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Existence of a unique positive solution for a singular
fractional boundary value problem

E. T. KARIMOV and K. SADARANGANI

ABSTRACT. In the present work, we discuss the existence of a unique positive solution of a boundary value
problem for a nonlinear fractional order equation with singularity. Precisely, order of equation Dα

0+u(t) =

f(t, u(t)) belongs to (3, 4] and f has a singularity at t = 0 and as a boundary conditions we use u(0) = u(1) =

u′(0) = u′(1) = 0. Using a fixed point theorem, we prove the existence of unique positive solution of the
considered problem.

1. INTRODUCTION

In this paper, we study the existence and uniqueness of positive solution for the follo-
wing singular fractional boundary value problem

(1.1)

®
Dα

0+u(t) = f(t, u(t)), 0 < t < 1

u(0) = u(1) = u′(0) = u′(1) = 0,

where α ∈ (3, 4], and Dα
0+ denotes the Riemann-Liouville fractional derivative. Moreo-

ver, f : (0, 1]× [0,∞)→ [0,∞) with lim
t→0+

f(t,−) =∞ (i.e. f is singular at t = 0).

Similar problem was investigated in [2], in case when α ∈ (1, 2] and with boundary
conditions u(0) = u(1) = 0. We note as well work [3], where the following problem®

Dαu+ f(t, u, u′, Dµu) = 0, 0 < t < 1

u(0) = u′(0) = u′(1) = 0,

was under consideration. Here α ∈ (2, 3), µ ∈ (0, 1) and function f(t, x, y, z) is singular at
the value of 0 of its arguments x, y, z.

We would like notice some related recent works [1, 5, 7], which consider higher order
fractional nonlinear equations for the subject of the existence of positive solutions.

2. PRELIMINARIES

We need the following lemma, which appear in [6].

Lemma 2.1. (Lemma 2.3 of [6]) Given h ∈ C[0, 1] and 3 < α ≤ 4, a unique solution of®
Dα

0+u(t) = h(t), 0 < t < 1

u(0) = u(1) = u′(0) = u′(1) = 0,

is

u(t) =

∫ 1

0

G(t, s)h(s)ds,
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where

G(t, s) =


(t− s)α−1 + (1− s)α−2tα−2 [(s− t) + (α− 2)(1− t)s]

Γ(α)
, 0 ≤ s ≤ t ≤ 1

(1− s)α−2tα−2 [(s− t) + (α− 2)(1− t)s]
Γ(α)

, 0 ≤ t ≤ s ≤ 1

Lemma 2.2. (Lemma 2.4 of [6]) The function G(t, s) appearing in Lemma 2.1 satisfies:

(a) G(t, s) > 0 for t, s ∈ (0, 1);
(b) G(t, s) is continuous on [0, 1]× [0, 1].

For our study, we need a fixed point theorem. This theorem uses the following class of
functions F.

By F we denote the class of functions ϕ : (0,∞) → R satisfying the following conditi-
ons:

(a) ϕ is strictly increasing;
(b) For each sequence (tn) ⊂ (0,∞)

lim
n→∞

tn = 0 ⇔ lim
n→∞

ϕ(tn) = −∞;

(c) There exists k ∈ (0, 1) such that lim
t→0+

tkϕ(t) = 0.

Examples of functions belonging to F are ϕ(t) = − 1√
t
, ϕ(t) = ln t, ϕ(t) = ln t + t,

ϕ(t) = ln(t2 + t).
The result about fixed point which we use is the following and it appears in [4]:

Theorem 2.1. Let (X, d) be a complete metric space and T : X → X a mapping such that there
exist τ > 0 and ϕ ∈ F satisfying for any x, y ∈ X with d(Tx, Ty) > 0,

τ + ϕ (d(Tx, Ty)) ≤ ϕ(d(x, y)).

Then T has a unique fixed point.

3. MAIN RESULT

Our starting point of this section is the following lemma.

Lemma 3.3. Let 0 < σ < 1, 3 < α < 4 and F : (0, 1] → R is continuous function with
lim
t→0+

F (t) = ∞. Suppose that tσF (t) is a continuous function on [0, 1]. Then the function

defined by

H(t) =

∫ 1

0

G(t, s)F (s)ds

is continuous on [0, 1], where G(t, s) is the Green function appearing in Lemma 2.1.

Proof. We consider three cases:

• Case 1: t0 = 0.
It is clear that H(0) = 0. Since tσF (t) is continuous on [0, 1], we can find a

constant M > 0 such that

|tσF (t)| ≤M for any t ∈ [0, 1].



Existence of a unique positive solution for a singular fractional... 59

Moreover, we have

|H(t)−H(0)| = |H(t)| =
∣∣∣∣∣
∫ 1

0

G(t, s)F (s)ds

∣∣∣∣∣ =

∣∣∣∣∣
∫ 1

0

G(t, s)s−σsσF (s)ds

∣∣∣∣∣
=

∣∣∣∣∣
∫ t

0

(t− s)α−1 + (1− s)α−2tα−2[(s− t) + (α− 2)(1− t)s]
Γ(α)

s−σsσF (s)ds

+

∫ 1

t

(1− s)α−2tα−2[(s− t) + (α− 2)(1− t)s]
Γ(α)

s−σsσF (s)ds

∣∣∣∣∣
=

∣∣∣∣∣
∫ 1

0

(1− s)α−2tα−2[(s− t) + (α− 2)(1− t)s]
Γ(α)

s−σsσF (s)ds

+

∫ t

0

(t− s)α−1

Γ(α)
s−σsσF (s)ds

∣∣∣∣∣
≤ Mtα−2

Γ(α)

∫ 1

0

(1− s)α−2|(s− t) + (α− 2)(1− t)s|s−σds

+
M

Γ(α)

∫ t

0

(t− s)α−1s−σds ≤ M(α− 1)tα−2

Γ(α)

∫ 1

0

(1− s)α−2s−σds

+
Mtα−1

Γ(α)

∫ t

0

(
1− s

t

)α−1
s−σds.

Considering definition of Euler’s beta-function, we derive

|H(t)−H(0)| ≤ M(α− 1)tα−2

Γ(α)
B(1− σ, α− 1) +

Mtα−σ

Γ(α)
B(1− σ, α).

From this we deduce that |H(t)−H(0)| → 0 when t→ 0.
This proves that H is continuous at t0 = 0.

• Case 2: t0 ∈ (0, 1).
We take tn → t0 and we have to prove that H(tn) → H(t0). Without loss of

generality, we consider tn > t0. Then, we have

|H(tn)−H(t0)| =

=

∣∣∣∣∣
∫ tn

0

(tn − s)α−1 + (1− s)α−2tα−2n [(s− tn) + (α− 2)(1− tn)s]

Γ(α)
s−σsσF (s)ds

+

∫ 1

tn

(1− s)α−2tα−2n [(s− tn) + (α− 2)(1− tn)s]

Γ(α)
s−σsσF (s)ds

−
∫ t0

0

(t0 − s)α−1 + (1− s)α−2tα−20 [(s− t0) + (α− 2)(1− t0)s]

Γ(α)
s−σsσF (s)ds

−
∫ 1

t0

(1− s)α−2tα−20 [(s− t0) + (α− 2)(1− t0)s]

Γ(α)
s−σsσF (s)ds

∣∣∣∣∣
=

∣∣∣∣∣
∫ 1

0

(1− s)α−2tα−2n [(s− tn) + (α− 2)(1− tn)s]

Γ(α)
s−σsσF (s)ds
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+

∫ tn

0

(tn − s)α−1

Γ(α)
s−σsσF (s)ds

−
∫ 1

0

(1− s)α−2tα−20 [(s− t0) + (α− 2)(1− t0)s]

Γ(α)
s−σsσF (s)ds

−
∫ t0

0

(t0 − s)α−1

Γ(α)
s−σsσF (s)ds

∣∣∣∣∣
=

∣∣∣∣∣
∫ 1

0

(1− s)α−2
(
tα−2n − tα−20

)
[(s− tn) + (α− 2)(1− tn)s]

Γ(α)
s−σsσF (s)ds

+

∫ 1

0

(1− s)α−2tα−20 [(s− tn) + (α− 2)(1− tn)s− [(s− t0) + (α− 2)(1− t0)s]]

Γ(α)
s−σsσF (s)ds

+

∫ t0

0

[
(tn − s)α−1 − (t0 − s)α−1

]
Γ(α)

s−σsσF (s)ds+

∫ tn

t0

(tn − s)α−1

Γ(α)
s−σsσF (s)ds

∣∣∣∣∣
≤
M
∣∣tα−2n − tα−20

∣∣
Γ(α)

(α− 1)

∫ 1

0

(1− s)α−2s−σds+
Mtα−20

Γ(α)

∫ 1

0

(1− s)α−2|tn − t0|(α− 1)s−σds

+
M

Γ(α)

∫ t0

0

∣∣(tn − s)α−1 − (t0 − s)α−1
∣∣ s−σds M

Γ(α)

∫ tn

t0

(tn − s)α−1s−σds

≤ M

Γ(α)

(
tα−2n − tα−20

)
(α− 1)B(1− σ, α− 1) +

M(tn − t0)

Γ(α)
(α− 1)B(1− σ, α− 1)

+
M

Γ(α)
I1n +

M

Γ(α)
I2n,

where

I1n =

∫ t0

0

[
(tn − s)α−1 − (t0 − s)α−1

]
s−σds, I2n =

∫ tn

t0

(tn − s)α−1s−σds.

In the sequel, we will prove that I1n → 0 when n→∞. In fact, as[
(tn − s)α−1 − (t0 − s)α−1

]
s−σ ≤

[
|tn − s|α−1 − |t0 − s|α−1

]
s−σ ≤ 2s−σ

and
∫ 1

0
2s−σds = 2

1−σ <∞. By Lebesque’s dominated convergence theorem I1n →
0 when n→∞.

Now, we will prove that I2n → 0 when n→∞. In fact, since

I2n =

∫ tn

t0

(tn − s)α−1s−σds ≤
∫ tn

t0

s−σds =
1

1− σ
(
t1−σn − t1−σ0

)
and as tn → t0, we obtain the desired result.

Finally, taking into account above obtained estimates, we infer that |H(tn) −
H(t0)| → 0 when n→∞.

• Case 3: t0 = 1.
It is clear that H(1) = 0 and following the same argument that in Case No 1,

we can prove that continuity of H at t0 = 1.
�

Lemma 3.4. Suppose that 0 < σ < 1. Then there exists

N = max
0≤t≤1

∫ 1

0

G(t, s)s−σds.
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Proof. Considering representation of the function G(t, s) and evaluations of Lemma 3.3,
we derive∫ 1

0

G(t, s)s−σds =
1

Γ(α)

[
tα−σB(1− σ, α)− tα−1 (B(1− σ, α− 1)

+(α− 2)B(2− σ, α− 1)) + (α− 1)tα−2B(2− σ, α− 1)
]
.

Taking

B(1− σ, α) =
α− 1

α− σ
B(1− σ, α− 1); B(2− σ, α− 1) =

1− σ
α− σ

B(1− σ, α− 1),

into account we infer∫ 1

0

G(t, s)s−σds =
B(1− σ, α− 1)

Γ(α)

ï
α− 1

α− σ
tα−σ −

Å
1 +

(α− 2)(1− σ)

α− σ

ã
tα−1

+
(α− 1)(1− σ)

α− σ
tα−2
ò
.

Denoting L(t) =
∫ 1

0
G(t, s)s−σds, from the last equality one can easily derive that L(0) =

0, L(1) = 0. Since G(t, s) ≥ 0, then L(t) ≥ 0 and as L(t) is continuous on [0, 1], it has a
maximum. �

Theorem 3.2. Let 0 < σ < 1, 3 < α ≤ 4, f : (0, 1] × [0,∞) → [0,∞) be continuous and
lim
t→0+

f(t, ·) = ∞, tσf(t, y) be continuous function on [0, 1] × [0,∞). Assume that there exist

constants 0 < λ ≤ 1
N , and τ > 0 such that for x, y ∈ [0,∞) and t ∈ [0, 1]

tσ|f(t, x)− f(t, y)| ≤ λ|x− y|Ä
1 + τ

√
|x− y|

ä2 .
Then Problem (1.1) has a unique non-negative solution.

Proof. Consider the cone P = {u ∈ C[0, 1] : u ≥ 0}. Notice that P is a closed subset of
C[0, 1] and therefore, (P, d) is a complete metric space where

d(x, y) = sup {|x(t)− y(t)| : t ∈ [0, 1]} for x, y ∈ P.
Now, for u ∈ P we define the operator T by

(Tu)(t) =

∫ 1

0

G(t, s)f(s, u(s))ds =

∫ 1

0

G(t, s)s−σsσf(s, u(s))ds.

In virtue of Lemma 3.3, for u ∈ P , Tu ∈ C[0, 1] and, since G(t, s) and tσf(t, y) are
non-negative functions, Tu ≥ 0 for u ∈ P . Therefore, T applies P into itself.

Next, we check that assumptions of Theorem 2.1 are satisfied. In fact, for u, v ∈ P with
d(Tu, Tv) > 0, we have

d(Tu, Tv) = max
t∈[0,1]

|(Tu)(t)− (Tv)(t)| = max
t∈[0,1]

∣∣∣∣∣
∫ 1

0

G(t, s)s−σsσ (f(s, u(s))− f(s, v(s))) ds

∣∣∣∣∣
≤ max
t∈[0,1]

∫ 1

0

G(t, s)s−σsσ |f(s, u(s))−f(s, v(s))| ds

≤ max
t∈[0,1]

∫ 1

0

G(t, s)s−σ
λ|u(s)−v(s)|Ä

1+τ
√
|u(s)−v(s)|

ä2 ds ≤ max
t∈[0,1]

∫ 1

0

G(t, s)s−σ
λd(u, v)Ä

1 + τ
√
d(u, v)

ä2 ds
=

λd(u, v)Ä
1 + τ

√
d(u, v)

ä2 max
t∈[0,1]

∫ 1

0

G(t, s)s−σds =
λd(u, v)Ä

1 + τ
√
d(u, v)

ä2N ≤ d(u, v)Ä
1 + τ

√
d(u, v)

ä2 ,
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where we have used that λ ≤ 1
N and the non-decreasing character of the function β(t) =

t(
1 + τ

√
t
)2 . Therefore,

d(Tu, Tv) ≤ d(u, v)Ä
1 + τ

√
d(u, v)

ä2 .
This gives us»

d(Tu, Tv) ≤
√
d(u, v)

1 + τ
√
d(u, v)

or τ − 1√
d(Tu, Tv)

≤ − 1√
d(u, v)

and the contractivity condition of the Theorem 2.1 is satisfied with the function ϕ(t) =
− 1√

t
which belongs to the class F.

Consequently, by Theorem 2.1, the operator T has a unique fixed point in P . This
means that Problem (1.1)) has a unique non-negative solution in C[0, 1]. This finishes the
proof. �

An interesting question from a practical point of view is that the solution of Problem (1.1)
is positive. A sufficient condition for that solution is positive, appears in the following re-
sult:

Theorem 3.3. Under assumptions of Theorem 3.2, if the function tσf(t, y) is non-decreasing
respect to the variable y, then the solution of Problem (1.1) given by Theorem 3.2 is positive.

Proof. In contrary case, we find t∗ ∈ (0, 1) such that u(t∗)=0. Since u(t) is a fixed point of
the operator T (see Theorem 3.2) this means that

u(t) =

∫ 1

0

G(t, s)f(s, u(s))ds for 0 < t < 1.

Particularly,

0 = u(t∗) =

∫ 1

0

G(t∗, s)f(s, u(s))ds.

Since that G and f are non-negative functions, we infer that

G(t∗, s)f(s, u(s)) = 0 a.e. (s)

On the other hand, as lim
t→0+

f(t, 0) = ∞ for given M > 0 there exists δ > 0 such that for

s ∈ (0, δ) f(s, 0) > M . Since tσf(t, y) is increasing and u(t) ≥ 0,

sσf(s, u(s)) ≥ sσf(s, 0) ≥ sσM for s ∈ (0, δ)

and, therefore, f(s, u(s)) ≥ M for s ∈ (0, δ) and f(s, u(s)) 6= 0 a.e. (s). But this is a con-
tradiction since G(t∗, s) is a function of rational type in the variable s and, consequently,
G(t∗, s) 6= 0 a.e. (s). Therefore, u(t) > 0 for t ∈ (0, 1). �

In the sequel, we present an example illustrating our results.

Example 3.1. Consider the following singular fractional boundary value problem

(3.2)


D

7/2
0+ u(t) =

λu(t)
√
t
Ä
1 + 5

√
u(t)
ä2 , 0 < t < 1

u(0) = u(1) = u′(0) = u′(1) = 0,

where λ > 0.
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Notice that Problem(3.2) is a particular case of Problem (1.1) with α = 7/2, and f(t, u) =
λu(t)

√
t
Ä
1 + 5

√
u(t)
ä2 .

It is clear that f : (0, 1] × [0,∞) → [0,∞) is continuous and for σ = 1/2, tσf(t, u) =
√
tf(t, u) =

λu(t)Ä
1 + 5

√
u(t)
ä2 is a continuous function on [0, 1]× [0,∞).

On the other hand, for t ∈ [0, 1] and without loss of generality, for x, y ∈ [0,∞) with x ≥ y,
we have

√
t|f(t, x)− f(t, y)| = λ

∣∣∣∣∣ x

(1 + 5
√
x)

2 −
y(

1 + 5
√
y
)2
∣∣∣∣∣ =

= λ

(
x

(1 + 5
√
x)

2 −
y(

1 + 5
√
y
)2
)
≤ λ
Ç

x

(1 + 5
√
x)

2 −
y

(1 + 5
√
x)

2

å
=

λ(x− y)

(1 + 5
√
x)

2 ≤
λ(x− y)

(1 + 5
√
x− y)

2 .

where we have used the nondecreasing character of the function ϕ : [0,∞)→ [0,∞) defi-
ned by ϕ(u) =

u

(1 + 5
√
u)

2 (since ϕ′(u) ≥ 0) and the fact that x ≥ y.

In our case,

N = max
0≤t≤1

∫ 1

0

G(t, s)s−1/2ds =

= max
0≤t≤1

B(1/2, 5/2)

Γ(7/2)

ï
5

6
t3 − 5

4
t5/2 +

5

12
t3/2
ò

= max
0≤t≤1

√
π

5

ï
5

6
t3 − 5

4
t5/2 +

5

12
t3/2
ò

= max
0≤t≤1

√
π

ï
1

6
t3 − 1

4
t5/2 +

1

12
t3/2
ò
≤ max

0≤t≤1

√
π

ï
1

6
t3 +

1

12
t3/2
ò
≤
√
π

4
≤ 0.45.

Therefore,

2.Û2 =
1

0.45
≤ 1

N
.

Now, by using Theorem 3.2, if λ ≤ 2.Û2 then Problem(3.2) has a unique nonnegative solu-

tion. Moreover, since
√
tf(t, u) =

λu

(1 + 5
√
u)

2 is nondecreasing respect to the variable u,

Theorem 3.3 says us that the solution is positive.

Notice that Example 3.1 cannot be treated by the Banach’s contraction principle since,
in this case, the operator T is defined on the cone P as

(Tu)(t) =

∫ 1

0

λG(t, s)
u(s)

√
s(1 + 5

√
u(s))2

ds for t ∈ [0, 1]

and, for λ ≤ 2.Û2 we have

d(Tu, Tv) ≤ d(u, v)

(1 + 5
√
d(u, v))2

, for u, v ∈ P
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and consequently,

d(Tu, Tv)

d(u, v)
≤ 1

(1 + 5
√
d(u, v))2

, for u, v ∈ P with u 6= v.

Therefore, when d(u, v) → 0 (for example, por u ∈ P fixed and v = u +
1

n
∈ P, n ∈ N),

d(Tu, Tv)

d(u, v)
→ 1, and, this proves that the Banach’s contraction principle cannot be applied

since
d(Tu, Tv)

d(u, v)
is not bounded by a constant less than one.
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[3] Stanêk, S., The existence of positive solutions of singular fractional boundary value problems, Comput. Math. Appl.,
62 (2011), No. 3, 1379–1388

[4] Wardowski, D., Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory
Appl., (2012), 2012:94, 6 pp.

[5] Xu, J., Wei, Z. and Dong, W. Uniqueness of positive solutions for a class of fractional boundary value problems,
Appl. Math. Lett., 25 (2012), No. 3, 590–593

[6] Xu, X., Jiang, D. and Yuan, C. Multiple positive solutions for the boundary value problem of a nonlinear fractional
differential equation, Nonl. Anal., 71 (2009), No. 10, 4676–4688

[7] Zhang, S., Positive solutions to singular boundary value problem for nonlinear fractional differential equation, Com-
put. Math. Appl., 59 (2010), No. 3, 1300–1309

DEPARTMENT OF DIFFERENTIAL EQUATIONS AND DEPARTMENT OF MATHEMATICS

INSTITUTE OF MATHEMATICS

UZBEKISTAN ACADEMY OF SCIENCES AND UNIVERSITY OF LAS PALMAS DE GRAN CANARIA

TASHKENT 100125, UZBEKISTAN AND CAMPUS DE TAFIRA BAJA

35017 LAS PALMAS DE GRAN CANARIA, SPAIN

E-mail address: erkinjon@gmail.com
E-mail address: ksadaran@dma.ulpgc.es


