Solving split equality common fixed point problem for infinite families of demicontractive mappings

Adisak Hanjing ${ }^{1}$ and Suthep Suantai ${ }^{2}$

Abstract

In this paper, we consider the split equality common fixed point problem of infinite families of demicontractive mappings in Hilbert spaces. We introduce a simultaneous iterative algorithm for solving the split equality common fixed point problem of infinite families of demicontractive mappings and prove a strong convergence of the proposed algorithm under some control conditions.

1. Introduction

The split feasibility problem (SFP) can also be applied in various disciplines such as image restoration, in radiation therapy treatment planning, in antenna design, in immaterial science and in computerized tomography, etc. (see [2, 4, 5, 6]). The split equality common fixed point problem (SECFP) is a generalization of the split common fixed point problem (SCFP) and the split feasibility problem. Various algorithms were invented to solve problems above (see [3, 7, 8, 9, 17, 21]).

Let $X_{i}, i=1,2,3$, be a real Hilbert spaces with inner product $\langle\cdot \cdot\rangle$ and norm $\|\cdot\|$. Let I be the identity mapping. The split equality fixed point problem (SEFP) for mappings S and T which was first introduced by Moudafi and Al-Shemas [18] is to find

$$
\begin{equation*}
u^{*} \in \operatorname{Fix}(S), v^{*} \in F i x(T) \text { such that } A u^{*}=B v^{*}, \tag{1.1}
\end{equation*}
$$

where $A: X_{1} \rightarrow X_{3}, B: X_{2} \rightarrow X_{3}$ are two bounded linear operators, $S: X_{1} \rightarrow X_{1}$ and $T: X_{2} \rightarrow X_{2}$ are two mappings satisfying $\operatorname{Fix}(S) \neq \emptyset$ and $\operatorname{Fix}(T) \neq \emptyset$, respectively. Note that, if $X_{2}=X_{3}$ and $B=I$, then the SEFPP generalizes the SFPP. To solve problem (1.1) they [18] proposed and proved a weak convergence under some control conditions of the following algorithm:

$$
\left\{\begin{array}{l}
x_{n+1}=S\left(x_{n}-\gamma A^{*}\left(A x_{n}-B y_{n}\right)\right), \tag{1.2}\\
y_{n+1}=T\left(y_{n}+\gamma B^{*}\left(A x_{n}-B y_{n}\right)\right), \quad n \in \mathbb{N},
\end{array}\right.
$$

where S and T are firmly quasi-nonexpansive mappings.
Recently, Eslamian [12] considered the following the split equality common fixed point problem (SECFP) :

$$
\begin{equation*}
\text { Find } \quad u^{*} \in \cap_{i=1}^{\infty} \operatorname{Fix}\left(S_{i}\right), v^{*} \in \cap_{i=1}^{\infty} \operatorname{Fix}\left(T_{i}\right) \text { such that } A u^{*}=B v^{*} \text {, } \tag{1.3}
\end{equation*}
$$

where $A: X_{1} \rightarrow X_{3}, B: X_{2} \rightarrow X_{3}$ are two bounded linear operators, and $\left\{S_{i}: X_{1} \rightarrow\right.$ $\left.X_{1}: i \in \mathbb{N}\right\}$ and $\left\{T_{i}: X_{2} \rightarrow X_{2}: i \in \mathbb{N}\right\}$ are infinite families of k_{1}, k_{2}-demicontractive

[^0]mappings, respectively. They also proposed the following algorithm for solving (1.3) for the class of demicontractive mappings:
\[

\left\{$$
\begin{array}{l}
z_{n}=x_{n}-\gamma_{n} A^{*}\left(A x_{n}-B y_{n}\right) \tag{1.4}\\
u_{n}=z_{n}+\sum_{i=1}^{\infty} \alpha_{n, i} \frac{1-k_{1}}{2}\left(S_{i}-I\right) z_{n} \\
x_{n+1}=\theta_{n} u+\left(1-\theta_{n}\right) u_{n} \\
w_{n}=y_{n}+\gamma_{n} B^{*}\left(A x_{n}-B y_{n}\right), \\
v_{n}=w_{n}+\sum_{i=1}^{\infty} \alpha_{n, i} \frac{1-k_{2}}{2}\left(T_{i}-I\right) w_{n}, \\
y_{n+1}=\theta_{n} v+\left(1-\theta_{n}\right) v_{n}, \quad n \in \mathbb{N}
\end{array}
$$\right.
\]

Using the iterative scheme (1.4), Eslamian obtained a strong convergence results for problem (1.3).

Note that computation of u_{n} and v_{n} by algorithm (1.4) are not so easy in practice because they concern the sum of the series in X.

Question. Can we modify algorithm (1.4) to the algorithm which is easy to compute and still obtain its strong convergence to a solution of problem (1.3)?

Throughout this paper, we adopt the following notations.
(i) " \rightarrow "and " \rightarrow "denote the strong and weak convergence, respectively.
(ii) $\omega_{\omega}\left(x_{n}, y_{n}\right)$ denote the set of the cluster point of $\left\{\left(x_{n}, y_{n}\right)\right\}$ in the weak topology, that is, there is a subsequence $\left\{\left(x_{n_{i}}, y_{n_{i}}\right)\right\}$ of $\left\{\left(x_{n}, y_{n}\right)\right\}$ such that $\left(x_{n_{i}}, y_{n_{i}}\right) \rightharpoonup(x, y)$.

2. Preliminaries

Let C be a nonempty closed convex subset of a real Hilbert space X. A mapping P_{C} : $X \rightarrow C$ is said to be metric projection of X onto C, if for every $x \in X$, there exists a unique nearest point in C denoted by $P_{C} x$ such that

$$
\left\|x-P_{C} x\right\| \leq\|x-z\|, \quad \forall z \in C
$$

It is known that P_{C} is a firmly nonexpansive mapping. Moreover, P_{C} is characterized by the following properties : $\left\langle x-P_{C} x, y-P_{C} x\right\rangle \leq 0, \quad \forall x \in X, y \in C$. In order to establish our convergence theorems, we need the following concepts for single-valued mappings.

Definition 2.1. Let C be a nonempty closed convex subset of a real Hilbert space X. A mapping $T: C \rightarrow C$ is said to be
(i) α-contraction if there exists $\alpha \in[0,1)$ such that

$$
\|T u-T v\| \leq \alpha\|u-v\| \quad \text { for all } u, v \in C
$$

(ii) quasi-nonexpansive if $\operatorname{Fix}(T) \neq \emptyset$ and

$$
\|T u-v\| \leq\|u-v\| \quad \text { for all } u \in C, v \in \operatorname{Fix}(T)
$$

(iii) k-strictly pseudo-nonspreading[19], if there exists $k \in[0,1)$ such that

$$
\|T u-T v\|^{2} \leq\|u-v\|^{2}+k\|u-T u-(v-T v)\|^{2}+2\langle u-T u, v-T v\rangle \text { for all } u, v \in C
$$

(iv) k-demicontractive [10], if $\operatorname{Fix}(T) \neq \emptyset$ and there exists $k \in[0,1)$ such that

$$
\|T u-v\|^{2} \leq\|u-v\|^{2}+k\|u-T u\|^{2} \quad \text { for all } u \in C, v \in \operatorname{Fix}(T) .
$$

Remark 2.1. It follows from Definition 2.1 that
(1) If T is quasi-nonexpansive, then T is k -demicontractive for any $k \in[0,1)$.
(2) If T is k-strictly pseudo-nonspreading with $\operatorname{Fix}(T) \neq \emptyset$, then T is k-demicontractive.

In 2014, Chang, Kim, Cho and Sim [8] studied the weak ans strong convergence theorems of solution to SCFP for a family k_{i}-strictly pseudo-nonspreading mapping in a Hilbert space.

Remark 2.2. For negative values of k the class of demicontractive mappings is diminished to a great extent; in [1] such a class (with negative value of k) was considered under the name of strongly attracting map. In particular, the mapping T which satisfies Definition 2.1 (iv) with $k=-1$ is called pseudo-contractive in [24]. Note also that a mapping T satisfying Definition 2.1 (iv) with $k=1$ is usually called hemicontractive and it was considered by some authors in connection with the strong convergence of the implicit Mann-type iteration (see, for example, [20, 22]).

Definition 2.2. Let C be a nonempty closed convex subset of a real Hilbert space X. Let $T: C \rightarrow C$ be a mapping. The mapping $T-I$ is said to be demiclosed at zero if for any sequence $\left\{x_{n}\right\}$ in C which $x_{n} \rightharpoonup x$ and $T x_{n}-x_{n} \rightarrow 0$, then $x \in \operatorname{Fix}(T)$.

Lemma 2.1. ([23]) Let X be a real Hilbert space. Then the following results hold:
(i) for all $t \in[0,1]$ and $u, v \in X,\|t u+(1-t) v\|^{2}=t\|u\|^{2}+(1-t)\|v\|^{2}-t(1-t)\|u-v\|^{2}$;
(ii) $\|u+v\|^{2}=\|u\|^{2}+2\langle u, v\rangle+\|v\|^{2} \quad \forall u, v \in X$;
(iii) $\|u+v\|^{2} \leq\|u\|^{2}+2\langle v, u+v\rangle \quad \forall u, v \in X$.

Lemma 2.2. ([11]) Let X be a real Hilbert space. Let $\left\{x_{i}, i=1,2, \ldots, n\right\} \subset X$. For $\alpha_{i} \in$ $(0,1), i=1,2, \ldots, n$ such that $\sum_{i=1}^{n} \alpha_{i}=1$. Then the following identity holds:

$$
\left\|\sum_{i=1}^{n} \alpha_{i} x_{i}\right\|^{2}=\sum_{i=1}^{n} \alpha_{i}\left\|x_{i}\right\|^{2}-\sum_{i, j=1, i \neq j}^{n} \alpha_{i} \alpha_{j}\left\|x_{i}-x_{j}\right\|^{2} .
$$

Lemma 2.3. ([25]) Let $\left\{a_{n}\right\}$ be a sequence of nonnegative real numbers satisfying the following relation :

$$
a_{n+1} \leq\left(1-\gamma_{n}\right) a_{n}+\delta_{n}, \quad n \in \mathbb{N}
$$

where
(i) $\left\{\gamma_{n}\right\} \subset(0,1), \sum_{n=1}^{\infty} \gamma_{n}=\infty$;
(ii) $\lim \sup _{n \rightarrow \infty} \frac{\delta_{n}}{\gamma_{n}} \leq 0$ or $\sum_{n=1}^{\infty}\left|\delta_{n}\right|<\infty$.

Then $\lim _{n \rightarrow \infty} a_{n}=0$.
Lemma 2.4 ([13]). Let $\left\{\kappa_{n}\right\}$ be a sequence of real numbers that dose not decrease at infinity, that is there exists at a subsequence $\left\{\kappa_{n_{i}}\right\}$ of $\left\{\kappa_{n}\right\}$ which satisfies $\kappa_{n_{i}}<\kappa_{n_{i}+1}$ for all $i \in \mathbb{N}$. For every $n \geq n_{o}$, define an integer sequence $\{\mu(n)\}$ as follow:

$$
\mu(n)=\max \left\{l \in \mathbb{N}: l \leq n, \kappa_{l}<\kappa_{l+1}\right\},
$$

where $n_{o} \in \mathbb{N}$ such that $\left\{l \leq n_{o}: \kappa_{l}<\kappa_{l+1}\right\} \neq \emptyset$. Then the following hold:
(i) $\mu\left(n_{o}\right) \leq \mu\left(n_{o}+1\right) \leq \ldots$ and $\mu(n) \rightarrow \infty$;
(ii) for all $n \geq n_{o}, \max \left\{\kappa_{n}, \kappa_{\mu(n)}\right\} \leq \kappa_{\mu(n)+1}$.

3. Main results

In this section, we propose a new algorithm which is a modification of (1.4) and prove its strong convergence under some suitable conditions. We start with the following important lemma:

Lemma 3.5. For real Hilbert spaces X, let $\left\{T_{i}: X \rightarrow X: i \in \mathbb{N}\right\}$ be infinite family of k demicontractive mappings. Let $\left\{z_{n}\right\}$ and $\left\{w_{n}\right\}$ be sequences in X and let

$$
\begin{aligned}
& u_{n}=z_{n}+\sum_{i=1}^{n} \alpha_{n, i} \alpha_{n}\left(T_{i}-I\right) z_{n}, \\
& v_{n}=\beta_{n, 0} w_{n}+\sum_{i=1}^{n} \beta_{n, i} T_{i} w_{n}, \quad \forall n \in \mathbb{N},
\end{aligned}
$$

where $\left\{\alpha_{n, i}\right\},\left\{\beta_{n, i}\right\},\left\{\alpha_{n}\right\}$ are real sequences in $[0,1]$ satisfying $\sum_{i=1}^{n} \alpha_{n, i}=1$ and $\sum_{i=0}^{n} \beta_{n, i}=$ 1 for all $n \in \mathbb{N}$. Then

$$
\begin{equation*}
\left\|u_{n}-x^{*}\right\|^{2} \leq\left\|z_{n}-x^{*}\right\|^{2}-\sum_{i=1}^{n} \alpha_{n, i} \alpha_{n}\left(1-k-\alpha_{n}\right)\left\|\left(T_{i}-I\right) z_{n}\right\|^{2} \tag{3.5}
\end{equation*}
$$

$$
\begin{equation*}
\left\|v_{n}-x^{*}\right\|^{2} \leq\left\|w_{n}-x^{*}\right\|^{2}-\sum_{i=1}^{n} \beta_{n, i}\left(\beta_{n, 0}-k\right)\left\|\left(T_{i}-I\right) w_{n}\right\|^{2} \tag{3.6}
\end{equation*}
$$

for any $x^{*} \in \bigcap_{i=1}^{\infty} \operatorname{Fix}\left(T_{i}\right)$.
Proof. Let $x^{*} \in \bigcap_{i=1}^{\infty} F i x\left(T_{i}\right)$. Since T_{i} is k-demicontractive, we obtain

$$
\begin{aligned}
\left\|u_{n}-x^{*}\right\|^{2} & \leq \sum_{i=1}^{n} \alpha_{n, i}\left[\left\|z_{n}-x^{*}\right\|^{2}+\alpha_{n}^{2}\left\|T_{i} z_{n}-z_{n}\right\|^{2}+2 \alpha_{n}\left\langle z_{n}-x^{*}, T_{i} z_{n}-z_{n}\right\rangle\right] \\
& =\sum_{i=1}^{n} \alpha_{n, i}\left[\left\|z_{n}-x^{*}\right\|^{2}+\alpha_{n}^{2}\left\|T_{i} z_{n}-z_{n}\right\|^{2}-2 \alpha_{n}\left\|T_{i} z_{n}-z_{n}\right\|^{2}\right. \\
& \left.+2 \alpha_{n}\left\langle T_{i} z_{n}-x^{*}, T_{i} z_{n}-z_{n}\right\rangle\right] \\
& =\sum_{i=1}^{n} \alpha_{n, i}\left[\left\|z_{n}-x^{*}\right\|^{2}+\alpha_{n}^{2}\left\|T_{i} z_{n}-z_{n}\right\|^{2}-2 \alpha_{n}\left\|T_{i} z_{n}-z_{n}\right\|^{2}\right. \\
& \left.+\alpha_{n}\left\|T_{i} z_{n}-z_{n}\right\|^{2}+\alpha_{n}\left\|T_{i} z_{n}-x^{*}\right\|^{2}-\alpha_{n}\left\|z_{n}-x^{*}\right\|^{2}\right] \\
& \leq \sum_{i=1}^{n} \alpha_{n, i}\left[\left\|z_{n}-x^{*}\right\|^{2}-\alpha_{n}\left(1-\alpha_{n}\right)\left\|T_{i} z_{n}-z_{n}\right\|^{2}+\alpha_{n} k\left\|T_{i} z_{n}-z_{n}\right\|^{2}\right] \\
& =\left\|z_{n}-x^{*}\right\|^{2}-\sum_{i=1}^{n} \alpha_{n, i} \alpha_{n}\left(1-k-\alpha_{n}\right)\left\|T_{i} z_{n}-z_{n}\right\|^{2} .
\end{aligned}
$$

Since T_{i} is k-demicontractive and by Lemma 2.2, we obtain

$$
\begin{aligned}
\left\|v_{n}-x^{*}\right\|^{2} & =\left\|\sum_{i=0}^{n} \beta_{n, i}\left(T_{i} w_{n}-x^{*}\right)\right\|^{2} \\
& \leq \beta_{n, 0}\left\|w_{n}-x^{*}\right\|^{2}+\sum_{i=1}^{n} \beta_{n, i}\left\|T_{i} w_{n}-x^{*}\right\|^{2}-\sum_{i=1}^{n} \beta_{n, 0} \beta_{n, i}\left\|w_{n}-T_{i} w_{n}\right\|^{2} \\
& \leq \beta_{n, 0}\left\|w_{n}-x^{*}\right\|^{2}+\sum_{i=1}^{n} \beta_{n, i}\left[\left\|w_{n}-x^{*}\right\|^{2}+k\left\|\left(T_{i}-I\right) w_{n}\right\|^{2}\right] \\
& -\sum_{i=1}^{n} \beta_{n, 0} \beta_{n, i}\left\|\left(T_{i}-I\right) w_{n}\right\|^{2}
\end{aligned}
$$

$$
=\left\|w_{n}-x^{*}\right\|^{2}-\sum_{i=1}^{n} \beta_{n, i}\left(\beta_{n, 0}-k\right)\left\|\left(T_{i}-I\right) w_{n}\right\|^{2}
$$

This completes the proof.
Now, we introduce a new algorithm for solving the split equality problem for infinite families of demicontractive mappings and then prove its strong convergence.

Theorem 3.1. Let X_{1}, X_{2} and X_{3} be real Hilbert spaces, let $A: X_{1} \rightarrow X_{3}$ and $B: X_{2} \rightarrow$ X_{3} be two bounded linear operators with their adjoint operators A^{*} and B^{*}, respectively. Let $f_{1}: X_{1} \rightarrow X_{1}$ and $f_{2}: X_{2} \rightarrow X_{2}$ be two contraction mappings with constants $\rho_{1}, \rho_{2} \in[0,1)$. Let $\left\{S_{i}: X_{1} \rightarrow X_{1}: i \in \mathbb{N}\right\}$ and $\left\{T_{i}: X_{2} \rightarrow X_{2}: i \in \mathbb{N}\right\}$ be infinite families of $k_{1}, k_{2}{ }^{-}$ demicontractive mappings such that $S_{i}-I$ and $T_{i}-I$, are demiclosed at zero. Suppose that $\Omega=\left\{\left(u^{*}, v^{*}\right) \in \bigcap_{i=1}^{\infty} \operatorname{Fix}\left(S_{i}\right) \times \bigcap_{i=1}^{\infty} \operatorname{Fix}\left(T_{i}\right): A u^{*}=B v^{*}\right\} \neq \emptyset$. Let $\left(x_{1}, y_{1}\right) \in X_{1} \times X_{2}$ arbitrarily, let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be the sequences generated by

$$
\left\{\begin{array}{l}
z_{n}=x_{n}-\gamma_{n} A^{*}\left(A x_{n}-B y_{n}\right), \tag{3.7}\\
u_{n}=z_{n}+\sum_{i=1}^{n} \alpha_{n, i} \alpha_{n}\left(S_{i}-I\right) z_{n}, \\
x_{n+1}=\theta_{n} f_{1}\left(x_{n}\right)+\left(1-\theta_{n}\right) u_{n}, \\
w_{n}=y_{n}+\gamma_{n} B^{*}\left(A x_{n}-B y_{n}\right), \\
v_{n}=\beta_{n, 0} w_{n}+\sum_{i=1}^{n} \beta_{n, i} T_{i} w_{n}, \\
y_{n+1}=\theta_{n} f_{2}\left(y_{n}\right)+\left(1-\theta_{n}\right) v_{n}, \quad n \in \mathbb{N}
\end{array}\right.
$$

where $\left\{\gamma_{n}\right\},\left\{\alpha_{n}\right\},\left\{\theta_{n}\right\},\left\{\alpha_{n, i}\right\}$ and $\left\{\beta_{n, i}\right\}$ are sequences in $[0,1]$ satisfying the following conditions :
(C1) $\sum_{i=1}^{n} \alpha_{n, i}=\sum_{i=0}^{n} \beta_{n, i}=1$ and $\beta_{n, 0}>k_{2}$ for all $n \in \mathbb{N}$;
(C2) $\liminf _{n \rightarrow \infty} \alpha_{n, i}>0$, and $\liminf _{n \rightarrow \infty}\left(\beta_{n, 0}-k_{2}\right) \beta_{n, i}>0$ for all $i \in \mathbb{N}$;
(C3) $\lim _{n \rightarrow \infty} \theta_{n}=0$ and $\sum_{n=1}^{\infty} \theta_{n}=\infty$;
(C4) $0<b_{1} \leq \gamma_{n} \leq b_{2}<\frac{2}{\|A\|^{2}+\|B\|^{2}}$ for all $n \in \mathbb{N}$;
(C5) $0<a_{1} \leq \alpha_{n} \leq a_{2}<1-k_{1}$ for all $n \in \mathbb{N}$,
for some positive real number b_{1}, b_{2}, a_{1} and a_{2}. Then the sequence $\left\{\left(x_{n}, y_{n}\right)\right\}$ converges strongly to $\left(x^{*}, y^{*}\right) \in \Omega$ which solves the variational inequality problem

$$
\begin{equation*}
\left\langle\left(I_{X_{1} \times X_{2}}-f\right)\left(x^{*}, y^{*}\right),(u, v)-\left(x^{*}, y^{*}\right)\right\rangle_{X_{1} \times X_{2}} \geq 0, \quad(u, v) \in \Omega \tag{3.8}
\end{equation*}
$$

where $I_{X_{1} \times X_{2}}$ is identity map on $X_{1} \times X_{2}$ and $f(x, y)=\left(f_{1}(x), f_{2}(y)\right)$ for all $(x, y) \in X_{1} \times X_{2}$.
Proof. Since $P_{\Omega} \circ f$ is a contraction mapping on $X_{1} \times X_{2}$, there is a unique $\left(x^{*}, y^{*}\right) \in \Omega$ Then $\left(x^{*}, y^{*}\right) \in \cap_{i=1}^{\infty} \operatorname{Fix}\left(S_{i}\right) \times \cap_{i=1}^{\infty}$ Fix $\left(T_{i}\right)$ such that $A x^{*}=B y^{*}$. By (3.7) we get

$$
\begin{aligned}
\left\|z_{n}-x^{*}\right\|^{2} & \leq\left\|x_{n}-x^{*}\right\|^{2}-2 \gamma_{n}\left\langle x_{n}-x^{*}, A^{*}\left(A x_{n}-B y_{n}\right)\right\rangle+\gamma_{n}^{2}\|A\|^{2}\left\|A x_{n}-B y_{n}\right\|^{2} \\
& =\left\|x_{n}-x^{*}\right\|^{2}-\gamma_{n}\left\|A x_{n}-A x^{*}\right\|^{2}-\gamma_{n}\left\|A x_{n}-B y_{n}\right\|^{2} \\
& +\gamma_{n}\left\|A x^{*}-B y_{n}\right\|^{2}+\gamma_{n}^{2}\|A\|^{2}\left\|A x_{n}-B y_{n}\right\|^{2} \\
& =\left\|x_{n}-x^{*}\right\|^{2}-\gamma_{n}\left\|A x_{n}-A x^{*}\right\|^{2}+\gamma_{n}\left\|A x^{*}-B y_{n}\right\|^{2} \\
& -\gamma_{n}\left(1-\gamma_{n}\|A\|^{2}\right)\left\|A x_{n}-B y_{n}\right\|^{2} .
\end{aligned}
$$

Similarly, we have

$$
\begin{align*}
\left\|w_{n}-y^{*}\right\|^{2} & \leq\left\|y_{n}-y^{*}\right\|^{2}-\gamma_{n}\left\|B y_{n}-B y^{*}\right\|^{2}+\gamma_{n}\left\|A x_{n}-B y^{*}\right\|^{2} \\
& -\gamma_{n}\left(1-\gamma_{n}\|B\|^{2}\right)\left\|A x_{n}-B y_{n}\right\|^{2} . \tag{3.10}
\end{align*}
$$

From (3.9), (3.10), (C4) and by taking into account the fact that $A x^{*}=B y^{*}$, we have

$$
\begin{align*}
\left\|z_{n}-x^{*}\right\|^{2}+\left\|w_{n}-y^{*}\right\|^{2} & \leq\left\|x_{n}-x^{*}\right\|^{2}+\left\|y_{n}-y^{*}\right\|^{2} \\
& -\gamma_{n}\left(2-\gamma_{n}\left(\|A\|^{2}+\|B\|^{2}\right)\right)\left\|A x_{n}-B y_{n}\right\|^{2} \\
& \leq\left\|x_{n}-x^{*}\right\|^{2}+\left\|y_{n}-y^{*}\right\|^{2} . \tag{3.11}
\end{align*}
$$

By Lemma 3.5 we obtain

$$
\begin{align*}
& \left\|u_{n}-x^{*}\right\|^{2} \leq\left\|z_{n}-x^{*}\right\|^{2}-\sum_{i=1}^{n} \alpha_{n, i} \alpha_{n}\left(1-k_{1}-\alpha_{n}\right)\left\|\left(S_{i}-I\right) z_{n}\right\|^{2} \tag{3.12}\\
& \left\|v_{n}-y^{*}\right\|^{2} \leq\left\|w_{n}-y^{*}\right\|^{2}-\sum_{i=1}^{n} \beta_{n, i}\left(\beta_{n, 0}-k_{2}\right)\left\|\left(T_{i}-I\right) w_{n}\right\|^{2} \tag{3.13}
\end{align*}
$$

From (3.12) and Lemma 2.1(i), we have

$$
\begin{align*}
\left\|x_{n+1}-x^{*}\right\|^{2} & \leq \theta_{n}\left\|f_{1}\left(x_{n}\right)-x^{*}\right\|^{2}+\left(1-\theta_{n}\right)\left\|u_{n}-x^{*}\right\|^{2} \\
& \leq \theta_{n}\left[\left\|f_{1}\left(x_{n}\right)-f_{1}\left(x^{*}\right)\right\|^{2}+\left\|f_{1}\left(x^{*}\right)-x^{*}\right\|^{2}\right] \\
& +2 \theta_{n}\left\|f_{1}\left(x_{n}\right)-f_{1}\left(x^{*}\right)\right\|\left\|f_{1}\left(x^{*}\right)-x^{*}\right\|+\left(1-\theta_{n}\right)\left\|u_{n}-x^{*}\right\|^{2} \\
& \leq \theta_{n}\left[\rho_{1}\left\|x_{n}-x^{*}\right\|^{2}+\left\|f_{1}\left(x^{*}\right)-x^{*}\right\|^{2}\right] \\
& +2 \theta_{n} \rho_{1}\left\|x_{n}-x^{*}\right\|\left\|f_{1}\left(x^{*}\right)-x^{*}\right\|+\left(1-\theta_{n}\right)\left\|z_{n}-x^{*}\right\|^{2} \\
& -\left(1-\theta_{n}\right) \sum_{i=1}^{n} \alpha_{n, i} \alpha_{n}\left(1-k_{1}-\alpha_{n}\right)\left\|\left(S_{i}-I\right) z_{n}\right\|^{2} . \tag{3.14}
\end{align*}
$$

Using (3.13), we obtain

$$
\begin{align*}
\left\|y_{n+1}-y^{*}\right\|^{2} & \leq \theta_{n}\left[\rho_{1}\left\|y_{n}-y^{*}\right\|^{2}+\left\|f_{2}\left(y^{*}\right)-y^{*}\right\|^{2}\right] \\
& +2 \theta_{n} \rho_{2}\left\|y_{n}-y^{*}\right\|\left\|f_{2}\left(y^{*}\right)-y^{*}\right\|+\left(1-\theta_{n}\right)\left\|w_{n}-y^{*}\right\|^{2} \\
& -\left(1-\theta_{n}\right) \sum_{i=1}^{n} \beta_{n, i}\left(\beta_{n, 0}-k_{2}\right)\left\|\left(T_{i}-I\right) w_{n}\right\|^{2} . \tag{3.15}
\end{align*}
$$

Next, set $\rho=\max \left\{\rho_{1}, \rho_{2}\right\}$ and $\kappa_{n}=\left\|x_{n}-x^{*}\right\|^{2}+\left\|y_{n}-y^{*}\right\|^{2}$. By (3.11), (3.14) and (3.15), we obtain

$$
\begin{aligned}
\kappa_{n+1} & \leq \theta_{n} \rho \kappa_{n}+\theta_{n}\left[\left\|f_{1}\left(x^{*}\right)-x^{*}\right\|^{2}+\left\|f_{2}\left(y^{*}\right)-y^{*}\right\|^{2}\right] \\
& +2 \theta_{n} \rho\left[\left\|x_{n}-x^{*}\right\|\left\|f_{1}\left(x^{*}\right)-x^{*}\right\|+\left\|y_{n}-y^{*}\right\|\left\|f_{2}\left(y^{*}\right)-y^{*}\right\|\right] \\
& +\left(1-\theta_{n}\right)\left[\left\|z_{n}-x^{*}\right\|^{2}+\left\|w_{n}-y^{*}\right\|^{2}\right] \\
& \leq \theta_{n} \rho \kappa_{n}+\theta_{n}\left[\left\|f_{1}\left(x^{*}\right)-x^{*}\right\|^{2}+\left\|f_{2}\left(y^{*}\right)-y^{*}\right\|^{2}\right] \\
& +2 \theta_{n} \rho\left[\left\|x_{n}-x^{*}\right\|\left\|f_{1}\left(x^{*}\right)-x^{*}\right\|+\left\|y_{n}-y^{*}\right\|\left\|f_{2}\left(y^{*}\right)-y^{*}\right\|\right]+\left(1-\theta_{n}\right) \kappa_{n}
\end{aligned}
$$

$$
\begin{align*}
& =\left(1-\theta_{n}(1-\rho)\right) \kappa_{n}+\theta_{n}\left[\left\|f_{1}\left(x^{*}\right)-x^{*}\right\|^{2}+\left\|f_{2}\left(y^{*}\right)-y^{*}\right\|^{2}\right] \\
& +2 \theta_{n} \rho\left[\left\|x_{n}-x^{*}\right\|\left\|f_{1}\left(x^{*}\right)-x^{*}\right\|+\left\|y_{n}-y^{*}\right\|\left\|f_{2}\left(y^{*}\right)-y^{*}\right\|\right] \\
& \leq \max \left\{\kappa_{n}, \frac{\vartheta_{n}}{1-\rho}\right\} \tag{3.16}
\end{align*}
$$

where $\vartheta_{n}=\left\|f_{1}\left(x^{*}\right)-x^{*}\right\|^{2}+\left\|f_{2}\left(y^{*}\right)-y^{*}\right\|^{2}+2 \rho\left[\left\|x_{n}-x^{*}\right\|\left\|f_{1}\left(x^{*}\right)-x^{*}\right\|+\left\|y_{n}-y^{*}\right\| \| f_{2}\left(y^{*}\right)-\right.$ $\left.y^{*} \|\right]$. It follows from induction that

$$
\kappa_{n} \leq \max \left\{\kappa_{1}, \frac{\vartheta_{1}}{1-\rho}\right\}, \quad n \in \mathbb{N}
$$

which implies that $\left\{\kappa_{n}\right\}$ is bounded. Therefore $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are bounded. Consequently, $\left\{z_{n}\right\},\left\{w_{n}\right\},\left\{u_{n}\right\}$ and $\left\{v_{n}\right\}$ are bounded. By (3.11), (3.12) and (3.13), we get

$$
\begin{align*}
\kappa_{n+1} & \leq \kappa_{n}+\theta_{n}\left[\left\|f_{1}\left(x^{*}\right)-x^{*}\right\|^{2}+\left\|f_{2}\left(y^{*}\right)-y^{*}\right\|^{2}\right] \\
& +2 \theta_{n} \rho\left[\left\|x_{n}-x^{*}\right\|\left\|f_{1}\left(x^{*}\right)-x^{*}\right\|+\left\|y_{n}-y^{*}\right\|\left\|f_{2}\left(y^{*}\right)-y^{*}\right\|\right] \\
& -\gamma_{n}\left(2-\gamma_{n}\left(\|A\|^{2}+\|B\|^{2}\right)\right)\left\|A x_{n}-B y_{n}\right\|^{2} \\
& -\sum_{i=1}^{n} \alpha_{n, i} \alpha_{n}\left(1-k_{1}-\alpha_{n}\right)\left\|\left(S_{i}-I\right) z_{n}\right\|^{2}-\sum_{i=1}^{n} \beta_{n, i}\left(\beta_{n, 0}-k_{2}\right)\left\|\left(T_{i}-I\right) w_{n}\right\|^{2} \\
& \leq \kappa_{n}+\theta_{n} M-\gamma_{n}\left(2-\gamma_{n}\left(\|A\|^{2}+\|B\|^{2}\right)\right)\left\|A x_{n}-B y_{n}\right\|^{2} \\
7) \quad & -\sum_{i=1}^{n} \alpha_{n, i} \alpha_{n}\left(1-k_{1}-\alpha_{n}\right)\left\|\left(S_{i}-I\right) z_{n}\right\|^{2}-\sum_{i=1}^{n} \beta_{n, i}\left(\beta_{n, 0}-k_{2}\right)\left\|\left(T_{i}-I\right) w_{n}\right\|^{2}, \tag{3.17}
\end{align*}
$$

where $M=\sup _{n}\left\{\vartheta_{n}\right\}$. This implies for $j=1,2, \ldots n$,

$$
\begin{equation*}
\alpha_{n, j} \alpha_{n}\left(1-k_{1}-\alpha_{n}\right)\left\|\left(S_{i}-I\right) z_{n}\right\|^{2} \leq \kappa_{n}-\kappa_{n+1}+\theta_{n} M \tag{3.18}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta_{n, j}\left(\beta_{n, 0}-k_{2}\right)\left\|\left(T_{i}-I\right) w_{n}\right\|^{2} \leq \kappa_{n}-\kappa_{n+1}+\theta_{n} M \tag{3.19}
\end{equation*}
$$

Using (3.17), we obtain

$$
\begin{equation*}
\gamma_{n}\left(2-\gamma_{n}\left(\|A\|^{2}+\|B\|^{2}\right)\right)\left\|A x_{n}-B y_{n}\right\|^{2} \leq \kappa_{n}-\kappa_{n+1}+\theta_{n} M \tag{3.20}
\end{equation*}
$$

To this end, we consider the following two cases.
Case 1. Suppose that $\left\{\kappa_{n}\right\}_{n \geq n_{o}}$ is non-increasing for some $n_{o} \in \mathbb{N}$. Then we get $\lim _{n \rightarrow \infty} \kappa_{n}$ exists. By (3.18), (3.19), (3.20) and (C2)-(C5), we have $\lim _{n \rightarrow \infty}\left\|\left(S_{i}-I\right) z_{n}\right\|=0=\lim _{n \rightarrow \infty}$ $\left\|\left(T_{i}-I\right) w_{n}\right\|$, and $\lim _{n \rightarrow \infty}\left\|A x_{n}-B y_{n}\right\|=0$. It implies that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|z_{n}-x_{n}\right\|=\lim _{n \rightarrow \infty}\left\|w_{n}-y_{n}\right\|=0 \tag{3.21}
\end{equation*}
$$

Since the sequence $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are bounded we have $\omega_{\omega}\left(x_{n}, y_{n}\right)$ is nonempty. Let $(\bar{u}, \bar{v}) \in \omega_{\omega}\left(x_{n}, y_{n}\right)$. From (3.21), we have $(\bar{u}, \bar{v}) \in \omega_{\omega}\left(z_{n}, w_{n}\right)$. By demiclosedness principle of $S_{i}-I$ and $T_{i}-I$ at zero, we obtain $\bar{u} \in \cap_{i=1}^{\infty} F i x\left(S_{i}\right)$ and $\bar{v} \in \cap_{i=1}^{\infty} F i x\left(T_{i}\right)$. On the other hand, we have $A \bar{u}-B \bar{v} \in \omega_{\omega}\left(A x_{n}-B y_{n}\right)$, so there is a subsequence $\left\{\left(x_{n_{k}}, y_{n_{k}}\right)\right\}$ of $\left\{\left(x_{n}, y_{n}\right)\right\}$ such that $A x_{n_{k}}-B y_{n_{k}} \rightharpoonup A \bar{u}-B \bar{v}$. By lower semicontinuity of the norm, we get

$$
\|A \bar{u}-B \bar{v}\| \leq \liminf _{k \rightarrow \infty}\left\|A x_{n_{k}}-B y_{n_{k}}\right\|=0
$$

Therefore $(\bar{u}, \bar{v}) \in \Omega$. So $\omega_{\omega}\left(x_{n}, y_{n}\right) \subset \Omega$. Choose a subsequence $\left\{\left(x_{n_{p}}, y_{n_{p}}\right)\right\}$ of $\left\{\left(x_{n}, y_{n}\right)\right\}$ such that $\limsup _{n \rightarrow \infty}\left\langle f_{1}\left(x^{*}\right)-x^{*}, x_{n}-x^{*}\right\rangle+\left\langle f_{2}\left(y^{*}\right)-y^{*}, y_{n}-y^{*}\right\rangle=\lim _{p \rightarrow \infty}\left\langle f_{1}\left(x^{*}\right)-\right.$
$\left.x^{*}, x_{n_{p}}-x^{*}\right\rangle+\left\langle f_{2}\left(y^{*}\right)-y^{*}, y_{n_{p}}-y^{*}\right\rangle$. We may assume that $\left(x_{n_{p}}, y_{n_{p}}\right) \rightharpoonup(\bar{x}, \bar{y})$ as $p \rightarrow \infty$. Since $\omega_{\omega}\left(x_{n}, y_{n}\right) \subset \Omega$ and $\left(x^{*}, y^{*}\right)$ be the solution of a variational inequality problem (3.8), we get

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\langle f_{1}\left(x^{*}\right)-x^{*}, x_{n}-x^{*}\right\rangle+\left\langle f_{2}\left(y^{*}\right)-y^{*}, y_{n}-y^{*}\right\rangle \leq 0 \tag{3.22}
\end{equation*}
$$

Using Lemma 2.1(iii) and (3.12), we obtain

$$
\begin{align*}
\left\|x_{n+1}-x^{*}\right\|^{2} & \leq\left(1-\theta_{n}\right)\left\|u_{n}-x^{*}\right\|^{2}+2 \theta_{n}\left\langle f_{1}\left(x_{n}\right)-x^{*}, x_{n+1}-x^{*}\right\rangle \\
& \leq\left(1-\theta_{n}\right)\left\|z_{n}-x^{*}\right\|^{2}+\rho_{1} \theta_{n}\left[\left\|x_{n}-x^{*}\right\|^{2}+\left\|x_{n+1}-x^{*}\right\|^{2}\right] \\
& +2 \theta_{n}\left\langle f_{1}\left(x^{*}\right)-x^{*}, x_{n+1}-x^{*}\right\rangle . \tag{3.23}
\end{align*}
$$

Similarly, we obtain

$$
\begin{align*}
\left\|y_{n+1}-y^{*}\right\|^{2} & \leq\left(1-\theta_{n}\right)\left\|w_{n}-x^{*}\right\|^{2}+\rho_{2} \theta_{n}\left[\left\|y_{n}-y^{*}\right\|^{2}+\left\|y_{n+1}-y^{*}\right\|^{2}\right] \\
& +2 \theta_{n}\left\langle f_{2}\left(y^{*}\right)-y^{*}, y_{n+1}-y^{*}\right\rangle \tag{3.24}
\end{align*}
$$

From (3.11), (3.23) and (3.24), we obtain

$$
\begin{align*}
\kappa_{n+1} & \leq\left[1-\frac{\theta_{n}(1-\rho)}{1-\theta_{n} \rho}\right] \kappa_{n} \\
& +\frac{2 \theta_{n}}{1-\theta_{n} \rho}\left[\left\langle f_{1}\left(x^{*}\right)-x^{*}, x_{n+1}-x^{*}\right\rangle+\left\langle f_{2}\left(y^{*}\right)-y^{*}, y_{n+1}-y^{*}\right\rangle\right] \tag{3.25}
\end{align*}
$$

By (3.22), (3.25), (C3) and Lemma 2.3, we can conclude that $x_{n} \rightarrow x^{*}$ and $y_{n} \rightarrow y^{*}$ as $n \rightarrow \infty$. That is $\left(x_{n}, y_{n}\right) \rightarrow\left(x^{*}, y^{*}\right)$ as $n \rightarrow \infty$.

Case 2. Suppose that there exists an integer m_{o} such that

$$
\left\|x_{m_{o}}-x^{*}\right\|^{2}+\left\|y_{m_{o}}-y^{*}\right\|^{2} \leq\left\|x_{m_{o}+1}-x^{*}\right\|^{2}+\left\|y_{m_{o}+1}-y^{*}\right\|^{2}
$$

Then we have $\kappa_{m_{o}} \leq \kappa_{m_{o}+1}$. Let $\{\mu(n)\}$ be a sequence defined by

$$
\mu(n)=\max \left\{l \in \mathbb{N}: l \leq n, \kappa_{l} \leq \kappa_{l+1}\right\}
$$

for all $n \geq m_{o}$. By Lemma 2.4, we obtain that $\{\mu(n)\}$ is a nondecreasing sequence such that

$$
\lim _{n \rightarrow \infty} \mu(n)=\infty \text { and } \kappa_{\mu(n)} \leq \kappa_{\mu(n)+1}, \text { for all } n \geq m_{o}
$$

By the same argument as in the case 1, we obtain

$$
\limsup _{n \rightarrow \infty}\left\langle f_{1}\left(x^{*}\right)-x^{*}, x_{\mu(n)}-x^{*}\right\rangle+\left\langle f_{2}\left(y^{*}\right)-y^{*}, y_{\mu(n)}-y^{*}\right\rangle \leq 0
$$

and

$$
\begin{aligned}
\kappa_{\mu(n)+1} & \leq\left[1-\frac{\theta_{\mu(n)}(1-\rho)}{1-\theta_{\mu(n)} \rho}\right] \kappa_{\mu(n)} \\
& +\frac{2 \theta_{\mu(n)}}{1-\theta_{\mu(n)} \rho}\left[\left\langle f_{1}\left(x^{*}\right)-x^{*}, x_{\mu(n)+1}-x^{*}\right\rangle+\left\langle f_{2}\left(y^{*}\right)-y^{*}, y_{\mu(n)}-y^{*}\right\rangle\right]
\end{aligned}
$$

So, we get $\lim _{n \rightarrow \infty} \kappa_{\mu(n)}=0$. This implies $\lim _{n \rightarrow \infty} \kappa_{\mu(n)+1}=0$. By Lemma 2.4, we have

$$
0 \leq \kappa_{n} \leq \max \left\{\kappa_{n}, \kappa_{\mu(n)}\right\} \leq \kappa_{\mu(n)+1}
$$

so $\kappa_{n} \rightarrow 0$, which implies $x_{n} \rightarrow x^{*}$ and $y_{n} \rightarrow y^{*}$ as $n \rightarrow \infty$. That is $\left(x_{n}, y_{n}\right) \rightarrow\left(x^{*}, y^{*}\right)$ as $n \rightarrow \infty$.

Therefore, the sequence $\left\{\left(x_{n}, y_{n}\right)\right\}$ converges strongly to $\left(x^{*}, y^{*}\right) \in \Omega$ which solves the variational inequality problem (3.8). This completes the proof.

Remark 3.3.

(i) Theorem 3.1 can be used for infinite families of quasi-nonexpansive mappings because the class of quasi-nonexpansive mappings is included in that of demicontractive mappings.
(ii) Theorem 3.1 can be used for infinite families of strictly pseudo-nonspreading mappings because the class of strictly pseudo-nonspreading mappings is included in that of demicontractive mappings.
(iii) Putting $B=I$ and $X_{2}=X_{3}$, in Theorem 3.1, we have a new algorithm for solving SCFP and we obtain that the sequence $\left\{\left(x_{n}, y_{n}\right)\right\}$ generated by (3.7) converges strongly to $\left(x^{*}, y^{*}\right) \in \Omega$ which solves the variational inequality problem (3.8).

4. Numerical example for the main result

We now give some numerical example to support our main result. Let $X_{1}=X_{2}=\mathbb{R}$ with the usual norm. Define the mappings $S_{i}: \mathbb{R} \rightarrow \mathbb{R}$ and $T_{i}: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
S_{i}(x)=\frac{-3 x}{i}, \quad i \in \mathbb{N}
$$

and

$$
T_{i}(x)=\left\{\begin{array}{ll}
\frac{i}{i+1} \sqrt{x} & \text { if } x \geq 1, \\
\frac{-2 i}{i+1} x & \text { otherwise }
\end{array} \quad i \in \mathbb{N}\right.
$$

for all $x \in \mathbb{R}$. Then we have S_{i} and T_{i} are $\frac{2}{3}$ and $\frac{3}{4}$-demicontractive mappings for all $i \in \mathbb{N}$ and $\bigcap_{i=1}^{\infty} F\left(S_{i}\right)=\{0\}=\bigcap_{i=1}^{\infty} F\left(T_{i}\right)$. Next, we define the mappings $f_{1}: \mathbb{R} \rightarrow \mathbb{R}$ and $f_{2}: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
f_{1}(x)=\frac{x}{4} \quad \text { and } \quad f_{2}(x)=\frac{x}{8} \quad \text { for all } x \in \mathbb{R}
$$

Let bounded linear operators $A: \mathbb{R} \rightarrow \mathbb{R}$ and $B: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $A x=3 x$ and $B x=-\frac{x}{5}$ for all $x \in \mathbb{R}$. Define the real sequence $\left\{\alpha_{n, i}\right\}$ and $\left\{\beta_{n, i}\right\}$ as follows:

$$
\alpha_{n, i}= \begin{cases}1 & \text { if } n=i=1 \\ \frac{1}{3^{i}}\left(\frac{n}{n+1}\right) & \text { if } n>i \\ 1-\sum_{i=1}^{n-1} \frac{1}{3^{i}}\left(\frac{n}{n+1}\right) & \text { if } n=i>1 \\ 0 & \text { otherwise }\end{cases}
$$

and

$$
\beta_{n, i}= \begin{cases}\frac{1}{2^{i}}\left(\frac{n}{n+1}\right) & \text { if } n>i-1 \\ 1-\left(\frac{n}{n+1}\right) \sum_{i=1}^{n} \frac{1}{2^{i}} & \text { if } n=i-1 \\ 0 & \text { otherwise }\end{cases}
$$

Setting $\gamma_{n}=0.001, \alpha_{n}=0.002$ and $\theta_{n}=\frac{1}{n^{0.01}}$ for all $n \in \mathbb{N}$. Now, we start with the initial point $\left(x_{1}, y_{1}\right)=(1,-1)$ and the criterion for stopping our testing method is taken as : $\left\|\left(x_{n}, y_{n}\right)-\left(x_{n-1}, y_{n-1}\right)\right\|_{2}<10^{-5}$. Then the sequence $\left\{\left(x_{n}, y_{n}\right)\right\}$ generated by (3.7) and $\varepsilon_{n}=\left\|\left(x_{n}, y_{n}\right)-\left(x_{n-1}, y_{n-1}\right)\right\|_{2}$ are shown in the following table:

Table 1: Numerical example of algorithm (3.7)

No. of Iterations x_{n}	y_{n}	ε_{n}	
1	1.000000	-1.0000000	-
2	0.250000	0.1250000	1.35208173
3	0.063775	-0.0159483	0.23355155
4	0.016459	0.0020509	0.05062376
5	0.004282	-0.0002643	0.01239465
6	0.001121	0.0000341	0.00317511
7	0.000295	-0.0000044	0.00082699
8	0.000078	0.0000006	0.00021709
9	0.000021	-0.0000001	0.00005728
10	0.0000055	0.000000009	0.00001517
11	0.0000015	-0.000000001	0.00000403
12	0.00000039	0.0000000002	0.00000108

We observe from Table 1 that $\left(x_{n}, y_{n}\right) \rightarrow(0,0) \in \Omega$. We also note that the error bounded of $\left\|\left(x_{12}, y_{12}\right)-\left(x_{11}, y_{11}\right)\right\|_{2}<10^{-5}$ and we can use $\left(x_{12}, y_{12}\right)=(0.00000039,0.0000000002)$, to approximate the solution of (1.3) with accuracy at least 5 D.P.
Acknowledgements. The authors would like to thank Chiang Mai University and Center of Excellence in Mathematics, CHE, Bangkok 10400, Thailand for the financial support.

References

[1] Bauschke, H. H. and Borwein, J. M., On projection algorithm for solving convex feasibility problems, SIAM Rev., 38 (1996), No. 3, 367-426
[2] Byrne, C., Iterative oblique projection onto convex subsets ant the split feasibility problem, Inverse Probl., 18 (2002), 441-453
[3] Byrne, C., Censor, Y., Gibali, A. and Reich, S., The split common null point problem, J. Nonlinear Convex Anal., 13 (2012), 759-775
[4] Censor, Y., Bortfeld, T., Martin, B. and Trofimov, A., A unified approach for inversion problems in intensitymodulated radiation therapy, Phys. Med. Biol., 51 (2006), 2353-2365
[5] Censor, Y., Elfving, T., Kopf, N. and Bortfeld, T., The multiple set split feasibility problem and its applications, Inverse Problems., 21 (2005), 2071-2084
[6] Censor, Y., Motova, A. and Segal, A., Perturbed projections and subgradient projections for the multiple-sets feasibility problem, J. Math. Anal., 327 (2007), 1244-1256
[7] Censor, Y., Gibali, A. and Reich, S., Algorithm for the split variational inequality problem, Numerical Algorithms, 59 (2012), 301-323
[8] Chang, S. S., Kim, J. K., Cho, Y. J. and Sim, J. Y., Weak-and strong-convergence theorems of solutions to split feasibility problem for nonspreading type mapping in Hilbert spaces, Fixed Point Theory Appl., 2014, 2014:11, 12 pp.
[9] Chang, S. S., Cho, Y. J., Kim, J. K., Zhang, W. B. and Yang L., Multiple-set split feasibility problems for asymptotically strict pseudocontractions, Abstract and Applied Anal., (2012) doi:10.1155/2012/491760
[10] Chidume, C. E. and Măruşter, Şt., Iterative methods for the computation of fixed points of demicontractive mappings, J. Comput. Appl. Math., 234 (2010), No. 3, 861-882
[11] Chidume, C. E. and Ezeora, J. N., Krasnoselskii-type algorithm for family of multi-valued strictly pseudocontractive mappings, Fixed Point Theory Appl., 2014, 111 (2014)
[12] Eslamian, M., General algorithms for split common fixed point problem of demicontractive mappings, Optimization, 65 (2016), 443-465
[13] Mainge, P. E., Approximation methods for common fixed points of nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl., 325 (2007), 469-479
[14] Maingé, P.-E., Măruşter, S., Convergence in norm of modified Krasnoselski-Mann iterations for fixed points of demicontractive mappings, Appl. Math. Comput., 217 (2011), No. 24, 9864-9874
[15] Măruşter, S. and Rus, I. A., Kannan contractions and strongly demicontractive mappings, Creat. Math. Inform., 24 (2015), No. 2, 171-180
[16] Măruşter, S., A note on the convergence of Mann iteration, Creat. Math. Inform. 26 (2017), No. 1, 85-88.
[17] Moudafi, A., A note on the split common fixed point problem for quasinonexpansive operators, Nonlinear Anal., 74 (2011), 4083-4087
[18] Moudafi, A. and Al-Shemas, E., Simultaneous iterative methods for split equlity problems and application, Trans. Math. Program. Appl., 1 (2013), 1-11
[19] Osilike, M. O. and Isiogugu, F. O., Weak and strong convergence theorems for nonspreading-type mappings in Hilbert spaces, Nonlinear Anal, 74 (2011), 1814-1822
[20] Rafiq, A., On Mann iteration in Hilbert spaces, Nonlinear Anal., 66 (2007), No. 10, 2230-2236
[21] Shehu, Y., Mewomo, O. T. and Ogbuisi, F. U., Further investigation into approximation of a common solution of fixed point problems and split feasibility problems, Acta Math Sci., 36B (2016), 913-930
[22] Song, Y., On a Mann type implicit iteration process for continuous pseudo-contractive mappings, Nonlinear Anal., 67 (2007), 3058-3063
[23] Takahashi, W., Introduction to nonlinear and convex analysis, Yokohama Publishers, Yokohama (2009)
[24] Vasin, V. V., Ill-posed problems and iterative approximation of fixed points of pseudo-contractive mappings, Ill-posed problems in natural sciences (Moscow, 1991), 214-223, VSP, Utrecht, 1992
[25] Xu, H. K., Iterative algorithms for nonlinear operators, J. London Math. Soc., 66 (2002), 240-256
${ }^{1}$ PhD Degree Program in Mathematics
Faculty of Science, Chiang Mai University
Chiang Mai, 50200 Thailand
E-mail address: adisak_h@cmu.ac.th
${ }^{2}$ Department of Mathematics, Faculty of Science
Center of Excellence in Mathematics and Applied Mathematics
Chiang Mai University, Chiang Mai, 50200 Thailand
and Center of Excellence in Mathematics, CHE, Bangkok 10400, Thailand
E-mail address: suthep.s@cmu.ac.th

[^0]: Received: 18.08.2017. In revised form: 21.02.2018. Accepted: 15.07.2018
 2010 Mathematics Subject Classification. 47H09, 47H10, 47J25, 90C25.
 Key words and phrases. split equality common fixed point problem; infinite family of demicontractive mappings; Hilbert space; simultaneous iterative algorithm; strong convergence; control condition.

 Corresponding author: Suthep Suantai; suthep.s@cmu.ac.th

