−5c)(n−4c)(n−3c)(n−2c)(n−c) + 120
(n−5c)(n−4c)(n−3c)(n−2c)(n−c) ,

(vii) H(α)
n,c(e6;x) = n6x6(1+α)(2+α)(3+α)(4+α)(5+α)

(n−6c)(n−5c)(n−4c)(n−3c)(n−2c)(n−c)α5

+ 36n5x5(1+α)(2+α)(3+α)(4+α)
(n−6c)(n−5c)(n−4c)(n−3c)(n−2c)(n−c)α4 + 450n4x4(1+α)(2+α)(3+α)

(n−6c)(n−5c)(n−4c)(n−3c)(n−2c)(n−c)α3

+ 2400n3x3(1+α)(2+α)
(n−6c)(n−5c)(n−4c)(n−3c)(n−2c)(n−c)α2 + 5400n2x2(1+α)

(n−6c)(n−5c)(n−4c)(n−3c)(n−2c)(n−c)α
+ 4320nx

(n−6c)(n−5c)(n−4c)(n−3c)(n−2c)(n−c) + 720
(n−6c)(n−5c)(n−4c)(n−3c)(n−2c)(n−c) .

Proof. The lemma follows easily using the relation (1.2) and Lemma 2.1. Hence the details
are omitted. �

Lemma 2.3. For m = 1, 2, 4, 6, the mth order central moments of H(α)
n,c defined as βcn,α,m(x) =

H(α)
n,c((t− x)m;x), we have

(i) βcn,α,1(x) = xc+1
(n−c) ;

(ii) βcn,α,2(x) = x2(n2+c(2c+n)α)
(n−2c)(n−c)α + 2x(n+2c)

(n−2c)(n−c) + 2
(n−2c)(n−c) ;

(iii) βcn,α,4(x) =
x4(24c4α3+46c3nα3+3n4(2+α)+3c2n2α2(24+α)+2cn3α(16+3α))

(n−4c)(n−3c)(n−2c)(n−c)α3

+
4x3(24c3α2+46c2nα2+3cn2α(12+α)+n3(8+3α))

(n−4c)(n−3c)(n−2c)(n−c)α2

+
12x2(6n2+12c2α+17cnα+n2α)
(n−4c)(n−3c)(n−2c)(n−c)α

+ x(96c+72n)
(n−4c)(n−3c)(n−2c)(n−c) + 24

(n−4c)(n−3c)(n−2c)(n−c) ,

(iv) βcn,α,6(x) = 1
(n−6c)(n−5c)(n−4c)(n−3c)(n−2c)(n−c)α5

[
x6
(

720c6α5 + 2556c5nα5

+ 40c4n2α4(135 + 19α) + 9cn5α(96 + 5α(18 + α)) + 15c3n3α3(320 + α(138 + α)) +

5n6(24 + α(26 + 3α)) + 5c2n4α2(540 + α(398 + 9α))

)]
+ 1

(n−6c)(n−5c)(n−4c)(n−3c)(n−2c)(n−c)α4

[
6x5(

720c5α4 +2556c4nα4 +40c3n2α3(90+19α)+3n5(48+5α(10+α))+15c2n3α2(160+

α(92 + α)) + 10cn4α(90 + α(77 + 3α))

)]
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+ 1
(n−6c)(n−5c)(n−4c)(n−3c)(n−2c)(n−c)α3

[
30x4

(
360c4α3

+ 1098c3nα3 + c2n2α2(1080 + 311α) + 6cn3α(80 +α(54 +α)) +n4(90 +α(85 + 6α))

)]
1

(n−6c)(n−5c)(n−4c)(n−3c)(n−2c)(n−c)α2

[
120x3

(
120c3α2 + 286c2nα2 + 9cn2α(20 + 7α) +

n3(40 + α(30 + α))

)]
+

360x2(30c2α+49cnα+3n2(5+2α))
(n−6c)(n−5c)(n−4c)(n−3c)(n−2c)(n−c)α

+ 720x(6c+5n)
(n−6c)(n−5c)(n−4c)(n−3c)(n−2c)(n−c) + 720

(n−6c)(n−5c)(n−4c)(n−3c)(n−2c)(n−c) .

Remark 2.1. If α = α(n)→∞, as n→∞ and lim
n→∞

n

α(n)
= l ∈ R, then

lim
n→∞

nβcn,α,1(x) = cx+ 1;

lim
n→∞

nβcn,α,2(x) = x(2 + cx+ lx);

lim
n→∞

n2βcn,α,4(x) = 3x2(2 + cx+ lx)2.

3. MAIN RESULTS

Theorem 3.1. Let f ∈ Cγ [0,∞) and α = α(n)→∞ as n→∞. Then lim
n→∞

H(α)
n,c(f ;x) = f(x),

uniformly in each compact subset of [0,∞).

Proof. From Lemma 2.2, H(α)
n,c(e0;x) = 1, H(α)

n,c(e1;x) → x, H(α)
n,c(e2;x) → x2, as n → ∞

uniformly in each compact subset of [0,∞). By Bohman-Korovkin Theorem, it follows
thatH(α)

n,c(f ;x)→ f(x), as n→∞ uniformly on every compact subset of [0,∞). �

Let C̃B [0,∞) be the space of all real valued bounded and uniformly continuous functi-
ons f on [0,∞), endowed with the norm

||f ||C̃B [0,∞) = sup
x∈[0,∞)

|f(x)|.

For f ∈ C̃B [0,∞), the Steklov mean is defined as

fh(x) =
4

h2

∫ h
2

0

∫ h
2

0

[2f(x+ u+ v)− f(x+ 2(u+ v))] du dv.(3.3)

By simple computation, it is observed that
a) ‖fh − f‖C̃B [0,∞) ≤ ω2(f, h).

b) f ′h, f
′′
h ∈ C̃B [0,∞) and ‖f ′h‖C̃B [0,∞) ≤

5
hω(f, h), ‖f ′′h ‖C̃B [0,∞) ≤

9
h2ω2(f, h),

where the second order modulus of continuity is defined as

ω2(f, δ) = sup
x,u,v≥0

sup
|u−v|≤δ

|f(x+ 2u)− 2f(x+ u+ v) + f(x+ 2v)|, δ ≥ 0.

The usual modulus of continuity of f ∈ C̃B [0,∞) is given by

ω(f, δ) = sup
x,u,v≥0

sup
|u−v|≤δ

|f(x+ u)− f(x+ v)|.

Theorem 3.2. Let f ∈ C̃B [0,∞). Then for every x ≥ 0, the following inequality holds∣∣∣H(α)
n,c(f ;x)− f(x)

∣∣∣ ≤ 5ω
(
f,
√
βcn,α,2(x)

)
+

13

2
ω2

(
f,
√
βcn,α,2(x)

)
.
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Proof. For x ≥ 0, applying the Steklov mean fh that is given by (3.3), we can write∣∣∣H(α)
n,c(f ;x)−f(x)

∣∣∣≤H(α)
n,c (|f−fh|;x)+|H(α)

n,c (fh−fh(x);x) |+|fh(x)−f(x)|.(3.4)

From (1.2), for every f ∈C̃B [0,∞) we have∣∣∣H(α)
n,c(f ;x)

∣∣∣ ≤ ||f ||C̃B [0,∞).(3.5)

Using property (a) of Steklov mean and (3.5), we get

H(α)
n,c (|f − fh|;x) ≤ ‖H(α)

n,c (f − fh) ‖C̃B [0,∞) ≤ ‖f − fh‖C̃B [0,∞) ≤ ω2(f, h).

By Taylor’s expansion and Cauchy-Schwarz inequality, we have∣∣∣H(α)
n,c (fh − fh(x);x)

∣∣∣ ≤ ‖f ′h‖C̃B [0,∞)

√
H(α)
n,c ((t− x)2;x) +

1

2
‖f ′′h ‖C̃B [0,∞)H

(α)
n,c

(
(t− x)2;x

)
.

By Lemma 2.3 and property (b) of Steklov mean, we obtain∣∣∣H(α)
n,c (fh − fh(x);x)

∣∣∣ ≤ 5

h
ω(f, h)

√
βcn,α,2(x) +

9

2h2
ω2(f, h)βcn,α,2(x).

Choosing h =
√
βcn,α,2(x), and substituting the values of the above estimates in (3.4), we

get the desired relation. �

Remark 3.2. To show the advantage of the new construction of operators with respect
to the order of approximation, we consider the following well-known Korovkin type ine-
qualities.

| G(α)n (f ;x)− f(x) |≤
(

1 +
G(α)n ((t− x)2;x)

δ

)
ω(f, δ)

| H(α)
n,c(f ;x)− f(x) |≤

(
1 +
H(α)
n,c((t− x)2;x)

δ

)
ω(f, δ)

For uniformly continuous functions on [0,∞), the sequences of linear positive operators
H(α)
n,c will present a rate of convergence at least as good as that of operators G(α)n whenever

H(α)
n,c((t− x)2;x) ≤ G(α)n ((t− x)2;x).

With the help of Maple, if we choose α = −2, c = 3, n = 100 the above inequality holds for
x ∈ [ 6041

12300 + 1
12300

√
38953681,∞). Hence we conclude that our new construction present

better rate of convergence on this interval. Of course, this interval can be extended with
different selection of α and c.

4. WEIGHTED APPROXIMATION

Let %(x) = 1 + x2 be a weight function and B%[0,∞) be the space of all real valued
functions on [0,∞) satisfying the condition |f(x)| ≤ Nf%(x), where Nf is a positive con-
stant which may depend only on f. Let C%[0,∞) represents the space of all continuous
functions in B%[0,∞) endowed with the norm

‖f‖% := sup
x∈[0,∞)

|f(x)|
%(x)

and C0
% [0,∞) :=

{
f ∈ C%[0,∞) : lim

x→∞

|f(x)|
%(x)

exists and is finite
}
.

Let f ∈ C0
% [0,∞). The weighted modulus of continuity is given [see [28]],

Ω(f ; δ) = sup
x∈[0,∞),0<h≤δ

|f(x+ h)− f(x)|
1 + (x+ h)2

.
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Lemma 4.4. [28] Let f ∈ C0
% [0,∞), then:

i) Ω(f ; δ) is a monotone increasing function of δ;
ii) lim

δ→0+
Ω(f ; δ) = 0;

iii) for each m ∈ N,Ω(f,mδ) ≤ mΩ(f ; δ);
iv) for each λ ∈ [0,∞),Ω(f ;λδ) ≤ (1 + λ)Ω(f ; δ).

Theorem 4.3. Let f ∈ C0
% [0,∞). If α = α(n) → ∞, as n → ∞ and lim

n→∞

n

α(n)
= l ∈ R, then

there exists ñ ∈ N and a positive constant M(c, l) depending on c and l such that

sup
x∈(0,∞)

|H(α)
n,c(f ;x)− f(x)|

(1 + x2)
5
2

≤M(c, l)Ω
(
f ;n−1/2

)
, for n > ñ.(4.6)

Proof. For t > 0, x ∈ (0,∞) and δ > 0, by the definition of Ω(f ; δ) and Lemma 4.4, we can
write

|f(t)− f(x)| ≤ (1 + (x+ |x− t|)2)Ω(f ; |t− x|)

≤ 2(1 + x2)(1 + (t− x)2)

(
1 +
|t− x|
δ

)
Ω(f ; δ).

H(α)
n,c is linear and positive, we find that

|H(α)
n,c(f ;x)− f(x)| ≤ 2(1 + x2)Ω(f ; δ)

{
1 +H(α)

n,c((t− x)2;x)

+ H(α)
n,c

(
(1 + (t− x)2)

|t− x|
δ

;x

)}
.(4.7)

From the Remark 2.1 it follows that there is n1 ∈ N such that

H(α)
n,c((t− x)2;x) ≤M1(c, l)

(1 + x2)

n
, for n > n1,(4.8)

where M1(c, l) is a positive constant depending on c and l. Using Cauchy-Schwarz ine-
quality, we can write

H(α)
n,c

(
(1 + (t− x)2)

|t− x|
δ

;x

)
≤ 1

δ

√
H(α)
n,c((t− x)2;x)(4.9)

+
1

δ

√
H(α)
n,c((t− x)4;x)

√
H(α)
n,c((t− x)2;x).

In view of the Remark 2.1 it follows that there is n2 ∈ N such that√
H(α)
n,c ((t− x)4;x) ≤M2(c, l)

(1 + x2)

n
, for n > n2,(4.10)

where M2(c, l) is a positive constant depending on c and l.
Let ñ = max{n1, n2}. Combining (4.7)-(4.10) and choosing

M(c, l) = 2
(

1 +M1(c, l) +
√
M1(c, l) +M2(c, l)

√
M1(c, l)

)
, δ =

1√
n
, for n > ñ,

we get (4.6). �

5. POINTWISE CONVERGENCE OF H(α)
n,c

Voronovskaya theorem in quantitative mean is given in this section. This kind of theo-
rem decsribes the rate of convergence and an upper bound for the error of approximation
simultaneously. Very recently in [4] Acar et al. (See also [2]) presented the quantitative
Voronovskaya theorem for positive linear operators acting on unbounded intervals as:
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Theorem 5.4. Let E be a subspace of C [0,∞) which contains the polynomials, and Ln : E →
C [0,∞) be a sequence of l.p.o such that Lnei = ei, i = 0, 1. If f ∈ E and f ′′ ∈ C% [0,∞), then
we have for x ∈ [0,∞) that∣∣∣∣Ln (f ;x)− f (x)− 1

2
f ′′ (x)µLn,2 (x)

∣∣∣∣ ≤ 16
(
1 + x2

)
Ω

f ′′;(µLn,6 (x)

µLn,2 (x)

)1/4
µLn,2 (x) ,

where µLn,m (x) , m ∈ N is the moment of order m of Ln.

Corollary 5.1. The above result may be stated without the assumptions Lnei = ei, i = 0, 1, as∣∣∣∣Ln (f ;x)− f (x)Ln (e0;x)− f ′ (x)Ln (e1 − x;x)− 1

2
f ′′ (x)Ln

(
(e1 − x)

2
;x
)∣∣∣∣

≤ 16
(
1 + x2

)
Ω

f ′′;(µLn,6 (x)

µLn,2 (x)

)1/4
µLn,2 (x) .

Theorem 5.5. Let c > 0, n ∈ N, α = α(n) → ∞, as n → ∞. If f ′, f ′′ exist at any point
x ∈ [0,∞) and f ′′ ∈ C% [0,∞), then it follows for x ∈ [0,∞) that∣∣∣∣n [H(α)

n,c(f ;x)− f(x)
]
− (cx+ 1)f ′(x)− 1

2
[x(2 + cx+ lx)] f ′′(x)

∣∣∣∣
≤

∣∣∣∣xc2+ c

n− c

∣∣∣∣ |f ′(x)|+

∣∣∣∣∣n2
(
x2n2+

(
cx2+ 2x

)
α(2c+ n)+ 2α

(n− 2c)2α

)
−1

2
[x(2 + cx+ lx)]

∣∣∣∣∣ |f ′′(x)|

+16
(
1 + x2

)
Ω

f ′′;(βcn,α,6(x)

βcn,α,2(x)

)1/4
nβcn,α,2(x).

Proof. According to Corollary 5.1 we immediately have the desired result. �

Corollary 5.2. Let c > 0, n ∈ N, α = α(n) → ∞, as n → ∞ and f ′, f ′′ exist at any
point x ∈ [0,∞), f ′′ ∈ C% [0,∞), if we take limit in above theorem as n → ∞, then we have
Voronovskaya theorem for the operatorsH(α)

n,c as

lim
n→∞

n
[
H(α)
n,c(f ;x)− f(x)

]
= (cx+ 1)f ′(x) +

1

2
[x(2 + cx+ lx)] f ′′(x).

6. RATE OF CONVERGENCE

In this section we discuss the approximation of functions with a derivative of bounded
variation.

Let DBV [0,∞) be the class of all functions f ∈ B%[0,∞), having a derivative of boun-
ded variation on every finite subinterval of [0,∞). The function f ∈ DBV [0,∞) has the

following representationf(x) =

∫ x

0

g(t)+f(0),where g is a function of bounded variation

on each finite subinterval of [0,∞).
In order to study the convergence of the operators H(α)

n,c for functions having a derivative
of bounded variation, we rewrite the operators (1.2) as follows

(6.11) H(α)
n,c(f ;x) =

∫ ∞
0

P(α)
n,c (x, t)f(t)dt,

P(α)
n,c (x, t) =

∞∑
k=0

m
(α)
n,k(x)bcn,k(t).
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Lemma 6.5. Let α = α(n) → ∞, as n → ∞ and lim
n→∞

n

α(n)
= l ∈ R. For all x ∈ (0,∞) and

sufficiently large n, we have

i) ϑ(α)n,c(x, t) =

∫ t

0

P(α)
n,c (x, u)du ≤ M(c, l)

(x− t)2
1 + x2

n
, 0 ≤ t < x,

ii) 1− ϑ(α)n,c(x, t) =

∫ ∞
t

P(α)
n,c (x, u)du ≤ M(c, l)

(t− x)2
1 + x2

n
, x ≤ t <∞,

where M(c, l) is a positive constant depending on c and l..

Proof. For sufficiently large n it follows Remark 2.1 that

(6.12) H(α)
n,c((u− x)2;x) < M(c, l)

1 + x2

n
.

Applying Lemma 2.3, we have

ϑ(α)n,c(x, t) =

∫ t

0

P(α)
n,c (x, u)du ≤

∫ t

0

(
x− u
x− t

)2

P(α)
n,c (x, u)du

≤ 1

(x− t)2
H(α)
n,c

(
(u− x)2;x

)
≤ M(c, l)

(x− t)2
1 + x2

n
.

The proof of ii) is similar hence the details are omitted. �

The proof of following result is omitted. One can refer to the papers [5, 6, 21] for a
method of the proof in the light of Lemma 6.5 .

Theorem 6.6. Let f ∈ DBV [0,∞), α = α(n) → ∞, as n → ∞ and lim
n→∞

n

α(n)
= l ∈ R.

Then, for every x ∈ (0,∞) and sufficiently large n, we have

|H(α)
n,c(f ;x)− f(x)| ≤ (cx+ 1)

(n− c)

∣∣∣∣f ′(x+) + f ′(x−))

2

∣∣∣∣+

√
M(c, l)

1 + x2

n

∣∣∣∣f ′(x+)− f ′(x−))

2

∣∣∣∣
+M(c, l)

1 + x2

nx

[
√
n]∑

k=1

 x∨
x− x

k

f ′x

+
x√
n

 x∨
x− x√

n

f ′x


+

(
4Nf +

Nf + |f(x)|
x2

)
M(c, l)

1+x2

n
+ |f ′(x+)|

√
M(c, l)

1 + x2

n

+M(c, l)
1 + x2

nx2
|f(2x)− f(x)− xf ′(x+)|+ x√

n

x+ x√
n∨

x

f ′x

+M(c, l)
1 + x2

nx

[
√
n]∑

k=1

x+ x
k∨

x

f ′x,

where M(c, l) is a positive constant depending on c and l,
∨b
a f denotes the total variation of f on

[a, b] and f ′x is defined by

(6.13) f ′x(t) =


f ′(t)− f ′(x−), 0 ≤ t < x,

0, t = x,
f ′(t)− f ′(x+), x < t <∞.
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