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Multiple existence of solutions for a coupled system
involving the distributional Henstock-Kurzweil integral

WEI LIU, GUOJU YE and DAFANG ZHAO

ABSTRACT. This paper deals with a coupled system in the sense of distributions (generalized functions).
Our main goal is to get the basic multiple existence results via some degree theory arguments. Differently from
the literatures, the proof is based on the concept of a general integral named distributional Henstock-Kurzweil
integral, which includes the Lebesgue and Henstock-Kurzweil integrals as special cases. Finally, an example is
given to illustrate that the presented abstract theory contains some previous results as special cases.

1. INTRODUCTION

The purpose of this paper is to establish the existence of non-zero solutions for a cou-
pled system  −u

′′ = f1 + h1(x, u, v), x ∈ (0, 1),
−v′′ = f2 + h2(x, u, v), x ∈ (0, 1),
u(0) = u(1) = 0, v(0) = v′(1) = 0,

(1.1)

where u, v : [0, 1] → R and the derivatives are understood in the sense of L. Schwartz’s
distributions, fi is a distribution and hi : [0, 1]×C[0, 1]×C[0, 1]→ R is a function, i = 1, 2.

In ODE, the problem of the existence of solutions for a coupled system of the type{
−d

2u
dx2 = h1(x, u, v), x ∈ (0, 1),

− d2v
dx2 = h2(x, u, v), x ∈ (0, 1),

(1.2)

has received an extensive attention by researchers, see, for example, Liu and Sun [11],
Cheng and Zhong [3], Cheng and Zhang [4], Cheng [5], Yang [21], Asif and Khan [2],
Infante and Pietramala [9]. Likewise, many papers are concerned with the equivalent
integral system which is known as the nonlinear Hammerstein system

(1.3)


u(x) =

∫ 1

0

k1(x, y)h1(y, u(y), v(y))dy, x ∈ [0, 1],

v(x) =

∫ 1

0

k2(x, y)h2(y, u(y), v(y))dy, x ∈ [0, 1],

where ki(x, y) (i = 1, 2) is the kernel function, see, e. g., [16, 11, 4, 19, 20] and references
therein. In almost all the aforementioned papers, fi is required to be continuous, and the
solutions are in C2[0, 1].

However, continuous functions do not generally have pointwise derivatives, for exam-
ple, the Riemann function

(1.4) R(x) =

∞∑
n=1

sinn2πx
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does not have pointwise derivative, see details in [8]. Since the distributional derivative
includes the pointwise one, several papers started to study the distributional differential
equations, we refer the reader to [12, 13, 14, 18]. Recently, a new integral based on the
concept of distributions was studied in [1, 17, 22]. Precisely, a distribution is called distri-
butionally Henstock-Kurzweil integrable if it is a distributional derivative of a continuous
function. With this definition, the distributional Henstock-Kurzweil (DHK for short) inte-
gral contains the Henstock-Kurzweil (HK for short), Lebesgue and Riemann integrals as
special cases. Further, many basic properties of usual integrals still hold in this case, see
details in [1, 10, 15, 17, 22].

Motivated by the above discussion, in this paper, we aim to study the existence results
of (1.1). Firstly, we assume that f and h satisfy the following assumptions:

(D1) for every u, v ∈ C[0, 1], hi(., u(.), v(.)) is HK integrable on [0, 1];
(D2) for all x ∈ [0, 1], hi(x, u, v) (i = 1, 2) is continuous with respect to (u, v);
(D3) there exist constant R0 > 0 and HK integrable functions li(x), qi(x) ≥ 0 (i = 1, 2)

on [0, 1] such that

−li(|u|+ |v|)− qi ≤ hi(., u, v) ≤ li(|u|+ |v|) + qi, for every u, v ∈ BR0
, i = 1, 2,

on [0, 1], where BR0
= {u ∈ C1[0, 1] | ‖u‖ ≤ R0};

(D4) fi ∈ DHK , i = 1, 2.

Definition 1.1. (u, v) is said to be a solution of the differential system (1.1) on [0, 1] if (u, v)
satisfies the following integral system

(1.5)


u(x) =

∫ 1

0

k1(x, y)(f1(y) + h1(y, u(y), v(y)))dy, x ∈ [0, 1],

v(x) =

∫ 1

0

k2(x, y)(f2(y) + h2(y, u(y), v(y)))dy, x ∈ [0, 1],

where

(1.6) k1(x, y) =

{
x(1− y), 0 ≤ x ≤ y ≤ 1,
y(1− x), 0 ≤ y < x ≤ 1,

k2(x, y) =

{
x, 0 ≤ x ≤ y ≤ 1,
y, 0 ≤ y < x ≤ 1.

Let

Fi(x) =

∫ x

0

fi(y)dy, Li(x) =

∫ x

0

li(y)dy, Qi(x) =

∫ x

0

qi(y)dy, x ∈ [0, 1].(1.7)

Obviously, Fi, Li, Qi (i = 1, 2) are all continuous on [0, 1].
The main results of this paper are as follows.

Theorem 1.1. Let the hypotheses (D1)− (D4) be fulfilled and max{‖L1‖, ‖L2‖} < 1
2 . Then the

system (1.1) has at least one nontrivial continuous solution.

Theorem 1.2. If the assumptions in Theorem 1.1 are satisfied and if there exists R > 2R0 + 1
such that for ‖u‖+ ‖v‖ = R, either

(1.8) h1(., u, v) ≥ π2(u+ 2‖F1‖)

or

(1.9) h2(., u, v) ≥ π2

4
(v + 2‖F2‖)

holds on [0, 1]. Then the system (1.1) has at least two nontrivial continuous solutions.
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2. MAIN RESULTS

In this section, we first present two methods of computation for topological degree (see
details in [7, 11, 16]), which will be used to prove Theorems 1.1 and 1.2.

We denote by Ω a bounded open set in a Banach space X and by Ω its closure. θ

denotes the zero element in X . Let A : Ω → X be a condensing operator (see definition in
[7]). Actually, a completely continuous operator is condensing.

Lemma 2.1 ([7, Lemma 2.5.1]). Let Ω be a bounded open set in real Banach space X with θ ∈ Ω,
and A : Ω→ X be condensing. If

ξx 6= Ax, for every x ∈ ∂Ω, ξ ≥ 1,

then
deg(I −A,Ω, θ) = 1.

A nonempty convex closed set P ⊂ X is called a cone i) If x ∈ P , λ ≥ 0 then λx ∈ P ; ii)
If x ∈ P , −x ∈ P then x = θ. A nonempty convex closed set W ⊂ X is called a wedge i) if
x ∈ W , λ ≥ 0 then λx ∈ W ; ii) there exists y ∈ W , such that −y /∈ W . Obviously, if P is a
cone in X then it is also a wedge in X . For u ∈ X , let W (u) = {x ∈ X | x+ u ∈W}.

Let Yj be a Banach space and Pj a cone in Yj ( j = 1, 2, . . . , n). For convenience, the
partial ordering in each Yj , which is induced by Pj , is expressed by ≤.

Lemma 2.2 ([16, Corollary 1]). Let A : Ω → X be a condensing operator which has no fixed
point on ∂Ω. Suppose that there exist linear operators T : W → W and Nj : W → Pj (j =
1, 2, . . . , n), such that

(I) for each j, 1 ≤ j ≤ n, NjTx = Njx, for each x ∈W ;
(II) Nju0 6= θ, for some u0 ∈W \ {θ}, j = 1, 2, . . . , n;

(III) A(∂Ω) ⊂W (u∗) for some u∗ ∈W ;
(IV) for any x ∈ ∂Ω ∩W (u∗), there exists j0 (1 ≤ j0 ≤ n) which is independent of x , such

that Nj0Ax ≥ Nj0Tx.
Then

deg(I −A,Ω, θ) = 0.

Let X = C1[0, 1] × C1[0, 1] with norm ‖(u, v)‖X = ‖u‖ + ‖v‖, and let Ai : BR0
→

C1[0, 1] (i = 1, 2), A : BR0
×BR0

→ X satisfy

Ai(u, v)(x) =

∫ 1

0

ki(x, y)fi(y, u(y), v(y))dy, i = 1, 2,

A(u, v)(x) = (A1(u, v)(x), A2(u, v)(x)).

(2.10)

We are now in the position to prove our main results.

Proof of Theorem 1.1. Let R0 > max
{

2‖F1‖+‖Q1‖
1−2‖L1‖ , 2‖F2‖+‖Q2‖

1−2‖L2‖

}
be fixed. In order to ex-

plore Lemma 2.1, we first prove that the operator A : BR0 × BR0 → X is completely
continuous.

Obviously, ‖ki(x, y)‖ ≤ 1 on [0, 1]×[0, 1]. By virtue of Assumption (D3), for any (u, v) ∈
BR0

×BR0
, one has

‖A1(u, v)(x)‖ ≤
∥∥∥∥∫ 1

0

k1(x, y)f1(y)dy

∥∥∥∥+

∥∥∥∥∫ 1

0

k1(x, y)h1(y, u(y), v(y))dy

∥∥∥∥
≤
∥∥∥∥x ∫ 1

0

F1(y)dy −
∫ x

0

F1(y)dy

∥∥∥∥+

∥∥∥∥∫ 1

0

k1(x, y)(l1(y)(|u(y)|+ |v(y)|) + q1(y))dy

∥∥∥∥
≤2‖F1‖+ 2R0‖L1‖+ ‖Q1‖ < R0.
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Similarly, ‖A1(u, v)(x)‖ ≤ R0. Therefore, A(BR0
×BR0

) ⊂ BR0
×BR0

and

(2.11) ‖A(u, v)‖X < 2R0.

Furthermore, for all x1, x2 ∈ [0, 1], by (D3), one has

|A1(u, v)(x1)−A1(u, v)(x2)| =
∣∣∣∣(x1 − x2)

∫ 1

0

F1(y)dy −
∫ x1

x2

F1(y)dy

+(x1 − x2)

∫ 1

0

∫ t

0

h1(y, u(y), v(y))dydt−
∫ x1

x2

∫ t

0

h1(y, u(y), v(y))dydt

∣∣∣∣
≤2(‖F1‖+ 2R0‖L1‖+ ‖Q1‖)|x1 − x2|.

(2.12)

Similarly,

|A2(u, v)(x1)−A2(u, v)(x2)| ≤2(‖F2‖+ 2R0‖L2‖+ ‖Q2‖)|x1 − x2|.(2.13)

Since Fi, Li, Qi (i = 1, 2) are continuous and so are bounded on [0,1], it follows from
(2.12) and (2.13) thatAi(u, v) (i = 1, 2) is equiuniformly continuous on [0, 1] for all (u, v) ∈
BR0 ×BR0 .

We now show that A : BR0
×BR0

→ X is continuous.
Let (u, v) ∈ BR0

× BR0
. Without loss of generality, we assume that uj → u, vj → v in

BR0
as j → ∞ . According to the condition (D2), hi(·, uj , vj) → hi(·, u, v) as j → ∞, i =

1, 2. Therefore, by (2.10) and the convergence Theorem 1 of [22], one has

lim
j→∞

∫ 1

0

ki(x, y)hi(y, uj(y), vj(y))dy =

∫ 1

0

ki(x, y)hi(y, u(y), v(y))dy, i = 1, 2,

uniformly on [0, 1]. Therefore, limj→∞Ai(uj , vj)(.) = Ai(u, v)(.) (i = 1, 2) on [0, 1], which
implies that Ai is continuous and hence A is continuous on [0, 1]. Therefore, according to
the Arzelà-Ascoli theorem, A : BR0

×BR0
→ BR0

×BR0
is completely continuous.

Finally, let Ω0 = {(u, v) ∈ X | ‖(u, v)‖X < 2R0}, ∂Ω0 = {(u, v) ∈ X | ‖(u, v)‖X = 2R0}.
We now verify that for any (u, v) ∈ ∂Ω0, λ ≥ 1,

(2.14) A(u, v) 6= λ(u, v).

If not, there exist (u0, v0) ∈ ∂Ω0, λ0 ≥ 1 such that

(2.15) A(u0, v0) = λ0(u0, v0).

By (2.11) and (2.15), 2R0 > ‖A(u0, v0)‖X = λ0‖(u0, v0)‖X = 2R0λ0, which leads to a
contradiction. Thus, (2.14) holds. So far, all the conditions in Lemma 2.1 are satisfied.
Therefore,

(2.16) deg(I −A,Ω0, θ) = 1.

Thus, by the solution property of topological degree (see [7, Theorem A.3.1]), A has at
least one fixed point in Ω0. The proof is therefore complete. �

If ‖L1‖ = ‖L2‖ = 0, then (D3) is reduced to
(D′3) there exist constant R0 > 0 and HK integrable function qi(x) ≥ 0 (i = 1, 2) on

[0, 1] such that

−qi ≤ hi(., u, v) ≤ qi, for every u, v ∈ BR0
, i = 1, 2,

on [0, 1], where BR0
= {u ∈ C1[0, 1] | ‖u‖ ≤ R0}.

Moreover, we have a direct consequence of Theorem 1.1.

Corollary 2.1. Let the hypotheses (D1), (D2), (D′3) and (D4) be fulfilled. Then the system (1.5)
and, hence, the system (1.1) has at least one nontrivial continuous solution.
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Remark 2.1. The condition (D′3) together with (D1) and (D2) was first proposed by Chew
and Flordeliza in 1991 [6], to deal with first order Cauchy problems.

To prove Theorem 1.2, we first let

Kiu =

∫ 1

0

ki(x, y)u(y)dy, i = 1, 2.

One can calculate the spectral radius r(Ki) of Ki (i = 1, 2) by a routine method, and has
r(K1) = 1

π2 , r(K2) = 4
π2 . Let

(2.17) g1(x) = sinπx, g2(x) = sin
π

2
x, x ∈ [0, 1].

It is easy to see that gi(x) ≥ 0, gi(x) 6≡ 0 on [0, 1], and satisfies

(2.18)
∫ 1

0

ki(x, y)gi(y)dy = r(Ki)gi(x), x ∈ [0, 1], i = 1, 2.

Moreover, let

(2.19) α1(x) =

{
x, 0 ≤ x ≤ 1

2 ,
1− x, 1

2 < x ≤ 1,
α2(x) = x, 0 ≤ x ≤ 1,

one has

(2.20) ki(x, y) ≥ αi(x)ki(τ, y), x, y, τ ∈ [0, 1], i = 1, 2,

and hence, by (2.18),

(2.21) gi(x) ≥ δiki(τ, x), x, τ ∈ [0, 1], i = 1, 2,

where δi = r−1(Ki)
∫ 1

0
αi(y)gi(y)dy > 0, i = 1, 2.

Let Y1 = Y2 = R, P1 = P2 = [0,+∞), W = W1 ×W2, where

Wi =

{
u ∈ C1[0, 1]

∣∣∣∣ u(x) ≥ 0,

∫ 1

0

gi(x)u(x)dx ≥ r(Ki)δi‖u‖
}
, i = 1, 2.

Obviously, W is a cone in X .
We now prove the second main result.

Proof of Theorem 1.2. Let

T (u, v) = (r−1(K1)K1u, r
−1(K2)K2v),

N1(u, v) =

∫ 1

0

g1(x)u(x)dx, N2(u, v) =

∫ 1

0

g2(x)v(x)dx,

and u∗ = u0 = (u1, u2), where

ui(x) = 2‖Fi‖+ 1 +

∫ 1

0

ki(x, y)

(
li(y)(|u(y)|+ |v(y)|) + qi(y)

)
dy, i = 1, 2.

We now verify that the linear operator T mapsW intoW . In fact, for any given (u, v) ∈W ,
one has u ∈W1. Obviously, r−1(K1)(K1u)(x) ≥ 0, by (2.18) and (2.20), one has∫ 1

0

g1(x)r−1(K1)(K1u)(x)dx =

∫ 1

0

g1(y)u(y)dy ≥ δ1(K1u)(τ), τ ∈ [0, 1].(2.22)

Therefore,
∫ 1

0
g1(x)r−1(K1)(K1u)(x)dx≥δ1r(K1)‖r−1(K1)K1u‖, hence, r−1(K1)K1u∈W1.

Similarly, r−1(K2)K2v ∈W2, which implies T (u, v) ∈W, i.e., T (W ) ⊂W.
In view of Lemma 2.2, we now divide the proof into four steps.
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Step 1. For any (u, v) ∈W , by (2.18), (2.22)

(2.23) N1T (u, v) =

∫ 1

0

g1(x)r−1(K1)(K1u)(x)dx =

∫ 1

0

g1(y)u(y)dy = N1(u, v).

Similarly, one has N2T (u, v) = N2(u, v). Thus condition (I) in Lemma 2.2 is satisfied.
Step 2. It is easy to see that the linear operator Ni maps W into Pi (i = 1, 2),

u0 ∈W \ {θ}. By virtue of (2.18), one has

Niu0 =

∫ 1

0

gi(x)ui(x)dx ≥
∫ 1

0

gi(y)dy > 0.

Consequently, condition (II) in Lemma 2.2 is satisfied.
Step 3. For any (u, v) ∈ X, A(u, v) + u∗ = (A1(u, v) + u1, A2(u, v) + u2). One has

(2.24) A1(u, v)(x) + u1(x) ≥ 2‖F1‖+ 1 + x

∫ 1

0

F1(y)dy −
∫ x

0

F1(y)dy ≥ 0.

Let µ(y) = f1(y) + h1(y, u(y), v(y)) + l1(y)(|u(y)| + |v(y)|) + q1(y). Then, by (2.18) and
(2.20), one has∫ 1

0

g1(x)(A1(u, v)(x) + u1(x))dx = r(K1)

∫ 1

0

g1(y)µ(y)dy + (2‖F1‖+ 1)

∫ 1

0

g1(x)dx

≥ r(K1)δ1(A1(u, v)(τ) + u1(τ)), τ ∈ [0, 1].

This and (2.24) imply that∫ 1

0

g1(x)(A1(u, v)(x) + u1(x))dx ≥ r(K1)δ1‖A1(u, v) + u1‖.

Hence, A1(u, v) + u1 ∈W1. Similarly, one has A2(u, v) + u2 ∈W2, thus A(u, v) + u∗ ∈W .
This implies that condition (III) in Lemma 2.2 holds.

Step 4. Let Ω = {(u, v) ∈ X | ‖u‖ + ‖v‖ < R}, R > R0 + 1. Without loss of generality,
we may assume that A has no fixed point on ∂Ω.

For any (u, v) ∈ ∂Ω ∩W (u∗), then ‖u‖ + ‖v‖ = R and u + u1 ∈ W1, v + u2 ∈ W2. It
follows from (2.23), (D3), (2.18) and (1.8) (similarly, if (1.9) holds) that

N1A(u, v)−N1T (u, v) = N1A(u, v)−N1(u, v)

≥
∫ 1

0

g1(x)

(
x

∫ 1

0

F1(y)dy −
∫ x

0

F1(y)dy + r(K1)h(x, u(x), v(x))− u
)
dx

≥0.

Thus condition (IV) in Lemma 2.2 holds.
According to the arguments above and Lemma 2.2, one has

(2.25) deg(I −A,Ω, θ) = 0.

It follows from (2.25), (2.16) and the additivity property of topological degree (see [7,
Theorem A.3.1]) that

(2.26) deg(I −A,Ω \ Ω0 , θ) = −1.

Thus, A has at least one fixed point in Ω \ Ω0 . This and Theorem 1.1 imply that A has at
least two fixed points in Ω. The proof is therefore complete. �
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3. ILLUSTRATIVE EXAMPLE

Now, we give an example to illustrate that our results are more general.

Example 3.1. Consider
−u′′ = 1

π2u+R′, x ∈ (0, 1),

−v′′ = 4
π2 (u+ |v|) +

(
π4−16
4π2 |v|+ π4+48

8π2

)
‖u‖+‖v‖−10

60 + 3
2π2R′, x ∈ (0, 1),

u(0) = u(1) = 0, v(0) = v′(1) = 0,

(3.27)

whereR′ is the distributional derivative ofR as given in (1.4).
Obviously, (3.27) can be regarded as a special case of (1.1), where

f1 = R′, h1(x, u, v) = 1
π2u,

f2 = 3
2π2R′, h2(x, u, v) = 4

π2 (u+ |v|) +
(
π4−16
4π2 |v|+ π4+48

8π2

)
‖u‖+‖v‖−10

60 .

Let l1(x) = 1
π2 , l2(x) = 4

π2 , q1(x) = 0, q2(x) = π4+48
48π2 on [0,1], then

‖F1‖ ≤
π2

6
, ‖L1‖ =

1

π2
, ‖Q1‖ = 0, ‖F2‖ ≤

1

4
, ‖L2‖ =

4

π2
, ‖Q2‖ =

π4 + 48

48π2
.

Hence,

2‖F1‖+ ‖Q1‖
1− 2‖L1‖

≤ π4

3π2 − 6
≈ 4.1260,

2‖F2‖+ ‖Q2‖
1− 2‖L2‖

≤ π4 + 24π2 + 48

48(π2 − 8)
≈ 4.2595.

So, for ‖u‖ < 5 and ‖v‖ < 5, one has

|h1(x, u, v)| ≤ 1

π2
(|u|+ |v|), |h2(x, u, v)| ≤ 4

π2
(|u|+ |v|) +

π4 + 48

48π2
.

On the other hand, if ‖u‖+ ‖v‖ = 70 > 11, then

h2(x, u, v) =
π2

4

(
|v|+ 1

2

)
+

4

π2

(
u+

3

2

)
.

Further,

‖u‖ ≤
+∞∑
n=1

4π3

n4π4 − 1
<

3

2
.

Thus, h2(x, u, v) ≥ π2

4 (v + 2‖F2‖) . Hence, (3.27) satisfies all the assumptions in Theorem
1.2. Therefore, (3.27) has at least two solutions.

Remark 3.2. SinceR′ given in (1.4) is DHK integrable but neither Henstock-Kurzweil nor
Lebesgue integrable, (3.27) cannot be transformed into an integral system by using each
one of the last two integrals. This implies that the DHK integral is more powerful, and
that Theorems 1.1 and 1.2 are more general.
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