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Solving split equality common fixed point problem for
infinite families of demicontractive mappings

ADISAK HANJING! and SUTHEP SUANTAI?

ABSTRACT. In this paper, we consider the split equality common fixed point problem of infinite families of
demicontractive mappings in Hilbert spaces. We introduce a simultaneous iterative algorithm for solving the
split equality common fixed point problem of infinite families of demicontractive mappings and prove a strong
convergence of the proposed algorithm under some control conditions.

1. INTRODUCTION

The split feasibility problem (SFP) can also be applied in various disciplines such as
image restoration, in radiation therapy treatment planning, in antenna design, in imma-
terial science and in computerized tomography, etc. (see [2, 4, 5, 6]). The split equality
common fixed point problem (SECFP) is a generalization of the split common fixed point
problem (SCFP) and the split feasibility problem. Various algorithms were invented to
solve problems above (see [3, 7, 8,9, 17, 21]).

Let X;,i = 1,2, 3, be a real Hilbert spaces with inner product (-.-) and norm || - ||. Let I
be the identity mapping. The split equality fixed point problem (SEFP) for mappings S and
T which was first introduced by Moudafi and Al-Shemas [18] is to find

(1.1) u* € Fiz(S), v* € Fiz(T) suchthat Au* = Bv™,

where A : X1 — X3,B : X9 — X3 are two bounded linear operators, S : X; — X; and
T : Xy — X, are two mappings satisfying Fiz(S) # 0 and Fiz(T) # 0, respectively. Note
that, if Xo = X3 and B = I, then the SEFPP generalizes the SFPP. To solve problem (1.1)
they [18] proposed and proved a weak convergence under some control conditions of the
following algorithm:

(1.2)

Tnt1 = S(mn - 'VA*(Axn - Byn))»
Ynt+1 = T(yn + yB*(Az,, — Byn)), n €N,

where S and T are firmly quasi-nonexpansive mappings.
Recently, Eslamian [12] considered the following the split equality common fixed point
problem (SECFP) :

(1.3) Find u* € N2, Fix(S;), v* € N2 Fiz(T;) suchthat Au* = Bv*,

where A : X; — X3, B : Xy — X3 are two bounded linear operators, and {S; : X; —
X1 :i € Nyand {T; : X — X3 : i € N} are infinite families of k1, ka-demicontractive
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mappings, respectively. They also proposed the following algorithm for solving (1.3) for
the class of demicontractive mappings:

Zn = Tn — VA" (Az, — Byy),
> 1—k

Up = Zp + Zan,iTl(Si — 1Dz,
i=1

Tpp1 = Opu+ (1 — Op)up,

1.4
(14 wn:yn+7nB*(A$n_Byn)v

Nt 1-k
Up = Wnp + Zan,i%(Ti - I)wn7
=1

Ynt1 = Opv + (1 — 0,) vy, n € N.

Using the iterative scheme (1.4), Eslamian obtained a strong convergence results for pro-
blem (1.3).

Note that computation of u,, and v,, by algorithm (1.4) are not so easy in practice be-
cause they concern the sum of the series in X.

Question. Can we modify algorithm (1.4) to the algorithm which is easy to compute
and still obtain its strong convergence to a solution of problem (1.3)?

Throughout this paper, we adopt the following notations.

(i) “— "and “—"denote the strong and weak convergence, respectively.
(i) we(Zn,yn) denote the set of the cluster point of {(z,, y»)} in the weak topology, that
is, there is a subsequence {(%n,, Yn,)} of {(zn,yn)} such that (z,,, yn,) — (x,y).

2. PRELIMINARIES

Let C be a nonempty closed convex subset of a real Hilbert space X. A mapping Pc :
X — Cis said to be metric projection of X onto C, if for every x € X, there exists a unique
nearest point in C' denoted by Pcx such that

|z — Pez|| < [z — 2|, VzeC.

It is known that P is a firmly nonexpansive mapping. Moreover, P¢ is characterized by
the following properties : (x — Pcx,y — Pcx) <0, Vo € X,y € C.In order to establish
our convergence theorems, we need the following concepts for single-valued mappings.

Definition 2.1. Let C' be a nonempty closed convex subset of a real Hilbert space X. A
mapping T : C — C is said to be

(i) a-contraction if there exists a € [0, 1) such that
|Tu — Tv|| < a|lu— forall u,v € C;
(ii) quasi-nonexpansive if Fixz(T) # () and
1Tu —v| < ||lu—0] forall u € C,v € Fiz(T);

(ili) k-strictly pseudo-nonspreading[19], if there exists k € [0, 1) such that

|Tu—Tv||? < |lu—v|* + kllu — Tu — (v — Tv)||* + 2(u — Tu,v — Tw) forall u,v € C;
(iv) k-demicontractive [10], if Fiz(T) # () and there exists k € [0, 1) such that

| Tu —v||* < [Ju—v|* + E||ju — Tul|? forall u € C,v € Fix(T).

Remark 2.1. It follows from Definition 2.1 that

(1) If T is quasi-nonexpansive, then T is k-demicontractive for any k£ € [0, 1).
(2) If T is k-strictly pseudo-nonspreading with Fixz(T') # 0, then T is k-demicontractive.
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In 2014, Chang, Kim, Cho and Sim [8] studied the weak ans strong convergence theo-
rems of solution to SCFP for a family k;-strictly pseudo-nonspreading mapping in a Hil-
bert space.

Remark 2.2. For negative values of k the class of demicontractive mappings is diminished
to a great extent; in [1] such a class (with negative value of k) was considered under the
name of strongly attracting map. In particular, the mapping T which satisfies Definition 2.1
(iv) with k = —1 is called pseudo-contractive in [24]. Note also that a mapping T satisfying
Definition 2.1 (iv) with £ = 1 is usually called hemicontractive and it was considered
by some authors in connection with the strong convergence of the implicit Mann-type
iteration (see, for example, [20, 22]).

Definition 2.2. Let C be a nonempty closed convex subset of a real Hilbert space X. Let
T : C — C be a mapping. The mapping T' — I is said to be demiclosed at zero if for any
sequence {z,} in C which z,, — x and T'z,, — x,, — 0, then x € Fiz(T).

Lemma 2.1. ([23]) Let X be a real Hilbert space. Then the following results hold:

(i) forallt € [0,1] and u,v € X, |[tu+ (1 —t)v||? = t|lul|* + (1 = t)||v]|? — t(1 — ) ||u — v]||?;
(i) llu+ ]2 = Jull? + 2,0} + lol]? Vu,0'€ X
(iii) |Ju+v||? < ||Jul]® +2(v,u +v) Yu,v € X.

Lemma 2.2. ([11]) Let X be a real Hilbert space. Let {x;,i = 1,2,..,n} C X. For a; €
(0,1),i =1,2,...,nsuch that 3", a; = 1. Then the following identity holds :

n
E (22
i=1

Lemma 2.3. ([25]) Let {a,} be a sequence of nonnegative real numbers satisfying the following
relation :

n

2 n
= allwll? = Y aayllei - )
=1

i.4=1,i#j

Ap41 < (1 - ’Vn)an + 5717 ne Na

where

(i) {n} C(0,1), 302y yn = 00;
(ii) limsup,,_, % < 0or Zzozl |6, < o00.

Then lim,,_y o a,, = 0.

Lemma 2.4 ([13]). Let {x,,} be a sequence of real numbers that dose not decrease at infinity, that
is there exists at a subsequence {k,, } of {kn } which satisfies k., < kn,+1 for all i € N. For every
n > n,, define an integer sequence {u(n)} as follow :

pn) =max{l e N : [ <n,r < Ki41},

where n, € Nsuch that {l <n, : k; < K41} # 0. Then the following hold:

(1) p(no) < p(no +1) < ...and p(n) — oo;
(i) foralln > ne, max{kn, Kum)} < Kum)+1-

3. MAIN RESULTS

In this section, we propose a new algorithm which is a modification of (1.4) and prove
its strong convergence under some suitable conditions. We start with the following im-
portant lemma :
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Lemma 3.5. For real Hilbert spaces X, let {T; : X — X : i € N} be infinite family of k-
demicontractive mappings. Let {z,} and {w,} be sequences in X and let

Up = Zp + Zan,ian(Ti - I)Zru
=1

n
Un = ﬂn,own + Z ﬂn,iTiwna Vn €N,
=1

where {cn i}, {Bn,i}, {an } are real sequences in [0, 1] satisfying > i | ;= Land Y1 Bn; =
1 for all n € N. Then

(3.5) = 2> < |20 — 2*|1> = D anian(l = k = an) |(T; = D)z,
i=1

(3.6) lon = 21 < Jwn = 21> =Y Bui(Buo — KINT; — Dwal®,
i=1

for any x* € N2, Fiz(T;).

Proof. Letz* € (N2, Fiz(T;). Since T; is k-demicontractive, we obtain

n
lin =21 < 3

i=1

|2 — 2*||> + Q|| Tizn — 2nl|® + 200 (20 — 2%, Tizn — 2n)]

= ﬁ:anzwzn - x*HQ + O‘?z”Tizn - Zn||2 — 20, || Ti2n — Zn||2
i=1

+ Z2an<Tizn — 2%, Tizn — 2n)]

= Zn:anlwzn — 2> + A} || Tizn — zall? = 20| Tizn — za)?
i=1

+ an||Tizn — an2 + an||Tizn — x*”Q — anllzn — x*HQJ

n
S Z an,i[
i=1

n
= llzn = 2"|° = ) anian(l — k — an)l|Tizn — 2a)*.
i=1

|2n — x*HQ —an(l = an)||Tizn — Zn||2 + ank||Tizn — ZnHQ]

Since T; is k-demicontractive and by Lemma 2.2, we obtain
2

lvn — 2 |* =

Z Bn,z(Tzwn - .’IJ*)
=0

n n
< Brollwn = 2+ Bril Town — 2*|> =Y Br.oBn.illwn — Tiwn|?
=1 1=1
n
< Brollwn = &>+ Bullwn — &> + K|[(T; = Dwnl|?)

i=1
n
= Bn.oBn.il
i=1

(T; — Dwn||?



Solving split equality common fixed point problem ... 325
n
= Jwn =27 =D Bn.i(Bno = KT = Dwal|*.
i=1

This completes the proof. O

Now, we introduce a new algorithm for solving the split equality problem for infinite
families of demicontractive mappings and then prove its strong convergence.

Theorem 3.1. Let X, Xy and X3 be real Hilbert spaces, let A : X1 — Xz and B : Xy —
X3 be two bounded linear operators with their adjoint operators A* and B*, respectively. Let
fi: Xy — Xy and fo : Xo — Xo be two contraction mappings with constants p1, p2 € [0,1).
Let {S; : X1 — X1 : 4 € N}and {T; : Xo — Xo : i € N} be infinite families of ki, ka-
demicontractive mappings such that S; — I and T; — I, are demiclosed at zero. Suppose that
Q= {(u*,v*) € N2y Fiz(S;) x Nz Fiz(T;) : Au* = Bv*} # 0. Let (z1,y1) € X1 X Xo
arbitrarily, let {x,} and {y,, } be the sequences generated by

Zn = Tn — ’YnA*(Axn - Byn>7
Up = Zp + Zan,ian(si - I)Zn7
=1

Tnt1 = Onf1 (wn) + (1 - Hn)un?
Wy = Yn + 'YnB*(Axn - Byn)a

n
Un = Bn,Own + Z ﬂn,iTiwn7

i=1

Yn4+1 = 9nf2(yn) + (1 - en)vna n c Na

where {vn},{an}, {00}, {an.i} and {5, ;} are sequences in [0, 1] satisfying the following condi-
tions :

(C1) Y0 ani =1 Bni=1and B, > ks foralln € N;

(C2) liminf, o ap,i > 0, and liminf, oo (Bn,o — k2)Bn,i > 0foralli € N;
(C3) limy,—y00 0, = 0and 377, 6,, = 00;

(C4) 0<b; <7, <by < mforallnel\l;

(C5) 0<a; <ap<ay<l—kyforallneN,

for some positive real number by, bz, a1 and ay. Then the sequence {(x,,,yn)} converges strongly
to (x*,y*) € Q which solves the variational inequality problem

(38) <(IX1><X2 - f)(x*ﬂy*)v (U,’U) - (m*7y*)>X1><X2 > 07 (u,v) € Qa
where Ix, x x, is identity map on X1 x Xy and f(x,y) = (f1(x), f2(y)) forall (x,y) € X1 x X5.

Proof. Since Pq o f is a contraction mapping on X; x Xj, there is a unique (z*,y*) € Q
Then (z*,y*) € N2, Fiz(S;) x N2, Fix(T;) such that Az* = By*. By (3.7) we get

l2n = 2|12 < lan — 2™ = 2y (20 — 2", A"(Azn — Byn)) + 1l All*[| Az — Byn||?

= |lzn — 1"*“2 = TnllAzn — Az*H2 = TnllAzn — Byn”2

+ llAz* = By | + 72 |Al || Az — Byn|?
= ||lzn — x*Hz = TnllAzn — Az*H2 + Y l|Az* — B%LHZ
(3.9) _’Vn(l _'7n|‘A||2)||Amn _Byn||2'
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Similarly, we have

[wn =y 11> < llyn = y*1* =l Byn — By* 1> + yll Az, — By*|?
(3.10) — (1 = 7l1B||*) | Azy, — Bya||*.
From (3.9), (3.10), (C4) and by taking into account the fact that Az* = By*, we have
Iz = 2*|* + [lwn = g1 < 2 — 2|7 + llyn — y* |
— (2 = (41 + | BI*)) [ Az, — By |?
(3.11) <z = 21" + llyn — v 1%

By Lemma 3.5 we obtain

(412)  fun =2 < = o = D anian(1 — k1 — an)[(S: = Dzl
=1

413) o= < wn = o7 = D BB — k) (T = Dy
=1

From (3.12) and Lemma 2.1(i), we have

lns1 = 2" [|* < Onllfi(zn) — 2%[* + (1 = ) un — 2™
< Onlllfi(zn) = fl@)I? + 12 (") —2"%]
+ 200l fi () — Fr(@) [ f1(2™) = "] + (1= 0n)llun — 27|
< Onlprllon — 2" |* + [l f1(2") — 2*]%]
+200p1 |25 — 2|l f1(2") = 2| + (1 = 0n) |20 — 27|

(314) - (1 - on) Z an,ian(l - kl - a7b)||(Si - I)ZWH2
i=1

Using (3.13), we obtain

[Ynt1 — ¥ 1% < Oulorllyn — v |1* + | f2(y*) — y*||?]
+ 200 p2llyn — ¥l f2(07) — y* | + (1 — 0,) [|wy — y*|?

(3.15) = (1= 02) > Bni(Bro — k) I(T = Tywnl|>.

i=1

Next, set p = max{p1, p2} and k,, = ||z, — 2*||> + ||y — y*||>. By (3.11), (3.14) and (3.15),
we obtain

Fint1 < Onprin + Onlll f(2*) — 2|2 + || f2(y") — v 1]

+ 200 plllzn — 2" [1f1(27) — 27| + llyn — y* (1 F2(y™) — oI
+ (1= O)lllzn — 2" |* + [lwn — y*1%]

< Onptin + Onlll f1(2") = 27| + 1 fo(y™) = 57 [I*)

+20nplllzn — 2 [1f1(2") — 2"+ lyn — y" 1 2(6") =47 ll] + (1 = On)rin
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= (1= On(L = p)rin + Ol fr(=") — 2" > + | f2(y") — 5" ]1%]
+20nplllzn — ([ f1(27) = 2" +llyn =y [[Ilf2(y™) = "Il

Un
(3.16) < max {Hn, } )
I—p
where 0, = |[f1(a") =" |2+ 1| f2(y) =y I+ 2p[llen =2 [l f1 () = 2* |+ [lyn =y | f2(y") —
y*||]- It follows from induction that

U
/ingmax{m, ! }, n €N,
L—p

which implies that {x, } isbounded. Therefore {z,,} and {y,, } are bounded. Consequently,
{zn}, {wn}, {un} and {v, } are bounded. By (3.11), (3.12) and (3.13), we get

Fin1 < fon + On[ll fr(@”) =2 |* + [ faly®) — y*[I°]
+ 20npll|en — 2|11 (2") — 2" + lym — ¥ [lf2(y") — 7]
=1 (2 = (|47 + | BI*) | A2y — By, |?
- Zamian(l - kl - an)”(sz - I)Zn||2 - ZBmi(ﬁn,O - k2>||(Tl - I)wnHQ
i=1 i=1
< fin + 0, M =70 (2 = W (| A + |B|*) | Azy, — Byal|?

(3.17) - Zaman(l — k1 — ) ||(Si — Dzn)® — Zﬁm(ﬁmo — k) |(T; = Dwn|?,
=1

i=1

where M = sup,,{¢,,}. This implies for j = 1,2,...n,

(3.18) 0p 0 (1 — ki — o) || (S — I)zn||2 < Kp — Kpg1 + 0, M,
and

(3.19) B (Bro = k) |(Ti = Dwy|* < w6 — Fingr + 0, M.
Using (3.17), we obtain

(3.20) (2 = W (AP + | BIP)IAzn = Byal? < fin = K1 + 0, M.

To this end, we consider the following two cases.

Case 1. Suppose that {x,, } ,>n, is non-increasing for some n, € N. Then we get lim,, %y,
exists. By (3.18), (3.19), (3.20) and (C2)-(C5), we have lim,, .o [|(S; — I)2p|| = 0 = lim,, ;o
I(T; — Iwy]|, and lim,, s || Az, — By, || = 0. It implies that

(3.21) lim |z, — 2,| = lim ||w, —y,|| =0.
n—oo n—oo

Since the sequence {z,} and {y,} are bounded we have w,(z,,y,) is nonempty. Let
(@,7) € Wy(Tn,Yn). From (3.21), we have (@, ?) € wy, (2, wy). By demiclosedness principle
of S; — I and T; — I at zero, we obtain @ € N2, Fiz(S;) and v € N2, Fixz(T;). On the
other hand, we have Az — Bv € w,(Axz,, — By,), so there is a subsequence {(x, ,yn, )} of
{(xn, yn)} such that Az, — By,, — At — Bv. By lower semicontinuity of the norm, we
get

||Aw — Bo|| < likminf |Azy, — Byn,|| = 0.
— 00

Therefore (u, ) € Q. S0 Wy (Zn,yn) C Q. Choose a subsequence {(zy,,Yn,)} of {(zn,yn)}
such that limsup,,_, . (f1(z*) — z*, 2, — %) + (fo(v*) — ¥*, yn — ¥*) = im0 (f1(z*) —
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¥, wn, — )+ (f2(y*) — ¥ Yn, — y*). We may assume that (z,,,yn,) — (Z,9) as p — oo.
Since wy, (Tn,yn) C Q and (z*,y*) be the solution of a variational inequality problem (3.8),
we get

(3.22) limsup(f; (z*) — 2™, 2, — ") + {fo(v") — y*, yn — y*) < 0.

n—oo

Using Lemma 2.1(iii) and (3.12), we obtain

< (1= 0n)lJun — 2|* + 200 (f1(zn) — 2%, Tpy1 — z%)

< (1= 00)lzn — 2*|* + prOn[llen — ¥ + [@na — "]
(3.23) + 20, (f1(a") — 2", xpy1 — ¥).

Similarly, we obtain

|41 — 272

ynsr =y 1* < (1= ) lwn — 2" + p2Oulllyn =y 7 + Y1 — y"|1%]

(3.24) + 20, (f2(¥") = Y Yns1 — Y7)-
From (3.11), (3.23) and (3.24), we obtain
0,(1—
Fnt1 < [1— 1(_9712)] n
29” * * * * * *
(325) + [<f1(l')—$ ?$n+1_x>+<f2(y)_y 7yn+1_y>]'

1—0,p
By (3.22), (3.25), (C3) and Lemma 2.3, we can conclude that z,, — z* and y,, — y* as
n — oo. Thatis (zy, yn) — (z*,y*) as n — oc.
Case 2. Suppose that there exists an integer m, such that
2, — 'r*HQ + |ym, — y*HQ < Nzm,+1 — 'T*HQ + 1Ymo+1 — y*H2
Then we have k., < Km,+1. Let {u(n)} be a sequence defined by
pn) =max{l e N : I <n,k < K41},

for all n > m,. By Lemma 2.4, we obtain that {x(n)} is a nondecreasing sequence such
that

nh_)ngo p(n) =00 and kymy < Kym)41, forall n > me.

By the same argument as in the case 1, we obtain

hmsup<fl($*) - x*,x,u(n) - $*> =+ <f2(y*) - y*vyu(n) - y*> <0,

n—oo
and
Fu(m)+1 < [1 - f_gm Fpu(n)
20 n * * * * * *
+ #Kfl(x ) — T, Ty(n)+1 — T > + <f2(y ) —Y Yun) — Y >}
L= 0umyp

So, we get lim,, ;o /() = 0. This implies lim,, o #,(n)4+1 = 0. By Lemma 2.4, we have
0 < Rn < HlaX{/in, K’M(n)} < "fp,(n)Jrh

so K, — 0, which implies z,, — z* and y,, — y* as n — co. Thatis (z,,, y,) — (z*,y*) as
n — oo.

Therefore, the sequence {(x,,y,)} converges strongly to (z*,y*) € Q which solves the
variational inequality problem (3.8). This completes the proof. O
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Remark 3.3.

(i) Theorem 3.1 can be used for infinite families of quasi-nonexpansive mappings be-
cause the class of quasi-nonexpansive mappings is included in that of demicon-
tractive mappings.

(if) Theorem 3.1 can be used for infinite families of strictly pseudo-nonspreading map-
pings because the class of strictly pseudo-nonspreading mappings is included in that
of demicontractive mappings.

(iif) Putting B = I and X, = X3, in Theorem 3.1, we have a new algorithm for sol-
ving SCFP and we obtain that the sequence {(x,, y,)} generated by (3.7) converges
strongly to (z*, y*) € Q which solves the variational inequality problem (3.8).

4. NUMERICAL EXAMPLE FOR THE MAIN RESULT

We now give some numerical example to support our main result. Let X; = X, = R
with the usual norm. Define the mappings S; : R = Rand T; : R — R by

-3
Si(z) = =2, i €N,
1
and )
(3
—/x  ifz>1,
T =4 "1 i eN,
- T otherwise
141

for all + € R. Then we have S; and T; are % and z—demicontractive mappings for all
i€ Nand N2, F(S;) = {0} = N;2, F(T;). Next, we define the mappings f; : R — R and
fg :R—R by

filx) = T and fa(w) = g forall x € R.

4
Let bounded linear operators A : R —+ R and B : R — R be defined by Az = 3z and
Bx = —g for all x € R. Define the real sequence {a, ;} and {0, ;} as follows:
1 ifn=:i=1,
1
3 () ifn > i,
Qi = 3 \n+1
11 n
1=yt = ifn=1:i>1
Lic1 g (n+1> i
0 otherwise,
and
1 n
by i ) - 1
5 (n n 1) ifn>i ,
’ 1- = fn=i-1
m——] Yo 5 ifn=1—1,
0 otherwise.

1
Setting v, = 0.001, o, = 0.002 and 6,, = Oy for all n € N. Now, we start with the initial

point (z1,y1) = (1,—1) and the criterion for stopping our testing method is taken as :
| (@nsYn) — (Tn—1,yn—1)|l2 < 107°. Then the sequence {(z,,y,)} generated by (3.7) and
en = |(®n,Yn) — (Tn—1,Yn—1)||2 are shown in the following table:
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Table 1: Numerical example of algorithm (3.7)

No. of Iterations z,, Yn En
1 1.000000 -1.0000000 -
2 0.250000 0.1250000  1.35208173
3 0.063775 -0.0159483  0.23355155
4 0.016459 0.0020509  0.05062376
5 0.004282 -0.0002643  0.01239465
6 0.001121 0.0000341  0.00317511
7 0.000295 -0.0000044  0.00082699
8 0.000078 0.0000006  0.00021709
9 0.000021 -0.0000001  0.00005728
10 0.0000055 0.000000009 0.00001517
11 0.0000015 -0.000000001 0.00000403
12 0.00000039 0.0000000002 0.00000108

'_K [ - % - % emor

sequences value

ettt + -
7 8 9 10 11 12 13 14 15 16

Number of Iterations Number of Iteration

(A) (B)

We observe from Table 1 that (z,,, y,) — (0,0) € . We also note that the error bounded
of H (3312, ylg) — ($11, yll) HQ < 1075 and we can use (5612, ylg) = (000000039, 00000000002),
to approximate the solution of (1.3) with accuracy at least 5 D.P.
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