
CARPATHIAN J. MATH.
34 (2018), No. 1, 65 - 75

Online version at http://carpathian.ubm.ro

Print Edition: ISSN 1584 - 2851 Online Edition: ISSN 1843 - 4401

Best proximity point theorems for G-proximal weak
contractions in complete metric spaces endowed with
graphs

CHALONGCHAI KLANARONG and SUTHEP SUANTAI

ABSTRACT. In this paper, the existence of best proximity point theorems for two new types of nonlinear
non-self mappings in a complete metric space endowed with a directed graph are established. Our main results
extend and generalize many known results in the literatures. As a special case of the main results, the best
proximity point theorems on partially ordered sets are obtained.

1. INTRODUCTION

Banach contraction principle is the most important and useful tool for proving the ex-
istence problems of various equations in Science, Applied Science, Economics, Physics
and Engineering. This principle was given by the famous Polish mathematician, Stefan
Banach [4], in 1922.

Theorem 1.1 (Banach Contraction Principle). Let (X, d) be a complete metric space. Let a
self-mapping T : X → X be a contraction, that is, if there exists a ∈ [0, 1) such that

(1.1) d(Tx, Ty) ≤ ad(x, y), for all x, y ∈ X,
then T has a unique fixed point in X .

This principle has been extended and generalized in various directions by many aut-
hors (see [4, 7, 13–15, 24–27, 29]).

In 2004, Berinde [7] introduced and studied the concept of weak contraction mapping
in the context of a complete metric space, later named by himself as almost contraction,
see [8–11]. Let (X, d) be a metric space. A mapping T : X → X is called weak contraction
if there exist a ∈ (0, 1) and L ≥ 0 such that

(1.2) d(Tx, Ty) ≤ ad(x, y) + Ld(x, Ty), for all x, y ∈ X.
In the same paper, he also introduced (θ, L)-weak contraction by replacing a in (1.2) by

θ(d(x, y)) where θ : [0,∞) → [0, 1) satisfying lim supr→t+ θ(r) < 1 for all t ∈ (0,∞). We
note that his main results extended and generalized the Banach contraction principle and
others, see [7] and references therein.

Now, let A and B be two nonempty subsets of X , and T : A → B a non-self mapping.
A point x ∈ A is called a best proximity point of T if d(x, Tx) = D(A,B), where D(A,B) =
inf{d(x, y) | (x, y) ∈ A × B}. It is clear that the fixed point equation Tx = x may has no
solution if A and B are disjoint. In fact, if A and B are two nonempty closed subsets of X
and D(A,B) = 0, then the best proximity point will be a fixed point of T . The following
best approximation theorem was established by Ky Fan [20].
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Theorem 1.2 ([20]). Let X be a normed linear space, A be a nonempty compact convex subset of
X and T : A → X be a continuous mapping. Then there exists u ∈ A such that ‖u − Tu‖ =
D(Tu,A) where D(Tu,A) := inf{‖Tu− a‖ : a ∈ A}.

It is known that a point u ∈ A in Theorem 1.2 is called a best approximant point of T in
A.

Many interesting results about best proximity points can be found in [1,3,16–19,21,22,
28].

Fixed point theory in partially ordered metric spaces has been studied by many authors
(see [2, 6, 12, 25–27]).

In 2004, Ran and Reurings [27] introduced and studied the existence of fixed points in
the context of a partially ordered metric space.

In 2005, Nieto and Lopez [25,26] proved some fixed point theorems for monotone map-
pings in partially ordered metric spaces. They also applied the main result to prove the
existence of solutions of some ODE problems.

In 2013, Basha [5] studied the best proximity point theorems and introduced the con-
cept of ordered proximal contraction and proximity order-preserving for non-self map-
pings in a partially ordered metric space. Let (X, d,�) be a partially ordered metric space,
A and B be two nonempty subsets of X .

Definition 1.1 ([5]). A mapping T : A→ B is said to be an ordered contraction if there exists
a ∈ [0, 1) such that

x � y =⇒ d(Tx, Ty) ≤ ad(x, y)
for all x, y ∈ A.

Definition 1.2 ([5]). A mapping T : A → B is said to be an ordered proximal contraction if
there exists a ∈ [0, 1) such that

x � y
d(u1, Tx) = D(A,B)

d(u2, T y) = D(A,B)

 =⇒ d(u1, u2) ≤ ad(x, y)

for all x, y, u1, u2 ∈ A.

Definition 1.3 ([5]). A mapping T : A→ B is said to be order-preserving if

x � y =⇒ Tx � Ty

for all x, y ∈ A.

Definition 1.4 ([5]). A mapping T : A→ B is said to be order-reversing if

x � y =⇒ Tx � Ty

for all x, y ∈ A.

Definition 1.5 ([5]). A mapping T : A → B is said to be monotone if it is order-preserving
or order-reversing.

Definition 1.6 ([5]). A mapping T : A→ B is said to be proximally order-preserving if

x � y
d(u1, Tx) = D(A,B)

d(u2, Ty) = D(A,B)

 =⇒ u1 � u2

for all x, y, u1, u2 ∈ A.
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Definition 1.7 ([5]). A mapping T : A→ B is said to be proximally order-reversing if

x � y
d(u1, Tx) = D(A,B)

d(u2, Ty) = D(A,B)

 =⇒ u1 � u2

for all x, y, u1, u2 ∈ A.

The following theorem is a best proximity point theorem for continuous, monotone,
ordered proximal contractions which was established by [5].

Theorem 1.3 ([5]). Let (X,�) be a partially ordered set such that every pair of elements in X has
a lower bound and an upper bound. Let d be a metric on X such that (X, d) is a complete metric
space. Furthermore, let A and B be non-void closed subsets of the metric space (X, d) such that
A0 and B0 are non-void. Let T : A→ B and g : A→ A satisfy the following conditions.
(a) T is a continuous, proximally monotone, ordered proximal contraction.
(b) T (A0) ⊆ B0.
(c) g is a surjective isometry, its inverse is a monotone mapping and A0 is contained in g(A0).
(d) There exist elements x0 and x1 ∈ A0 such that d(gx1, Tx0) = D(A,B) and [x0 � x1 or

x0 � x1].
Then there exists a unique element x∗ ∈ A0 such that

d(gx∗, Tx∗) = D(A,B)

Further, for any arbitrary x′0 ∈ A0, the sequence {x′n} in A0, defined by

d(gx′n+1, Tx
′
n) = D(A,B),

converges to the element x∗.

Motivated and inspired by the works mentioned above, we aim to introduce a new
class of single valued non-self mappings which is more general than that of Berinde [7]
and Basha [5] and to prove best proximity point theorems for this type of mappings in
complete metric spaces endowed with directed graphs. We also apply our main results
to obtain the existence result of the best proximal point for a single valued mapping in a
partially ordered metric space.

2. PRELIMINARIES

In this section, we present and introduce two classes of non-self mappings, called prox-
imally edge-preserving and proximally weak edge-preserving in metric spaces endowed
with directed graphs. We start with recalling some notions of graph theory. Let (X, d)
be a metric space and G = (V (G), E(G)) a directed graph such that the set of its vertices
V (G) = X and the set of its edges E(G) ⊆ X × X . We usually assume that the graph G
has no parallel edges. The conversion of a graph G, is denoted by G−1, that is,

E(G−1) = {(x, y) ∈ X ×X : (y, x) ∈ E(G)}.

Let A and B be nonempty subsets of X , We put

D(A,B) := inf{d(x, y) : x ∈ A and y ∈ B},

A0 := {x ∈ A : d(x, y) = D(A,B) for some y ∈ B},

B0 := {y ∈ B : d(x, y) = D(A,B) for some x ∈ A}.
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Definition 2.8. Let X be a nonempty set, G = (V (G), E(G)) a directed graph such that
V (G) = X and let T : X → X be a self mapping onX . Then T is said to be edge-preserving
if for any x, y ∈ X,

(x, y) ∈ E(G) implies (Tx, Ty) ∈ E(G).

Definition 2.9. Let (X, d) be a metric space and G = (V (G), E(G)) a directed graph such
that V (G) = X and E(G). Let T : A → B be a non-self mapping. Then T is said to be
proximally edge-preserving if it satisfies the condition that

(x, y) ∈ E(G)

d(u1, Tx) = D(A,B)

d(u2, T y) = D(A,B)

 =⇒ (u1, u2) ∈ E(G)

where u1, u2, x, y ∈ A.
Example 2.1. Let X = R with the usual metric. Let A = {−2} ∪ [2, 3] and B = [−1, 1]. It
is easy to see that D(A,B) = 1, A0 = {−2, 2} and B0 = {−1, 1}. Let G = (R, E(G)) be a
directed graph defined by

E(G) = {(−x, x), (−2x, 2x+ 1) : x ∈ R}
and let T : A→ B be defined by

Tx =

{
−1 if x = −2;
x− 2 if x ∈ [2, 3].

Then T is proximally edge-preserving.

Example 2.2. Let X = R2 with the Euclidean metric d on X . Let A = {(x, y) ∈ R2 :
−1 ≤ x ≤ 1 and y ≥ 1} and B = {(x, y) ∈ R2 : −1 ≤ x ≤ 1 and y ≤ −1}. Obviously,
D(A,B) = 2 and then A0 = {(x, 1) ∈ R : −1 ≤ x ≤ 1}, B0 = {(x,−1) ∈ R : −1 ≤ x ≤ 1}.
Let G = (R2, E(G)) be a directed graph defined by

E(G) = {((x, y), (x′, y′)) ∈ R2 × R2 : |x− x′| ≤ 1

2
and |y − y′| ≤ 1

2
},

and let T : A→ B be defined by

T (x, y) = (x,−y), for all (x, y) ∈ A.
Let (x, y) ∈ E(G) where x = (x1, x2) and y = (y1, y2). It is easy to see that if x 6= (x1, 1)
or y 6= (y1, 1), then there are no u1, u2 ∈ A such that d(u1, Tx) = D(A,B) and d(u2, T y) =
D(A,B).
Now, if x = (x1, 1) and y = (y1, 1), then Tx = (x1,−1) and Ty = (y1,−1). We see that
u1 = (x1, 1) and u2 = (y1, 1) are in A such that d(u1, Tx) = d(u2, T y) = D(A,B), and
by the definition of E(G) we have (u1, u2) ∈ E(G). Therefore, T is proximally edge-
preserving.

Definition 2.10. Let (X, d) be a metric space and G = (V (G), E(G)) a directed graph
such that V (G) = X . Let T : A → B be a non-self mapping. Then T is said to be a
G-proximal weak contraction if there exist L ≥ 0 and a function ϕ : [0,∞) → [0, 1) with
lim supr→t+ ϕ(r) < 1 for all t ∈ [0,∞) such that

(2.3)

(x, y) ∈ E(G)

d(u1, Tx) = D(A,B)

d(u2, T y) = D(A,B)

 =⇒ d(u1, u2) ≤ ϕ(d(x, y))d(x, y) + Ld(y, u1)

where x, y, u1, u2 ∈ A.
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For a self-mapping, we see that the G-proximal weak contraction reduces to the follo-
wing contraction:

(2.4) (x, y) ∈ E(G) =⇒ d(Tx, Ty) ≤ ϕ(d(x, y))d(x, y) + Ld(y, Tx).

If (X, d,�) is a partially ordered metric space andG = (V (G), E(G)) is a directed graph
generated by �, i.e., E(G) = {(x, y) : x � y}, then the G-proximal weak contraction
reduces to the following ordered proximal weak contraction which is more general than
that of Basha [5]:

(2.5)

x � y
d(u1, Tx) = D(A,B)

d(u2, Ty) = D(A,B)

 =⇒ d(u1, u2) ≤ ϕ(d(x, y))d(x, y) + Ld(y, u1).

Example 2.3. Let X,G,A,B and T be as in Example 2.2. Let x, y, u1, u2 ∈ A, if (x, y) ∈
E(G), d(u1, Tx) = d(u2, T y) = D(A,B), then x, y, u1, u2 are in the following forms x =
(x1, 1) = u1 and y = (y1, 1) = u2. Choose L > 0 and let k ∈ (0, 1) such that k + L ≥ 1. Let
ϕ(t) = k, for all t ∈ [0,∞). We get

d(u1, u2) = |x1 − x2| ≤ k|x1 − x2|+ L|x1 − x2|
= ϕ(d(x, y))d(x, y) + L|x1 − x2|.

Hence T is the G-proximal weak contraction. Moreover, it is clear that T does not satisfy
the inequality (2.3) with L = 0.

From Definition 2.8, 2.9, 2.10, in the sense of a partially ordered set, ifG = (V (G), E(G))
is a directed graph such that V (G) = X and E(G) = {(x, y) : x � y}, then it is easy to
observe that the following statements hold.
(1) Edge-preserving reduces to order-preserving.
(2) Proximally edge-preserving reduces to proximally order-preserving.
(3) If L = 0 and we take ϕ(t) = k where k ∈ [0, 1) for all t ∈ [0,∞), then the G-proximal

weak contraction (2.3) reduces to an ordered proximal contraction.

Definition 2.11. Let (X, d) be a metric space, A andB be two nonempty subsets ofX , and
G = (V (G), E(G)) be a directed graph such that V (G) = X . Let T : A → B be a non-self
mapping. Then T is said to be proximally weak edge-preserving if for every x ∈ A, there
exists y ∈ A such that d(y, Tx) = D(A,B) and (x, y) ∈ E(G).

Example 2.4. Let X = R2 with the Euclidean metric d on R2. Let A = {(0, x) : x ∈ [0, 1]}
and B = {(1, y) : y ∈ [0,∞)}. Obviously, D(A,B) = 1. Let G = (R2, E(G)) be a directed
graph defined by

E(G) = {((0, x), (0, y)) : x, y ∈ R and |x− y| ≤ 1

2
},

and let T : A→ B be defined by

T (0, x) = (1,
x

2
), for all (0, x) ∈ A.

Clearly, for (0, x) ∈ A, we have (0, x2 ) ∈ A such that d((0, x2 ), T (0, x)) = d((0, x2 ), (1,
x
2 )) =

1 = D(A,B) and ((0, x), (0, x2 )) ∈ E(G). Therefore, T is proximally weak edge-preserving.

3. MAIN RESULTS

We first prove a best proximity point theorem for proximally edge-preserving, con-
tinuous and a G-proximal weak contraction in a complete metric space endowed with a
directed graph.
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Theorem 3.4. Let (X, d) be a complete metric space, G = (V (G), E(G)) a directed graph such
that V (G) = X, and letA andB be nonempty closed subsets ofX such thatA0 6= ∅. If T : A→ B
is a mapping satisfying the following properties:

(i) T is proximally edge-preserving, continuous and G-proximal weak contraction such that
T (A0) ⊆ B0;

(ii) there exist x0, x1 ∈ A0 such that

d(x1, Tx0) = D(A,B) and (x0, x1) ∈ E(G),

then there exists an element x ∈ A such that d(x, Tx) = D(A,B). Further, the sequence {xn},
defined by

d(xn+1, Txn) = D(A,B), for all n ∈ N,

converges to the element x.

Proof. From (ii), there exist elements x0, x1 ∈ A0 such that

d(x1, Tx0) = D(A,B) and (x0, x1) ∈ E(G).

Since A0 6= ∅ and T (A0) ⊆ B0, there exists an element x2 ∈ A0 such that

d(x2, Tx1) = D(A,B).

Since T is proximally edge-preserving, we have (x1, x2) ∈ E(G). Continuing this process,
we obtain a sequence {xn} in A0 such that

(3.6) d(xn+1, Txn) = D(A,B) with (xn, xn+1) ∈ E(G), for all n ≥ 0.

If there exists n0 ∈ N such that xn0 = xn0+1, then d(xn0+1, Txn0) = d(xn0 , Txn0) =
D(A,B). Hence xn0 is a best proximity point of T .

Suppose that xn 6= xn+1 and (xn, xn+1) ∈ E(G) for all n ∈ N. Next, let us show that
{xn} is a Cauchy sequence and its limit is the best proximity point of T .

As T is the G-proximal weak contraction and (xn, xn+1) ∈ E(G), for all n ∈ N,

d(xn, Txn−1) = D(A,B),

d(xn+1, Txn) = D(A,B),

we have

d(xn+1, xn) ≤ ϕ(d(xn, xn−1))d(xn, xn−1) + Ld(xn, xn) ≤ d(xn, xn−1).

By the above inequality, we get the sequence {d(xn+1, xn)} is a non-increasing and
bounded below. Thus, there exists r ≥ 0 such that

lim
n→∞

d(xn+1, xn) = r.(3.7)

Let ε > 0. Since lim sups→r+ ϕ(s) < 1, there exists a ∈ [0, 1) such that ϕ(s) ≤ a for all
s ∈ (r, r + ε).

By (3.7), there exists N ∈ N such that

r ≤ d(xn+1, xn) < r + ε, for all n ≥ N.



Best proximity point theorems for G-proximal weak contractions ... 71

Thus for all n > N , we have

d(xn+1, xn) ≤ ϕ(d(xn, xn−1))d(xn, xn−1) + Ld(xn, xn)

= ϕ(d(xn, xn−1))d(xn, xn−1) ≤ ad(xn, xn−1)
≤ ϕ(d(xn−1, xn−2))d(xn−1, xn−2) + Ld(xn−1, xn−1)

= ϕ(d(xn−1, xn−2))d(xn−1, xn−2) ≤ a2d(xn−1, xn−2)
...

≤ an−Nd(xN+1, xN ).

Therefore,
∞∑

n=1

d(xn+1, xn) =

N∑
n=1

d(xn+1, xn) +

∞∑
n=N+1

d(xn+1, xn)

≤
N∑

n=1

d(xn+1, xn) +

∞∑
n=N+1

an−Nd(xN+1, xN )

≤
N∑

n=1

d(xn+1, xn) + d(xN+1, xN )

∞∑
n=N+1

an−N <∞.

This implies that {xn} is a Cauchy sequence in A.
Since A is complete, there exists x ∈ A such that xn → x. By the continuity of T , it implies
that Txn → Tx. Hence the continuity of the metric function d implies that d(xn+1, Txn)
converges to d(x, Tx). By (3.6), we get

d(x, Tx) = D(A,B).

Hence x ∈ A is a best proximity point of T . This completes the proof. �

We give example to illustrating Theorem 3.4

Example 3.5. Let X = R2 with the Euclidean metric d on X . Let A = {(x, y) ∈ R2 : −1 ≤
x ≤ 1 and y ≥ 1} and B = {(x, y) ∈ R2 : −1 ≤ x ≤ 1 and y ≤ −1}. It is easy to see that
D(A,B) = 2 and then A0 = {(x, 1) ∈ R : −1 ≤ x ≤ 1}, B0 = {(x,−1) ∈ R : −1 ≤ x ≤ 1}.
Let G = (R2, E(G)) be a directed graph defined by

E(G) = {((x, y), (x′, y′)) ∈ R2 : |x− x′| ≤ 1

2
and |y − y′| ≤ 1

2
},

and let T : A→ B be defined by

T (x, y) = (x,−y), for all (x, y) ∈ A.
By Example 2.2 and 2.3, we have T is both proximally edge-preserving and the G-proximal weak
contraction. Clearly, T is continuous, T (A0) ⊆ B0, (0, 1) ∈ A0, d((0, 1), T (0, 1)) = D(A,B)
and ((0, 1), (0, 1)) ∈ E(G). Hence this example satisfies all conditions of Theorem 3.4 and we see
that every x ∈ A0 is a best proximity point of T . But we see that this example does not satisfy
Theorem 1.3, in the case L = 0.

If we take A = B = X in Theorem 3.4, then we obtain the following corollary.

Corollary 3.1. Let (X, d) be a complete metric space, G = (V (G), E(G)) a directed graph such
that V (G) = X . If T : X → X is a mapping satisfying the following properties:
(i) T is an edge-preserving mapping and continuous;
(ii) there exist x0 ∈ X such that (x0, T (x0)) ∈ E(G);
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(iii) there exists L ≥ 0 and a function ϕ : [0,∞)→ [0, 1) satisfies
lim supr→t+ ϕ(r) < 1, for all t ∈ [0,∞) such that

d(Tx, Ty) ≤ ϕ(d(x, y))d(x, y) + Ld(y, Tx)

for all x, y ∈ X with (x, y) ∈ E(G),
then T has a fixed point.

The following property is useful for our main results.

Property (A) [23] For any sequence (xn)n∈N in X , if xn → x and (xn, xn+1) ∈ E(G), for
n ∈ N, then there is a subsequence (xkn

)n∈N with (xkn
, x) ∈ E(G), for n ∈ N.

Similarly, we can establish the following result which is an analogue of Theorem 3.4.

Theorem 3.5. Let X,G,A,B be as in Theorem 3.4 such that X has property (A). Suppose that
A0 is closed in X and let T : A→ B be a mapping satisfying the following properties:
(i) T is proximally edge-preserving and G-proximal weak contraction such that T (A0) ⊆ B0;
(ii) there exist x0, x1 ∈ A0 such that

d(x1, Tx0) = D(A,B) and (x0, x1) ∈ E(G),

then there exists an element x ∈ A such that d(x, Tx) = D(A,B). Further, the sequence {xn},
defined by

d(xn+1, Txn) = D(A,B), for all n ∈ N,
converges to the element x.

Proof. Following the proof of Theorem 3.4, there exists a sequence {xn} inA satisfying the
following condition

d(xn+1, Txn) = D(A,B) with (xn, xn+1) ∈ E(G), for all n ≥ 0.

and {xn} converges to x in A. Note that the sequence {xn} in A0 and A0 is closed. The-
refore, x ∈ A0. Since T (A0) ⊆ B0, we get Tx ∈ B0. Hence there exists z ∈ A such
that

(3.8) d(z, Tx) = D(A,B).

Since (xn, xn+1) ∈ E(G) and xn → x as n → ∞, by the assumption, we get that there
exists a subsequence {xnk

} of {xn} such that (xnk
, x) ∈ E(G), for all n ∈ N. Hence

d(xnk+1, z) ≤ ϕ(d(xnk
, x))d(xnk

, x) + Ld(x, xnk+1
).

Since xn → x as n → ∞, we have d(xnk+1, z) → 0 as k → ∞. This means that x = z. By
the equality (3.8), we obtain d(x, Tx) = D(A,B), that is, x ∈ A is a best proximity point of
T . �

Theorem 3.6. Let (X, d) be a complete metric space, G = (V (G), E(G)) a directed graph such
that V (G) = X, and let A and B be nonempty closed subsets of X . If T : A → B is proximally
weak edge-preserving, continuous and G-proximal weak contraction, then there exists an element
x ∈ A such that d(x, Tx) = D(A,B). Further, the sequence {xn}, defined by

d(xn+1, Txn) = D(A,B), for all n ∈ N,

converges to the element x ∈ A.

Proof. SinceA0 6= ∅, there exist x0 ∈ A. From T is proximally weak edge-preserving, there
exists x1 ∈ A such that

d(x1, Tx0) = D(A,B) and (x0, x1) ∈ E(G).
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Since x1 ∈ A, again by T is proximally weak edge-preserving, there exists x1 ∈ A such
that

d(x2, Tx1) = D(A,B) and (x1, x2) ∈ E(G).

Continuing this process, we obtain a sequence {xn} in A such that

(3.9) d(xn+1, Txn) = D(A,B), for all n ≥ 0 with (xn, xn+1) ∈ E(G).

Now, following the proof of Theorem 3.4, we get the required result. �

If we take A = B = X in Theorem 3.6, then we obtain the following corollary.

Corollary 3.2. Let (X, d) be a complete metric space, G = (V (G), E(G)) a directed graph such
that V (G) = X . If T : X → X is a mapping satisfying the following properties:
(i) T is continuous and (x, Tx) ∈ E(G), for all x ∈ X ;
(ii) there exist L ≥ 0 and a function ϕ : [0,∞)→ [0, 1) satisfies

lim supr→t+ ϕ(r) < 1, for all t ∈ [0,∞) such that

d(Tx, Ty) ≤ ϕ(d(x, y))d(x, y) + Ld(y, Tx)

for all x, y ∈ X with (x, y) ∈ E(G),
Then T has a fixed point, i.e., there exists x ∈ X such that Tx = x.

Remark 3.1. In Corollary 3.2, if we set G = (V (G), E(G)) as a complete graph on X , i.e.,
E(G) = X ×X , then we obtain the result of Berinde [7].

4. SOME BEST PROXIMITY THEOREMS IN PARTIALLY ORDERED METRIC SPACES

Over years ago, there have been many important developments for the existence of
best proximity point theorems in a complete metric space endowed with a partially order.
In this section, by applying the main results obtained in this paper, we can deduce various
best proximity point theorems in a complete metric space endowed with a partially order.

Theorem 4.7. Let (X, d) be a complete metric space endowed with a partial order �. Let A and
B be nonempty closed subsets of X such that A0 6= ∅. If T : A → B is a mapping satisfying the
following properties:
(i) T is continuous and proximally order-preserving such that T (A0) ⊆ B0;
(ii) there exist x0, x1 ∈ A0 such that d(x1, Tx0) = D(A,B) and x0 � x1;
(iii) there exist L ≥ 0 a function ϕ : [0,∞)→ [0, 1) satisfies

lim supr→t+ ϕ(r) < 1, for all t ∈ [0,∞) such that

(4.10)

x � y
d(u1, Tx) = D(A,B)

d(u2, T y) = D(A,B)

 =⇒ d(u1, u2) ≤ ϕ(d(x, y))d(x, y) + Ld(y, u1)

for all x, y, u1, u2 ∈ A,
then there exists an element x ∈ A such that d(x, Tx) = D(A,B). Further, the sequence {xn},
defined by

d(xn+1, Txn) = D(A,B), for all n ∈ N,
converges to the element x.

Proof. Let G = (V (G), E(G)) be a directed graph such that V (G) = X and

E(G) = {(x, y) ∈ X ×X : x � y}.
Then T is proximally edge-preserving. By (iii), it is easy to see that T is a G-proximal
weak contraction. Hence all assumptions of Theorem 3.4 are satisfied. Next, we see that
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(ii) of Theorem 3.4 is also satisfied. Therefore, all conditions of Theorem 3.4 are satisfied.
As a result of this, we obtain this corollary directly by Theorem 3.4. �

If L = 0, the following result is obtained directly by Theorem 4.7 and it is noted that
this result was given by Basha [5].

Corollary 4.3. Let (X, d) be a complete metric space endowed with a partial order �. Let A and
B be nonempty closed subsets of X such that A0 6= ∅. If T : A → B is a mapping satisfying the
following properties:
(i) T is continuous and proximally order-preserving, and an ordered proximal contraction such

that T (A0) ⊆ B0;
(ii) there exist x0, x1 ∈ A0 such that d(x1, Tx0) = D(A,B) and x0 � x1,

then there exists an element x ∈ A such that d(x, Tx) = D(A,B). Further, the sequence {xn},
defined by

d(xn+1, Txn) = D(A,B), for all n ∈ N,
converges to the element x.

If T is a self-mapping on X , then the following result is obtained directly by Corollary
4.3.

Corollary 4.4. Let (X, d) be a complete metric space endowed with a partial order �. If T : X →
X is a mapping satisfying the following properties:
(i) T is order-preserving, continuous which satisfies the inequality (2.4);
(ii) there exists x0 ∈ X such that x0 � T (x0),

then T has a fixed point.
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