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Suzuki ψF -contractions and some fixed point results

NICOLAE-ADRIAN SECELEAN

ABSTRACT. The purpose of this paper is to combine and extend some recent fixed point results of Suzuki,
T., [A new type of fixed point theorem in metric spaces, Nonlinear Anal., 71 (2009), 5313–5317] and Secelean, N. A. &
Wardowski, D., [ψF -contractions: not necessarily nonexpansive Picard operators, Results Math., 70 (2016), 415–431].
The continuity and the completeness conditions are replaced by orbitally continuity and orbitally completeness
respectively. It is given an illustrative example of a Picard operator on a non complete metric space which is
neither nonexpansive nor expansive and has a unique continuity point.

1. INTRODUCTION AND PRELIMINARIES

The Banach-Picard-Caccioppoli fixed point theorem, generally known as the Banach
contraction principle, appeared in an explicit form in Banach’s thesis in 1922, where it
was used to establish the existence of a solution to an integral equation. Since then,
because of its simplicity and usefulness, it has become a very popular tool in solving
existence problems in many branches of mathematical analysis. This principle states that,
if T is a self mapping on a complete metric space (X,d) for which there exists a constant
λ ∈ (0, 1) such that d(Tx, Ty) ≤ λd(x, y), for all x, y ∈ X , then T has a unique fixed
point which is approximated by the sequence (Tnx), for each x ∈ X , where Tn means the
n-th composition of T . The Banach contraction principle has been generalized in many
ways over the years. For example, B. E. Rhoades [15] analyzed a wide variety of con-
tractive self-mappings on a complete metric space which have a unique fixed point which
can be obtained using Picard iteration and compared these classes of maps. The litera-
ture contains many works in fixed point theory which reflects an intense concern in many
directions (see e.g. [18] and references therein).

Nevertheless, many of new fixed point theorems are significant and cover more and
more general families of mappings, thereby they increase the new possibilities of
applying the metric fixed point theory. Numerous direct applications of some fixed point
results can be found in various modern scientific and technical areas, from Fractals
Theory (see very recently [9]) to Graph Theory (see e.g. [1] and references therein and,
also, recently, [4, 11]).

As usual, in this paper the symbols R, R+ and N will denote the set of all real num-
bers, all positive real numbers and all positive integers, respectively. We will also write
R+ = R+ ∪ {∞}.

If ν, λ ∈ R+, by ”ν > λ” we understand ν > λ if λ ∈ R+ and ν =∞ otherwise.
Throughout this paper (X,d) will be a given metric space and T a self mapping on X .

If ∅ 6= M ⊂ X , we use the notation diamM = supx,y∈M d(x, y) for the diameter of M .

Definition 1.1. [18, 3.1.1] We say that T is:
(i) contractive if d(Tx, Ty) < d(x, y), for all x, y ∈ X , x 6= y;
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(ii) nonexpansive if d(Tx, Ty) ≤ d(x, y), for all x, y ∈ X; (iii) expansive if d(Tx, Ty) >
d(x, y), for all x, y ∈ X , x 6= y.

T is called Picard operator (abbreviated P. O.) if there is a unique ξ ∈ X such that Tξ = ξ
and Tnx −→

n
ξ for every x ∈ X . In this setting ξ is called the fixed point of T and (Tnx) the

sequence of successively approximation or also Picard iteration of T (the concepts of Picard
operator and Picard approximation was introduced by I. A. Rus, see [17, 16]).

In 1962 M. Edelstein [5] proved the following version of the Banach contraction princi-
ple.

Theorem 1.1. [5, Rem. 3.1] If (X,d) is a compact metric space and T is a contractive self-map
on X , then T is a P.O.

In 2008, T. Suzuki provided the following generalized version of the above theorem.

Theorem 1.2. [24, Th. 3] Assume that (X,d) is a compact metric space and, for every x, y ∈ X ,
x 6= y, one has

1

2
d(x, Tx) < d(x, y) ⇒ d(Tx, Ty) < d(x, y).

Then T is a P.O.

In 2012 D. Wardowski [29] considered the classF of functions F : (0,∞)→ R satisfying
the following three properties:

(F1) F is increasing,
(F2) F (t)→ −∞ if and only if t↘ 0 and
(F3) limt→0 t

λF (t) = 0 for some λ ∈ (0, 1).
He defined a new kind of contractive self-mapping on (X,d) as follows: for some

F ∈ F , T is an F -contraction if there is τ > 0 such that

F
(
d(Tx, Ty)

)
+ τ ≤ F

(
d(x, y)

)
, ∀x, y ∈ X, Tx 6= Ty

and showed that every F -contraction on a complete metric space is a continuous P. O. In
this way, Wardowski generalized the Banach contraction principle in a different manner
from the well-known results in the literature.

In the last years, there is a current effort of many authors to extend the theory of F -
contractions in order to obtain new classes of Picard mappings by relaxing the conditions
(F1), (F2), (F3). It should be mentioned here that Turinici in [25] and N. A. Secelean in [19]
proved the existence of fixed point of F -contractions without (F3).

Recently, N. A. Secelean and D. Wardowski [20] extended these results by introducing
a new class of P. O. which strictly includes the family of F -contractions. More precisely,
for every µ ∈ R+, the family Φµ of all increasing functions ψ : (−∞, µ) → (−∞, µ) such
that ψn(t) → −∞, for every t ∈ (−∞, µ), is considered. It is proved that, if ψ ∈ Φµ, then
ψ(t) < t, for all t ∈ (−∞, µ) and µ ∈ R+ and, conversely, if ψ : (−∞, µ) → (−∞, µ)
is an increasing and continuous from the right function such that ψ(t) < t, for every
t ∈ (−∞, µ), then ψ ∈ Φµ.

Definition 1.2. [20] We say that T : X → X is a ψF -contraction, where F : (0, ν) → R,
F ∈ F , ψ ∈ Φµ, µ = sup0<t<ν F (t), ν > diamX , provided that

∀x, y ∈ X,
[
Tx 6= Ty ⇒ F

(
d(Tx, Ty)

)
≤ ψ

(
F
(
d(x, y)

))]
.

If F satisfies only (F1) and (F2), then T is called a weak ψF -contraction.

Theorem 1.3. [20, Th. 3.3] Let T : X → X be a weak ψF -contraction, where F : (0, ν) → R ,
ν > diamX and ψ ∈ Φµ be continuous, µ > supF . Assume that the set ∆(F ) of discontinuities
of F is at most countable. If (X,d) is complete, then T is a P.O.
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H. Piri & P. Kumam in [14] and N. Hussain & P. Salimi in [6] combined the concepts
of Suzuki [24] and F -contractions and obtained other generalizations. Thus (see [14,
Def. 1.10]), a self-mapping T on (X,d) is said to be an F -Suzuki contraction if there exists
τ > 0 such that, for all x, y ∈ X with Tx 6= Ty,

1

2
d(x, Tx) < d(x, y) ⇒ τ + F

(
d(Tx, Ty)

)
≤ F

(
d(x, y)

)
,

where F : (0,∞)→ R is continuous and satisfies (F1) and (F2).

Theorem 1.4. [14, Th. 2.2] If T is an F -Suzuki contraction and (X,d) is complete, then T is a
P. O.

Very recently, H. Piri & P. Kumam [13] extended this concept and obtained generalized
F -Suzuki contraction on b-metric spaces which, if the space is complete, is a P. O.

In the topic of F -contractions, we can find many other preoccupations to improve this
theory (see e.g. [3, 7, 10, 19, 21, 26, 28]) and to use it in various applications such as
functional and integral equations (see [8, 12, 23]), fractals theory (see [22]), multistage
decision processes (see [27]) and others.

In the present paper, we provide some new sufficient properties for the mapping T
to be a Picard operator by extending and weakening the F -contraction type conditions.
Some important known results published in this topic can be obtained as special cases
of the above. Example 2.3 states that our results are applicable and they are real im-
provements of some of those already published. Thus, while the most of known Picard
operators are either non-expansive (even continuous) or expansive mappings on a com-
plete metric space, our example proved that the result of the paper allows finding a Picard
operator which does not satisfy any of the above conditions.

2. MAIN RESULTS

According to Ćirić [2], T is said to be orbitally continuous at a point x0 ∈ X if limk T
nkx0 =

u ∈ X implies Tu = limk T
nk+1x0. We say that T is orbitally continuous if it is orbitally

continuous at every x ∈ X . The space X is T -orbitally complete if every Cauchy sequence
of the form (Tnkx)k converges in X .

Clearly, if T is continuous, then it is orbitally continuous. In the following we give a
simple example which states that the converse is not true.

Example 2.1. The Dirichlet map T : R→ R, given by

Tx =

{
1, if x ∈ Q,
0, if x ∈ R \Q

is orbitally continuous but it is nowhere continuous.

For some x0 ∈ X , we will denote by O(x0) = {x0, Tx0, . . . , Tnx0, . . . } the orbit of T .
In order to proof the next theorem we need the following result that is a slight impro-

vement of [25, Prop. 3].

Proposition 2.1. Let (xn) be a sequence of elements from X and ∆ be a subset of (0, ν), ν ∈ R+,
such that (0, ν) \ ∆ is dense in (0, ν). If d(xn, xn+1) −→

n
0 and (xn) is not Cauchy, then there

exist η ∈ (0, ν) \∆, n0 ∈ N and the sequences of natural numbers (mk), (nk) such that
(1) ∀ k ∈ N, k ≤ mk < nk, d(xmk

, xnk
) > η,

(2) ∀ k ≥ n0, nk −mk ≥ 2, d(xmk
, xnk−1) ≤ η,

(3) d(xmk
, xnk

)↘ η, k →∞,
(4) d(xmk+p, xnk+q)→ η, k →∞, p, q ∈ {0, 1}.
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For what follows we will slightly refine Definition 1.2.
For some ν ∈ R+ let denote by Fν2 the family of all functions F : (0, ν) → R which

satisfy (F2). Similarly, for a given µ ∈ R+, Ψµ stands for the class of all mappings ψ :
(−∞, µ)→ R satisfying ψ(t) < t, for all t ∈ (−∞, µ).

Definition 2.3. We say that a mapping T : X → X is a ψF -contraction on a set M ⊂ X ,
where F ∈ Fν2 , ψ ∈ Ψµ, µ ≥ sup0<t<ν F (t), ν > max

{
diamM,diamT (M)

}
, whenever

(2.1) ∀x, y ∈M,
[
Tx 6= Ty ⇒ F

(
d(Tx, Ty)

)
≤ ψ

(
F
(
d(x, y)

))]
.

If M = X we say for short that T is a ψF -contraction.

Theorem 2.5. Let x0 ∈ X and T be a ψF -contraction on O(x0), where F ∈ Fν2 , ψ ∈ Ψµ,
ν > diamO(x0), µ > supF . Assume that F is continuous on a dense set A ⊂ (0, ν) and ψ is
upper semicontinuous. If T is orbitally continuous at x0 and (X,d) is T -orbitally complete, then
T has a fixed point ξ and ξ = limn T

nx0.

Proof. Set xn = Tnx0 and γn = d(xn−1, xn), n ∈ N. Clearly, it is enough to consider the
case when γn > 0 for all n ∈ N. Then, for all n ∈ N, we obtain

(2.2) F (γn) ≤ ψ(F (γn−1)) < F (γn−1)

hence the sequence
(
F (γn)

)
is decreasing. Let λ = limn F (γn).

If −∞ < λ, then, from (2.2) one has

λ ≤ lim sup
t↘λ

ψ(t) ≤ ψ(λ)

which is a contradiction. So F (γn)→ −∞, which, by (F2), gives γn → 0.
Now, assume that (xn) is not a Cauchy sequence. Taking ∆ = (0, ν) \ A in Proposition

3.2 it follows that there exist η ∈ A and the sequences (mk), (nk) such that

d(xmk
, xnk

)↘ η, d(xmk+1, xnk+1)→ η, k →∞.

Since η > 0, one can find K ∈ N such that d(xmk+1, xnk+1) > 0 for all k ≥ K. Therefore
we get

F
(
d(xmk+1, xnk+1)

)
≤ ψ

(
F (d(xmk

, xnk
))
)
, ∀ k ≥ K.

Letting k → ∞ and using the facts that F is continuous at η and ψ is upper semicontinu-
ous, one obtains

F (η) ≤ lim sup
t→F (η)

ψ(t) ≤ ψ(F (η)),

which contradicts the hypothesis. Therefore (xn) is Cauchy, hence, X being T -orbitally
complete, is convergent. Let ξ ∈ X be its limit. Then, using the orbitally continuity of T
at x0, one has Tξ = ξ. �

Corollary 2.1. Let T : X → X be a ψF -contraction, where F ∈ Fν2 , ψ ∈ Ψµ, ν > diamX , µ >
supF . Assume that F is continuous on a dense set A ⊂ (0, ν) and ψ is upper semicontinuous. If
(X,d) is T -orbitally complete, then T is a P. O.

Proof. From (2.1), we have

F
(
d(Tx, Ty)

)
≤ ψ(F

(
d(x, y))

)
< F

(
d(x, y)

)
, ∀x, y ∈ X, Tx 6= Ty,

which proves that T is continuous and has at most one fixed point. The conclusion now
follows from Theorem 2.5. �

Remark 2.1. If (Ji)i∈= is a countable partition of (0, ν) consisting of intervals, one can
consider in the previous theorem a function F ∈ Fν2 which is monotonic on each Ji, i ∈ =.



Suzuki ψF -contractions and some fixed point results 97

Example 2.2. The function ψ : R→ R given by

ψ(t) =

{
t(sin t+ 2)− 1, if t < 0,
t sin t− 1, if t ≥ 0

is continuous, non-monotonic and ψ(t) < t for all t ∈ R, so it satisfies the conditions of
Theorem 2.1.

Remark 2.2. Corollary 2.1 is a generalization of [14, Th. 2.1] where the function F is
supposed to be continuous and increasing and ψ(t) = t − τ . This result also improves
Theorem 1.3 where ψ is continuous and increasing.

In the following we describe a generalization of ψF -contraction.

Definition 2.4. A function T : X → X is said to be a Suzuki ψF -contraction on a setM ⊂ X ,
where F ∈ Fν2 , ψ ∈ Ψµ, µ ≥ sup0<t<ν F (t), ν > max

{
diamM,diamT (M)

}
if, for every

x, y ∈M with Tx 6= Ty,

(2.3)
1

2
d(x, Tx) < d(x, y) ⇒ F

(
d(Tx, Ty)

)
≤ ψ

(
F (d(x, y))

)
.

If M = X , we say shortly that T is a Suzuki ψF -contraction.

Remark 2.3. If T is a Suzuki ψF -contraction on M ⊂ X which has a fixed point ξ ∈ M ,
then T|M (the restriction to M of T ) is continuous at ξ.

Proof. Let (xn) be a sequence from M such that xn → ξ, xn 6= ξ, for all n. Then, for every
n ≥ 1, one has 1

2d(ξ, T ξ) < d(ξ, xn) and

T (ξ) 6= T (xn) ⇒ F
(
d(Txn, T ξ)

)
≤ ψ

(
F (d(xn, ξ))

)
< F (d(xn, ξ)).

Since F (d(xn, ξ)) −→
n
−∞, it follows that F

(
d(Txn, T ξ)

)
−→
n
−∞ so d(Txn, T ξ)→ 0. �

Lemma 2.1. Let x0 ∈ X and assume that T is a Suzuki ψF -contraction on O(x0). For each
n ≥ 1 we set xn = Txn−1. If the function ψ is upper semicontinuous from the right, then
d(xn, Txn) −→

n
0.

Proof. If there exists N ∈ N such that d(xN , TxN ) = 0, then d(xn, Txn) = 0, for every
n ≥ N , and the conclusion is obvious.

Assume that d(xn, Txn) > 0, for all n ≥ 1. Then 1
2d(xn, Txn) < d(xn, Txn) hence, by

(2.3), we obtain

(2.4) F
(
d(xn+1, Txn+1)

)
≤ ψ

(
F (d(xn, xn+1))

)
< F

(
d(xn, xn+1)

)
, ∀n ≥ 1,

that is the sequence
(
F (d(xn, Txn))

)
is decreasing. Let λ ∈ [−∞, µ) be its limit.

If λ > −∞, then, from (2.4), one has

λ = lim
n

(
F (d(xn, Txn))

)
≤ lim sup

t↘λ
ψ(t) ≤ ψ(λ) < λ

which is impossible. It follows that λ = −∞. From (F2) one deduces d(xn, Txn)→ 0. �

Theorem 2.6. Let x0 ∈ X and T : X → X be a Suzuki ψF -contraction on O(x0). Assume that
F is increasing and ψ is upper semicontinuous from the right. If (X,d) is T -orbitally complete,
then T has a fixed point ξ and ξ = limn T

nx0.

Proof. First of all notice that, by monotonicity of F , the set ∆ of its discontinuities is at
most countable hence (0, ν) \∆ is dense in (0, ν).

Let (xn) be the iterative sequence xn = Txn−1, for n = 1, 2, . . . We first prove that
(xn) is Cauchy. If there exists n ≥ 1 with xn = Txn, the assertion is clear. Assume by
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contradiction that (xn) is not Cauchy and d(xn, Txn) > 0, for all n. Then, by Lemma 2.1,
d(xn, xn+1)→ 0.

According to Proposition 2.1, there are η > 0, η /∈ ∆ and the sequences of positive
integers (mk), (nk) such that

d(xmk
, xnk

)↘ η, d(xmk+1, xnk+1)→ η, when k →∞.
Hence there is K1 ∈ N such that d(xmk+1, xnk+1) > 0, for all k ≥ K1. By Lemma 2.1, one
can find K ∈ N, K ≥ K1, such that

0 < d(xmk
, Txmk

) < 2η ⇒ 1

2
d(xmk

, Txmk
) < η ≤ d(xmk

, xnk
), ∀ k ≥ K.

So
F
(
d(xmk+1, xnk+1)

)
≤ ψ

(
F (d(xmk

, xnk
))
)
, ∀ k ≥ K.

By continuity of F at η, it follows that

F (η) ≤ lim sup
t↘F (η)

ψ(t) ≤ ψ
(
F (η)

)
< F (η)

which is a contradiction. Consequently (xn) is a Cauchy sequence, so, by the T -orbitally
completeness of X , it is convergent.

Set ξ = limn xn. It remains to show that ξ is a fixed point of T .
For this purpose, we will first prove that there exists a subsequence (xnk

) of (xn) such
that

(2.5)
1

2
d(xnk

, Txnk
) < d(xnk

, ξ), ∀ k ≥ 1.

Indeed, on the contrary, one can find N ∈ N such that

(2.6) d(xn, ξ) ≤
1

2
d(xn, Txn), ∀n ≥ N.

Then, for some n ≥ N , we get

d(xn, ξ) ≤
1

2
d(xn, Txn) ≤ 1

2
d(xn, ξ) +

1

2
d(ξ, Txn)

hence, using again (2.6),

(2.7) d(xn, ξ) ≤ d(ξ, Txm) = d(ξ, xn+1) ≤ 1

2
d(xn+1, Txn+1).

Next, 1
2d(xn, Txn) < d(xn, Txn) implies

F
(
d(xn+1, Txn+1)

)
≤ ψ

(
F (d(xn, Txn))

)
< F (d(xn, Txn))

so, F being increasing, d(xn+1, Txn+1) < d(xn, Txn).
Therefore, by (2.7) and (2.6), one obtains

d(xn+1, Txn+1) < d(xn, Txn) ≤ d(xn, ξ) + d(ξ, Txn)

≤ 1

2
d(xn+1, Txn+1) +

1

2
d(xn+1, Txn+1) ≤ d(xn+1, Txn+1)

which is a contradiction.
Now, since ξ ∈ O(x0), from (2.5) one deduces

F
(
d(Txnk

, T ξ)
)
≤ ψ

(
F
(
d(xnk

, ξ)
))
< F

(
d(xnk

, ξ)
)
, ∀ k ≥ 1.

Since d(xnk
, ξ) −→

k
0, we also find d(Txnk

, T ξ) −→
k

0 and so xnk
→ Tξ. It follows that

Tξ = ξ. �

Corollary 2.2. Let T : X → X be a Suzuki ψF -contraction and suppose that F is increasing
and ψ is upper semicontinuous from the right. If (X,d) is T -orbitally complete, then T is a P.O.
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Proof. According to the previous theorem, it remains to prove the uniqueness of the fixed
point of T . Assume that ξ1 6= ξ2 are two fixed points of T . Then Tξ1 6= Tξ2 and
1
2d(ξ1, T ξ1) < d(ξ1, ξ2). So

F
(
d(ξ1, ξ2)

)
= F

(
d(Tξ1, T ξ2)

)
≤ ψ

(
F
(
d(ξ1, ξ2)

))
< F

(
d(ξ1, ξ2)

)
.

This contradiction completes the proof. �

Remark 2.4. Corollary 2.2 is a generalization of [6, Th. 3.2] and Theorem 1.2.

In the following we give a version of Theorem 2.6 and Corollary 2.2 where the increa-
sing condition of F has been replaced with some continuity hypothesis for F and T .

Theorem 2.7. Let T : X → X be a Suzuki ψF -contraction on M ⊂ X , where F is continuous
on a dense subset of (0, η) and ψ is upper semicontinuous. Suppose that there exists x0 ∈ X such
that T is orbitally continuous at x0. If (X,d) is T -orbitally complete, then:
a) if M = O(x0), then T has a fixed point ξ and ξ = limn T

nx0 ;
b) if M = X , then T is a P.O.

Proof. a) From the first part of the proof of Theorem 2.6 we deduce that xn = Tnx0 → ξ.
By the orbitally continuity of T at x0, one obtains xn → Tξ so Tξ = ξ.
b) Let any y0 ∈ X and set yn = Tny0, n ≥ 1. We will show that yn → ξ.
If yn = ξ for some n ∈ N, then yn+1 = Tξ = ξ hence yn → ξ. Suppose that yn 6= ξ for

every n ≥ 1. Then Tyn 6= Tξ and 0 = 1
2d(ξ, T ξ) < d(ξ, yn), for all n. Therefore

F
(
d(ξ, yn+1)

)
= F

(
d(Tξ, Tyn)

)
≤ ψ

(
F
(
d(ξ, yn)

))
< F

(
d(ξ, yn)

)
meaning that the sequence

(
F
(
d(ξ, yn)

))
is decreasing. Let λ ∈ [−∞, µ) be its limit. If

λ > −∞, then
λ ≤ lim sup

t↘λ
ψ(t) ≤ ψ(λ) < λ

which is impossible. It follows that λ = −∞ and, from (F2), one deduces d(ξ, yn)→ 0.
The uniqueness of ξ follows in the same manner as in the proof of Corollary 2.2. �

Remark 2.5. 1. Theorem 2.7 is a generalization of Theorem 2.5 and Corollary 2.1. Moreo-
ver, from Theorem 2.1 one can easily obtain, as a particular case, [6, Cor. 4.1].

2. Corollary 2.2 and Theorem 2.7 are generalizations of [14, Th. 2.2] where the function
F is supposed to be continuous and increasing and ψ(t) = t− τ .

Example 2.3. Consider the set X = [1, 32 ) endowed with the Euclidean metric and the
operator T : X → X defined by

Tx =

{ √
x, if x ∈ [1, 32 ) \Q;

1.1
√
x− 0.1, if x ∈ [1, 32 ) ∩Q.

If F : (0, 12 )→ R, F (t) = − e
t

t and ψ(t) = t− et, t ∈
(
−∞,−2

√
e
)
, then:

(1) the metric space X is not complete;
(2) T has a unique continuity point;
(3) T is orbitally continuous;
(4) T is a Suzuki ψF -contraction, hence it is a P.O.;
(5) T is not a ψF -contraction;
(6) T is neither nonexpansive nor expansive.

Proof. (1) Since X is not closed in the real line, the assertion is obvious.
(2) T is a classical Dirichlet type function. It has only x = 1 as continuity point.
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(3) Using some elementary arguments from number theory, it can easily prove that, for
every x ≥ 1, there exists n ∈ N such that Tnx ∈ R \Q. Hence Tnx→ 1, so T (Tnx)→ 1 =
T (1), that is T is orbitally continuous.

(4) Let x, y ∈ X satisfy x < y and 1
2 |x− Tx| < y − x. We have to prove that

(2.8)
ey−x

y − x
+ e−

ey−x

y−x ≤ e|Ty−Tx|

|Ty − Tx|
.

First we will show that

(2.9)
ey−x

y − x
+ e−

ey−x

y−x <
e1.6(

√
y−
√
x)

1.6(
√
y −
√
x)
.

For this, we observe that

(2.10) 1.6(
√
y −
√
x) <

4

5
(y − x).

Since the function t 7→ et

t is decreasing on (0, 1/2), one has, using (2.10),

(2.11)
5ey−x

4(y − x)e
1
5 (y−x)

=
5e

4
5 (y−x)

4(y − x)
<

e1.6(
√
y−
√
x)

1.6(
√
y −
√
x)
.

Next, denoting s = ey−x

y−x , we have s > 2
√
e and

(2.12) s+ e−s <
5s

4e
1
10

<
5ey−x

4(y − x)e
1
3 (y−x)

=
5s

4e
1
3

.

Indeed, the first inequality follows from

ses > 2
√
e e2
√
e >

5− 4e
1
10

4e
1
10

.

In order to prove (2.8), we need to consider the following four cases.
Case I. x, y ∈ [1, 32 ) \Q. Then |Tx− Ty| = √y −

√
x.

Since
√
y −
√
x < 1.6

(√
y −
√
x
)
, we deduce

e1.6(
√
y−
√
x)

1.6(
√
y −
√
x)

<
e
√
y−
√
x

√
y −
√
x

and (2.8) comes from (2.9).

Case II. x, y ∈ [1, 32 ) ∩ Q. Then |Tx − Ty| = 1.1
(√
y −
√
x
)

and the relation follows as
before.

Case III. x ∈ [1, 32 ) \Q, y ∈ [1, 32 ) ∩Q. Now |Tx− Ty| = 1.1
√
y −
√
x− 0.1 and

(2.13)
1

2

∣∣x− Tx∣∣ < y − x ⇔ 1

2

(
x−
√
x
)
< y − x ⇔ y >

3

2
x− 1

2

√
x.

We will prove that

(2.14) 1.1
√
y −
√
x− 0.1 < 1.6

(√
y −
√
x
)
.

Indeed, one has

1.1
√
y −
√
x− 0.1 < 1.6

(√
y −
√
x
)
⇔ 0.5

√
y > 0.6

√
x− 0.1

and, from (2.13),

0.5
√
y >

1

2

√
3

2
x− 1

2

√
x.
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By some elementary calculus we get√
3

2
x− 1

2

√
x > 1.2

√
x− 0.2 ⇔ 3x−

√
x− 2 > 0, ∀x ≥ 1.

From (2.14) and (2.9) one obtains (2.8).

Case IV. x ∈ [1, 32 ) ∩Q, y ∈ [1, 32 ) \Q.
1

2
|x− Tx| < y − x ⇔ 1

2
(x− 1.1

√
x+ 0.1) < y − x ⇔ y > 1.5x− 0.55

√
x+ 0.05.

Therefore |Tx− Ty| = √y − 1.1
√
x+ 0.1 < 1.6

(√
y −
√
x
)
, so

e1.6(
√
y−
√
x)

1.6(
√
y −
√
x)

<
e
√
y−1.1

√
x+0.1

√
y − 1.1

√
x+ 0.1

.

The last assertion follows from either of Theorem 2.6 or Theorem 2.7.

(5), (6) For x =
√

6/2, y = 1.4, we have

|Tx− Ty| = 1.1
√

1.4−
√√

6/2− 0.1 > 0.082 > 0.01526 > y − x,

F
(
|Tx− Ty|

)
> −55 > −65 > ψ

(
F (y − x)

)
.

Hence T is not nonexpansive and is not ψF -contraction.
Finally, taking x =

√
1.2, y = 1.4, we get

F
(
|Tx− Ty|

)
< −7.5 < −4.5 < ψ

(
F (y − x)

)
and

|Tx− Ty| = 1.1
√

1.4− 4
√

1.2− 0.1 < 0.155 < 0.030 < y − x.
�
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