Dedicated to Professor Yeol Je Cho on the occasion of his retirement

On the Krein-Milman theorem in CAT(*κ***) spaces**

BANCHA PANYANAK

ABSTRACT. Let $\kappa > 0$ and (X, ρ) be a complete CAT (κ) space whose diameter smaller than $\frac{\pi}{2\sqrt{\kappa}}$. It is shown that if *K* is a nonempty compact convex subset of *X*, then *K* is the closed convex hull of its set of extreme points. This is an extension of the Krein-Milman theorem to the general setting of CAT (κ) spaces.

1. INTRODUCTION AND PRELIMINARIES

One of the fundamental and celebrated results in functional analysis related to extreme points is the Krein-Milman theorem. In [5], the authors proved that every compact convex subset of a locally convex Hausdorff space is the closed convex hull of its set of extreme points. This result was extended to a special class of metric spaces, namely, CAT(0) spaces, by Niculescu [6] in 2007. Notice that Niculescu's result can be applied to CAT(κ) spaces with $\kappa \leq 0$ since any CAT(κ) space is a CAT(κ ') space for $\kappa' \geq \kappa$ (see e.g., [1]). However, the result for $\kappa > 0$ is still unknown. In this paper, we extend Niculescu's result to the setting of CAT(κ) spaces with $\kappa > 0$.

Let (\mathcal{P}, \preceq) be a partially ordered set. An element $p_0 \in \mathcal{P}$ is *maximal* in \mathcal{P} if for each $p \in \mathcal{P}$, the following implication holds:

$$p_0 \preceq p \implies p_0 = p.$$

Similarly, an element $q_0 \in \mathcal{P}$ is *minimal* in \mathcal{P} if for each $p \in \mathcal{P}$, the following implication holds:

$$p \preceq q_0 \implies p = q_0.$$

An upper bound (resp. A lower bound) of a nonempty subset Q of P is an element $p \in P$ such that $q \leq p$ (resp. $p \leq q$) for all $q \in Q$. A nonempty subset C of P is called a *chain* in P if any two elements p and q in C are comparable, that is, $p \leq q$ or $q \leq p$.

Lemma 1.1. (Zorn) If (\mathcal{P}, \preceq) is a partially ordered set such that every chain in \mathcal{P} has an upper (resp. lower) bound in \mathcal{P} , then \mathcal{P} contains a maximal (resp. minimal) element.

Let (X, ρ) be a metric space. A *geodesic path* joining $x \in X$ to $y \in X$ is a function ξ from the closed interval $[0, \rho(x, y)]$ to X such that $\xi(0) = x, \xi(l) = y$, and $\rho(\xi(t), \xi(t')) = |t - t'|$ for all $t, t' \in [0, \rho(x, y)]$. The image of ξ is called a *geodesic segment* joining x and y which is unique, denoted by [x, y]. This means that $z \in [x, y]$ if and only if there exists $\alpha \in [0, 1]$ such that

$$\rho(x,z) = (1-\alpha)\rho(x,y)$$
 and $\rho(y,z) = \alpha\rho(x,y)$.

In this case, we write $z = \alpha x \oplus (1 - \alpha)y$. The space (X, ρ) is said to be a *geodesic space* (resp. *D*-*geodesic space*) if every two points of *X* (resp. every two points of distance smaller than

Received: 11.09.2017. In revised form: 25.04.2018. Accepted: 15.07.2018

²⁰¹⁰ Mathematics Subject Classification. 47H09, 49J53.

Key words and phrases. $CAT(\kappa)$ spaces, extreme points, the Krein-Milman theorem.

D) are joined by a geodesic path. A subset *C* of *X* is said to be *convex* if *C* includes every geodesic segment joining any two of its points.

Now we introduce the model spaces M_{κ}^2 , for more details on these spaces the reader is referred to [1, 3, 4, 8, 9]. We denote by $\langle \cdot, \cdot \rangle$ the Euclidean scalar product in \mathbb{R}^3 . By \mathbb{S}^2 we denote the unit sphere in \mathbb{R}^3 , that is the set $\{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1^2 + x_2^2 + x_3^2 = 1\}$. The *spherical distance* on \mathbb{S}^2 is defined by

$$d_{\mathbb{S}^2}(x, y) := \arccos\langle x, y \rangle$$
 for all $x, y \in \mathbb{S}^2$.

Definition 1.2. Given $\kappa \ge 0$, we denote by M_{κ}^2 the following metric spaces:

(i) if $\kappa = 0$ then M_{κ}^2 is the Euclidean space \mathbb{E}^2 ;

(ii) if $\kappa > 0$ then M_{κ}^2 is obtained from the spherical space \mathbb{S}^2 by multiplying the distance function by $1/\sqrt{\kappa}$.

A geodesic triangle $\triangle(x, y, z)$ in a geodesic space (X, ρ) consists of three points x, y, zin X (the vertices of \triangle) and three geodesic segments between each pair of vertices (the edges of \triangle). A comparison triangle for a geodesic triangle $\triangle(x, y, z)$ in (X, ρ) is a triangle $\overline{\triangle}(\bar{x}, \bar{y}, \bar{z})$ in M_{ϵ}^2 such that

$$\rho(x,y) = d_{M_{\nu}^2}(\bar{x},\bar{y}), \ \rho(y,z) = d_{M_{\nu}^2}(\bar{y},\bar{z}), \ \text{and} \ \rho(z,x) = d_{M_{\nu}^2}(\bar{z},\bar{x})$$

It is well known that such a comparison triangle exists if $\rho(x, y) + \rho(y, z) + \rho(z, x) < 2D_{\kappa}$, where $D_{\kappa} = \pi/\sqrt{\kappa}$ for $\kappa > 0$ and $D_0 = \infty$. Notice also that the comparison triangle is unique up to isometry. A point $\bar{u} \in [\bar{x}, \bar{y}]$ is called a *comparison point* for $u \in [x, y]$ if $\rho(x, u) = d_{M_{\kappa}^2}(\bar{x}, \bar{u})$.

A metric space (X, ρ) is said to be a $CAT(\kappa)$ space if it is D_{κ} -geodesic and for each two points u, v of any geodesic triangle $\triangle(x, y, z)$ in X with $\rho(x, y) + \rho(y, z) + \rho(z, x) < 2D_{\kappa}$ and for their comparison points \bar{u}, \bar{v} in $\overline{\triangle}(\bar{x}, \bar{y}, \bar{z})$ the $CAT(\kappa)$ inequality

$$\rho(u,v) \le d_{M^2_{\nu}}(\bar{u},\bar{v}),$$

holds. Notice also that Pre-Hilbert spaces, \mathbb{R} -trees, Euclidean buildings are examples of CAT(κ) spaces (see [1, 2]).

Recall that a geodesic space (X, ρ) is said to be *R*-convex for $R \in (0, 2]$ ([7]) if for any three points $x, y, z \in X$, we have

(1.1)
$$\rho^2(x, (1-\alpha)y \oplus \alpha z) \le (1-\alpha)\rho^2(x, y) + \alpha\rho^2(x, z) - \frac{R}{2}\alpha(1-\alpha)\rho^2(y, z)$$

The following lemmas will be needed.

Lemma 1.3. ([7]) Let $\kappa > 0$ and (X, ρ) be a complete $CAT(\kappa)$ space with $diam(X) \le \frac{\pi/2 - \varepsilon}{\sqrt{\kappa}}$ for some $\varepsilon \in (0, \pi/2)$. Then (X, ρ) is R-convex for $R = (\pi - 2\varepsilon) \tan(\varepsilon)$.

Lemma 1.4. ([1]) Let $\kappa > 0$ and (X, ρ) be a complete $CAT(\kappa)$ space with $diam(X) \le \frac{\pi/2 - \varepsilon}{\sqrt{\kappa}}$ for some $\varepsilon \in (0, \pi/2)$. Then

$$o((1-\alpha)x \oplus \alpha y, z) \le (1-\alpha)\rho(x, z) + \alpha\rho(y, z),$$

for all $x, y, z \in X$ and $\alpha \in [0, 1]$.

Let (X, ρ) be a geodesic space. The *distance* from a point x in X to a subset C of X is defined by

$$\operatorname{dist}(x, C) := \inf\{\rho(x, y) : y \in C\}.$$

The set C is bounded if diam $(C) := \sup\{\rho(x, y) : x, y \in C\} < \infty$.

Definition 1.5. Let $f : C \to \mathbb{R}$ be a function. Then

(i) *f* is said to be *convex* if $f(\alpha x \oplus (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y)$ for all $\alpha \in [0, 1]$ and $x, y \in C$;

(ii) f is said to be *strictly convex* if $f(\alpha x \oplus (1-\alpha)y) < \alpha f(x) + (1-\alpha)f(y)$ for all $\alpha \in (0,1)$ and $x, y \in C$ with $x \neq y$.

Let *A* be a nonempty subset of *X*. The *closed convex hull* of *A* is defined by

$$\overline{\operatorname{conv}}(A) := \bigcap \{ B \subseteq X : A \subseteq B \text{ and } B \text{ is closed and convex} \}.$$

Let *C* be a convex subset of *X*. A subset *A* of *C* is called an *extremal subset* if it is nonempty, closed and satisfies the following property: If $x, y \in C$ and $\alpha x \oplus (1 - \alpha)y \in A$ for some $\alpha \in (0, 1)$, then $x, y \in A$. Notice that if *A* is an extremal subset of *B* and *B* is an extremal subset of *C*, then *A* is an extremal subset of *C*. A point *z* in *C* is called an *extreme point* of *C* if $\{z\}$ is an extremal subset of *C*. We denote by Ext(C) the set of all extreme points of *C*.

Example 1.6. In the Euclidean space \mathbb{R}^2 , the square $A := \{(x, y) : |x| \le 1, |y| \le 1\}$ has four extreme points while the strip $B := \{(x, y) : 0 \le x \le 1, y \in \mathbb{R}\}$ does not have an extreme point.

2. MAIN RESULTS

We begin this section by proving a crucial lemma.

Lemma 2.1. Let $\kappa > 0$ and (X, ρ) be a complete $CAT(\kappa)$ space with $diam(X) \le \frac{\pi/2 - \varepsilon}{\sqrt{\kappa}}$ for some $\varepsilon \in (0, \pi/2)$. If K is a nonempty compact convex subset of X, then every extremal subset of K has an extreme point.

Proof. Let C be the family of all nonempty extremal subset of K. Since $K \in C$, it follows that C is nonempty and it can be partially ordered by set inclusion. By Zorn's Lemma, C has a minimal element, say M. It is enough to show that M consists of exactly one point. Suppose that it contains at least two points, say x_0 and y_0 . Let $f : M \to \mathbb{R}$ be defined by

$$f(x) := \rho^2(x_0, x)$$
 for all $x \in M$.

Since $x_0 \neq y_0$, f is not a constant function. By (1.1), f is strictly convex. Let $M_0 := \{x \in M : f(x) = \sup_{y \in M} f(y)\}$. Since f is continuous and K is compact, M_0 is nonempty. Notice also that it is a closed proper subset of M. Next, we show that M_0 is an extremal subset of M. Let $x', x'' \in M$ and M_0 contains a point $(1 - \alpha)x' \oplus \alpha x''$ for some $\alpha \in (0, 1)$. By (1.1), we have

$$\sup_{y \in M} f(y) = f((1-\alpha)x' \oplus \alpha x'')$$

$$\leq (1-\alpha)f(x') + \alpha f(x'') - \alpha(1-\alpha)\rho^2(x',x'')$$

$$\leq \sup_{y \in M} f(y) - \alpha(1-\alpha)\rho^2(x',x''),$$

which implies that $x' = x'' \in M_0$. Thus $M_0 \in C$ which contradicts to the minimality of M and hence the proof is complete.

Theorem 2.2. Let $\kappa > 0$ and (X, ρ) be a complete $CAT(\kappa)$ space with $diam(X) \le \frac{\pi/2 - \varepsilon}{\sqrt{\kappa}}$ for some $\varepsilon \in (0, \pi/2)$. If K is a nonempty compact convex subset of X, then $\overline{conv}(Ext(K)) = K$.

Proof. (This proof is patterned after the proof of Theorem 3.1 in [6]). By Lemma 2.1, Ext(K) $\neq \emptyset$. Clearly, $\overline{\operatorname{conv}}(\operatorname{Ext}(K)) \subseteq K$. Suppose that $\overline{\operatorname{conv}}(\operatorname{Ext}(K)) \neq K$. Let $g: K \to \mathbb{R}$ be defined by $g(x) := \operatorname{dist}(x, \overline{\operatorname{conv}}(\operatorname{Ext}(K)))$ and let $K_0 := \{x \in K : g(x) = \sup_{y \in K} g(y)\}$. Since g is continuous and K is compact, K_0 is nonempty. Notice also that it is a closed subset of K. Since $\overline{\operatorname{conv}}(\operatorname{Ext}(K)) \neq K$, we get that $\sup\{g(y) : y \in K\} > 0$. By Lemma 1.4 for $x, y \in K$, $\alpha \in [0, 1]$ and $z \in \overline{\operatorname{conv}}(\operatorname{Ext}(K))$ we have

$$\rho((1-\alpha)x \oplus \alpha y, z) \le (1-\alpha)\rho(x, z) + \alpha\rho(y, z),$$

which implies that g is convex. Notice also that K_0 is an extremal subset of K. Again, by Lemma 2.1 there is a point z in $K_0 \cap \text{Ext}(K)$. Thus $0 = g(z) = \sup\{g(y) : y \in K\}$ which is a contradiction. Hence $\overline{\text{conv}}(\text{Ext}(K)) = K$.

As a consequence of Theorem 2.2, we obtain the following corollary.

Theorem 2.3. ([6, Theorem 1]) Let (X, ρ) be a complete CAT(0) space and K be a nonempty compact convex subset of X. Then $\overline{conv}(Ext(K)) = K$.

Proof. It is well known that every convex subset of a CAT(0) space, equipped with the induced metric, is a CAT(0) space (see e.g., [1]). Thus (K, ρ) is a CAT(0) space and hence it is a CAT(κ) space for all $\kappa > 0$. Notice also that it is R-convex for R = 2. Since K is bounded, we can choose $\varepsilon \in (0, \pi/2)$ and $\kappa > 0$ such that diam $(K) \leq \frac{\pi/2 - \varepsilon}{\sqrt{\kappa}}$. The conclusion follows from Theorem 2.2.

Acknowledgements. This research was supported by Chiang Mai University and Thailand Research Fund under Grant RSA6080076.

REFERENCES

- [1] Bridson, M. and Haefliger, A., Metric Spaces of Non-Positive Curvature, Springer, Berlin, 1999
- [2] Brown, K. S., Buildings, Springer, New York, 1989
- [3] Cho, Y. J., Ciric, L. and Wang, S. H., Convergence theorems for nonexpansive semigroups in CAT(0) spaces, Nonlinear Anal., 74 (2011), 6050–6059
- [4] Cholamjiak, P., Abdou, A. A. N. and Cho, Y. J., Proximal point algorithms involving fixed points of nonexpansive mappings in CAT(0) spaces, Fixed Point Theory Appl., 2015, 2015:227, 13 pp.
- [5] Krein, M. G. and Milman, D. P., On extreme points of regular convex sets, Studia Math., 9 (1940), 133-137
- [6] Niculescu, C. P., The Krein-Milman theorem in global NPC spaces, Bull. Math. Soc. Sci. Math. Roumanie., 50 (2007), 343–346
- [7] Ohta, S., Convexities of metric spaces, Geom. Dedicata., 125 (2007), 225-250
- [8] Pakkaranang, N., Sa Ngiamsunthorn, P., Kumam, P. and Cho, Y. J., Convergence theorems of the modified S-type iterative method for (a,)-generalized hybrid mappings in CAT(0) spaces, J. Math. Anal., 8 (2017), 103–112
- [9] Saipara, P., Chaipunya, P., Cho, Y. J. and Kumam, P., On strong and Δ–convergence of modified S-iteration for uniformly continuous total asymptotically nonexpansive mappings in CAT(κ) spaces, J. Nonlinear Sci. Appl., 8 (2015), 965–975

CENTER OF EXCELLENCE IN MATHEMATICS AND APPLIED MATHEMATICS DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE, CHIANG MAI UNIVERSITY CHIANG MAI 50200 THAILAND *E-mail address*: bancha.p@cmu.ac.th