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Coupled coincidence and coupled common fixed point
theorems on a fuzzy metric space with a graph
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ABSTRACT. Inspired by the work of Dakjum et al. [Eshi, D., Das, P. K. and Debnath, P., Coupled coincidence and
coupled common fixed point theorems on a metric space with a graph, Fixed Point Theory Appl., 37 (2016), 1–14], we
introduce a new class of G−f−contraction mappings in complete fuzzy metric spaces endowed with a directed
graph and prove some existence results for coupled coincidence and coupled common fixed point theorems of
this type of contraction mappings in complete fuzzy metric spaces endowed with a directed graph.

1. INTRODUCTION

Zadeh [18] introduced the concept of fuzzy set theory. There are many viewpoints of
the notion of the metric space in fuzzy topology. We can divide them into following two
groups. First group relate these results to the fuzzy metrics on a set X is treated as a map
d: X x X → R+, where X represents the totality of all fuzzy points of a set and satisfy
some axioms which are analogous to the ordinary metric axioms. In such an approach
numerical distances are set up between fuzzy objects. Second group focussed on those
results in which the distance between objects is fuzzy and the objects themselves may or
may not be fuzzy. Erceg [4], Kaleva and Seikkala [12] and Kramosil and Michalek [13]
discussed in length about fuzzy metric spaces. Grabiec’s [8] proved a fixed point theo-
rem in fuzzy metric space. Subramanyam [16] generalized Grabiec’s result for a pair of
commuting maps in the setting of Jungck 1976 [11]. George and Veermani [6] modified
the concept of fuzzy metric spaces and defined a Hausdorff topology on this fuzzy metric
space which has some applications in quantum particle physics. The concept of coupled
fixed point was introduce by Bhaskar and Lakshmikantham [7] which has been further
generalized and extended by many authors. Sedghi et al. [14] initiated the study of cou-
pled fixed point in the setup of fuzzy metric spaces which become a topic of interest for
many mathematician working in this area. (for example see [3, 15, 2, 17]).
In this paper, we study and establish the existence theorems for G − f -contraction map-
ping in the new set up of complete fuzzy metric spaces endowed with a directed graph.

Let (M,X, ∗) be a fuzzy metric space and ∆ be the diagonal of the Cartesian product
X ×X. Let G be a directed graph, such that the set V (G) of its vertices coincides with X
and ∆ ⊂ E(G), where E(G) is the set of edges of the graph G. Assume also that G has no
parallel edges and, thus one can identified G with the pair (V (G), E(G)). Also, denote by
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G−1 the graph obtained from G by reversing the direction of the edges. Thus,

E(G−1) = {(x, y) ∈ X ×X : (y, x) ∈ E(G)}.

2. PRELIMINARIES

In this section, we present some basic definitions and concepts related to the main
results of this article. In the sequel, N denotes the set of all positive integers and R the set
of all real numbers.

Definition 2.1. [13] A binary operation ∗ : [0, 1] × [0, 1] → [0, 1] is a continuous t-norm if
it satisfies the following conditions:

(1) ∗ is associative and commutative;
(2) ∗ is continuous;
(3) a ∗ 1 = a for every a ∈ [0, 1];
(4) a ∗ b ≤ c ∗ d if a ≤ c and b ≤ d for all a, b, c, d ∈ [0, 1].

Definition 2.2. [9] A t - norm ∗ is said to be of H - type if the family of functions {∗m(a)}∞m=1

is equicontinuous at a = 1,where ∗2(a) = a∗a, ∗m+1(a) = a∗(∗m(a)), m = 1, 2, ..., a ∈
[0, 1]. The t - norm ∗M = min is an example of t - norm of H - type, but there are other
t - norms ∗ of H - type (see[9]). Obviously, ∗ is a H - type t norm if and only if for any
λ ∈ (0, 1), there exists δ(λ) ∈ (0, 1) such that ∗m(a) > 1− λ for all m ∈ N, when a > 1− δ.

Definition 2.3. [6] A triplet (X,M, ∗) is said to be a fuzzy metric space, ifX is an arbitrary
set, ∗ is a continuous t-norm and M is a fuzzy set on X2 × (0,∞) satisfying the following
conditions for all x, y, z ∈ X and t, s > 0:

(M1) M(x, y, t) > 0,
(M2) M(x, y, t) = 1 if and only if x = y,
(M3) M(x, y, t) = M(y, x, t),
(M4) M(x, y, t) ∗M(y, z, s) ≤M(x, z, t+ s),
(M5) M(x, y, ·) : (0,∞)→ [0, 1] is continuous.

In view of (M1) and (M2), it is worth pointing out that 0 < M(x, y, t) < 1 for all
t > 0, provided x 6= y. In view of Definition (2.3), George and Veermani [6] introduced
the concept of Hausdorff topology on fuzzy metric spaces and showed that every metric
space induces a fuzzy metric space. In fact, we can fuzzify metric spaces into fuzzy metric
spaces in a natural way as is shown by the following example. In other words, every
metric induces a fuzzy metric.

Example 2.1. Let (X, d) be a metric space and define a ∗ b = ab for all a, b ∈ [0, 1]. Also

define M(x, y, t) =
t

t+ d(x, y)
for all x, y ∈ X and t > 0. Then (X,M, ∗) is a fuzzy metric

space, called standard fuzzy metric space induced by (X, d).

Definition 2.4. [6] Let (X,M, ∗) be a fuzzy metric space, then
(i) a sequence {xn} in X is said to be convergent and converges to say x if limn→∞M

(xn, x, t) = 1, for all t > 0;
(ii) a sequence {xn} in X is said to be a Cauchy sequence if for given ε > 0, there

exists n0 ∈ N, such that M(xn, xm, t) > 1− ε, for all t > 0 and n,m ≥ n0;
(iii) a fuzzy metric space (X,M, ∗) is said to be complete if and only if every Cauchy

sequence in X is a convergent sequence.

Remark 2.1. (see [8]).
(a) For all x, y ∈ X,M(x, y, .) is non - decreasing.
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(b) It is easy to prove that if xn → x, yn → y, tn → t, then limn→∞M(xn, yn, tn) =
M(x, y, t).

(c) In a fuzzy metric space (X,M, ∗), whenever M(x, y, t) > 1− r for
x, y ∈ X, t > 0, 0 < r < 1, we can find a t0, 0 < t0 < t such thatM(x, y, t0) > 1−r.

(d) For any r1 > r2, we can find r3 such that r1 ∗ r3 ≥ r2 and for any r4 we can find r5
such that r3 ∗ r5 ≥ r4,, where r1, r2, r3, r4, r5 ∈ (0, 1).

Lemma 2.1. [8] M is a continuous function on X ×X × (0,∞).

Definition 2.5. [14] Let (X,M, ∗) be a fuzzy metric space. M is said to satisfy the n -
property on X ×X × (0,∞) if limn→∞[M(x, y, knt)]n

p

= 1, whenever x, y ∈ X, k > 1 and
p > 0.

Lemma 2.2. [10] Let (X,M, ∗) be a fuzzy metric space and M satisfies the n - property; then
limt→+∞M(x, y, t) = 1, for all x, y ∈ X.

Our aim in this paper is to prove a coupled coincidence point theorem for two map-
pings in a complete fuzzy metric space endowed with graph.

Definition 2.6. [7] Let X be a nonempty set. An element (x, y) ∈ X × X is called a
coupled fixed point of the mapping T : X ×X → X if T (x, y) = x and T (y, x) = y.

Definition 2.7. [7] An element (x, y) ∈ X×X is called a coupled coincidence point of the
mappings T : X ×X → X and f : X → X if T (x, y) = fx and T (y, x) = fy.

Let us denote the set of all coupled coincidence points of T and f as CCoin(Tf).

Definition 2.8. [7] An element (x, y) ∈ X ×X is called a coupled common fixed point of
the mappings T : X ×X → X and f : X → X if T (x, y) = fx = x and T (y, x) = fy = y.

Definition 2.9. [7] Let X be a nonempty set. The mappings T : X ×X → X and f : X →
X are called commutative if f(T (x, y)) = T (fx, fy), for all x, y ∈ X.

Definition 2.10. [1, 7] A function f : X → X is called G-continuous if
(i) for all x, x∗ ∈ X and for any sequence {ni}i∈N of positive integers with {fnix} =
{xni
} → x∗, and (fnix, fni+1x) = (xni

, xni+1
) ∈ E(G), implies f(fnix) = f(xni

)→
fx∗ as i→∞,

(ii) for all y, y∗ ∈ X and for any sequence {ni}i∈N of positive integers with {fniy} =
{yni
} → y∗ and (fniy, fni+1y) = (yni

, yni+1
) ∈ E(G−1), implies f(fniy) =

f(yni
)→ fy∗ as i→∞.

Definition 2.11. [1] A function T : X×X → X isG-continuous if for all (x, y), (x∗, y∗) ∈
X × X and for any sequence {ni}i∈N of positive integers with {xni

} → x∗, {yni
} → y∗

as i → ∞ and (Tni(x, y), Tni+1(x, y)) = (xni
, xni+1

) ∈ E(G), (Tni(y, x), Tni+1(y, x)) =
(yni

, yni+1
) ∈ E(G−1) implies T (Tni(x, y), Tni(y, x)) = T (xni

, yni
)→ T (x∗, y∗),

T (Tni(y, x), Tni(x, y)) = T (yni
, xni

)→ T (y∗, x∗) as i→∞.

3. MAIN RESULTS

In this section, we discuss certain definitions and lemmas which will be necessary for
establishing the results of the next section.

Suppose that (X,M, ∗) is a fuzzy metric space endowed with a directed graph G. Let
us consider the mappings T : X × X → X and f : X → X. Define the set (X × X)Tf

as (X × X)Tf = {(x, y) ∈ X × X : (fx, T (x, y)) ∈ E(G)) and (fy, T (y, x)) ∈
E(G−1)}.We also call the sequences {xn} and {yn} inX as Picard sequences if T (xn, yn) =
fxn+1 and T (yn, xn) = fyn+1 for all n = 0, 1, 2, .......
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Definition 3.12. The mapping T : X ×X → X is called a G− f -contraction if
(i) for all x, y, u, v ∈ X , T is f−edge preserving, i.e., (fx, fu) ∈ E(G) and (fy, fv) ∈

E(G−1) then (T (x, y), T (u, v)) ∈ E(G) and (T (y, x), T (v, u)) ∈ E(G−1);
(ii) for all x, y, u, v ∈ X such that (fx, fu) ∈ E(G) and (fy, fv) ∈ E(G−1),

M(T (x, y), T (u, v), αt) ≥ [M(fx, fu, t)∗M(fy, fv, t))],where α ∈ (0, 1) is called
the contraction constant of T.

Lemma 3.3. Let T : X ×X → X be a f -edge preserving and T (X ×X) ⊆ f(X), then for every
Picard sequences {xn}, {yn} in X the following holds:

(i) if (x0, y0) ∈ (X ×X)Tf , then (T (xn, yn), T (xn+1, yn+1)) ∈ E(G) and
(T (yn, xn), T (yn+1, xn+1)) ∈ E(G−1);

(ii) if (x0, y0) ∈ (X ×X)Tf , then (xn+1, yn+1) ∈ (X ×X)Tf

Proof. Let x0, y0 be two arbitrary points in X . Since T (X × X) ⊆ f(x), we can choose
xn, yn in X such that f(x1) = T (x0, y0) and f(y1) = T (y0, x0). Continuity this process, we
can construct sequences {xn} and {yn} in X such that

(3.1) f(xn+1) = T (xn, yn) and f(yn+1) = T (yn, xn) for all n = 0, 1, 2...

(i) Let (x0, y0) ∈ (X × X)Tf i.e. (fx0, T (x0, y0)) ∈ E(G) and (fy0, T (y0, x0)) ∈ E(G−1)
which imply (fx0, fx1) ∈ E(G) and (fy0, fy1) ∈ E(G−1) Now, by the f -edge preser-
ving property of T , we get that (T (x0, y0), T (x1, y1)) ∈ E(G) and (T (y0, x0), T (y1, x1)) ∈
E(G−1). Continuity in this way, we set (T (xn, yn), T (xn+1, yn+1)) ∈ E(G) and
(T (yn, xn), T (yn+1, xn+1)) ∈ E(G−1) ∀ n = 0, 1, 2.....
(ii) Let (x0, y0) ∈ (X×X)Tf , then from (i) we have (T (xn, yn), T (xn+1, yn+1)) ∈ E(G) and
(T (yn, xn), T (yn+1, xn+1)) ∈ E(G−1). Thus, by the definition of (X × X)Tf , we have
(xn+1, yn+1) ∈ (X ×X)Tf . �

Lemma 3.4. Suppose (X,M, ∗) is a complete fuzzy metric space endowed with a directed graph
G with ∗ is a continuous t - norms of H- type. Let T : X × X → X be a G − f−contraction
with contraction constant α ∈ (0, 1) and T (X × X) ⊆ f(X). Also let {xn}, {yn} be Picard
sequences inX. Then, for each (x0, y0) ∈ (X×X)Tf there exist x∗, y∗ ∈ X such that fxn → x∗

and fyn → y∗, as n→∞.

Proof. Let (x0, y0) ∈ (X×X)Tf . Then by Lemma 3.3, we have (T (xn, yn), T (xn+1, yn+1)) ∈
E(G) and (T (yn, xn), T (yn+1, xn+1)) ∈ E(G−1) ∀ n = 0, 1, 2, ..... i.e. (fxn, fxn+1) ∈
E(G) and (fyn, fyn+1) ∈ E(G−1) ∀ n = 0, 1, 2, ....
Since ∗ is a t - norm of H - type, then for any λ > 0, there exists a θ > 0 such that

(3.2) (1− θ) ∗ (1− θ) ∗ ... ∗ (1− θ)︸ ︷︷ ︸
k−times

≥ 1− λ, for all k ∈ N.

Since M(x, y, .) is continuous and limt→+∞M(x, y, t) = 1 for all x, y ∈ X there exists
t0 > 0 such that

(3.3)
{
M(fx0, fx1, t0) ≥ 1− θ,
M(fy0, fy1, t0) ≥ 1− θ.

On the other hand, for any t > 0, there exists n0 ∈ N and t0 < t such that

(3.4) t >

∞∑
i=n0

αi(t0),

As F is aG−f -contraction, so we haveM(fx1, fx2, α(t0)) = M(T (x0, y0), T (x1, y1), α(t0))
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≥M(fx0, fx1, t0)∗M(fy0, fy1, t0).
andM(fy1, fy2, α(t0)) = M(T (y0, x0), T (y1, x1), α(t0)) ≥M(fy0, fy1, t0)∗M(fx0, fx1, t0).
Similarly, we can also get
M(fx2, fx3, α

2(t0)) = M(T (x1, y1), T (x2, y2), α2(t0))

≥M(fx1, fx2, α(t0)) ∗M(fy1, fy2, α(t0))

= M(T (x0, y0), T (x1, y1), α(t0))

∗M(T (y0, x0), T (y1, x1), α(t0))

≥M(fx0, fx1, t0) ∗M(fy0, fy1, t0)

∗M(fy0, fy1, t0) ∗M(fx0, fx1, t0)

= [M(fx0, fx1, t0)]2 ∗ [M(fy0, fy1, t0)]2.

M(fy2, fy3, α
2(t0)) = M(T (y1, x1), T (y2, x2), α2(t0))

≥M(fy1, fy2, α(t0)) ∗M(fx1, fx2, α(t0))

= M(T (y0, x0), T (y1, x1), α(t0))

∗M(T (x0, y0), T (x1, y1), α(t0))

≥M(fy0, fy1, t0) ∗M(fx0, fx1, t0)

∗M(fx0, fx1, t0) ∗M(fy0, fy1, t0)

= [M(fy0, fy1, t0)]2 ∗ [M(fx0, fx1, t0)]2.
Continuing in the same way, we get

M(fxn, fxn+1, α
n(t0)) ≥ [M(fx0, fx1, t0)]2

n−1

∗ [M(fy0, fy1, t0)]2
n−1

,

M(fyn, fyn+1, α
n(t0)) ≥ [M(fy0, fy1, t0)]2

n−1

∗ [M(fx0, fx1, t0)]2
n−1

,

So, from (3.3) and (3.4), for m > n ≥ n0, we have

M(fxn, fxm, t) ≥M(fxn, fxm,
∞∑

i=n0

αi(t0)) ≥M(fxn, fxm,
m−1∑
i=n

αi(t0))

≥M(fxn, fxn+1, α
n(t0)) ∗M(fxn+1, fxn+2, α

n+1(t0))

∗ · · · ∗M(fxm−1, fxm, α
m−1(t0))

≥ [M(fy0, fy1, t0)]2
n−1 ∗ [M(fx0, fx1, t0)]2

n−1

∗[M(fy0, fy1, t0)]2
n ∗ [M(fx0, fx1, t0)]2

n

∗ · · · ∗ [M(fy0, fy1, t0)]2
m−2 ∗ [M(fx0, fx1, t0)]2

m−2

= [(M(fy0, fy1, t0))]2
(m−n)(m+n−3) ∗ [(M(fx0, fx1, t0))2

(m−n)(m+n−3)

≥ (1− θ) ∗ (1− θ) ∗ ... ∗ (1− θ) ≥ 1− λ
which implies that

(3.5) M(fxn, fxm, t) > 1− λ,

for all m,n ∈ N with m > n ≥ n0 and t > 0. Hence, {fxn}n∈N is a Cauchy sequence.
Similarly, we can get that {fyn}n∈N is also a Cauchy sequence. Also, (X,M, ∗) is complete.
So, there exist, (say) x∗, y∗ ∈ X such that limn→∞ fxn = x∗ and limn→∞ fyn = y∗. �

We now discuss our main results.
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Theorem 3.1. Suppose that (X,M, ∗) is a complete fuzzy metric space endowed with a directed
graph G with ∗ is a continuous t - norms of H- type. Let T : X × X → X be a G − f -
contraction with contraction constant α ∈ (0, 1) and T (X ×X) ⊆ f(X). Let f be G-continuous
and commutes with T. Also, T is G - continuous. Then CCoin(Tf) 6= φ iff (X ×X)Tf 6= φ.

Proof. Suppose that CCoin(Tf) 6= φ. Then there exists some (x∗, y∗) ∈ CCoin(Tf), i.e.,
fx∗ = T (x∗, y∗) and fy∗ = T (y∗, x∗). So, (fx∗, T (x∗, y∗)) = (fx∗, fx∗) ∈ ∆ ⊂ E(G)
and (fy∗, T (y∗, x∗) = (fy∗, fy∗) ∈ ∆ ⊂ E(G−1) which means (x∗, y∗) ∈ (X ×X)Tf i. e.
(X×X)Tf 6= φ.Next, let us assume that (X×X)Tf 6= φ. Then there exists (x0, y0) ∈ (X×
X)Tf , i.e., (fx0, T (x0, y0)) ∈ E(G) and (fy0, T (y0, x0)) ∈ E(G−1). Then, by Lemma (3.3),
we have a sequence {ni}i∈N of positive integers such that (T (xni , yni), T (xni+1 , yni+1)) ∈
E(G) and (T (yni , xni), T (yni+1 , xni+1)) ∈ E(G−1). Using (3.1), we have

(3.6) (fxni+1
, fxni+2

) ∈ E(G) and (fyni+1
, fyni+2

) ∈ E(G−1).

Also, from Lemma (3.4), we have

(3.7) lim
n→∞

fxni
= x∗ and lim

n→∞
fyni

= y∗

But f is G-continuous, so we get that

(3.8) lim
n→∞

f(fxni
) = fx∗ and lim

n→∞
f(fyni

) = fy∗

Using (3.4) and the commutativity of T and f gives us

f(fxni+1
) = f(T (xni

, yni
) and f(fyni+1

) = f(T (yni
, xni

))

(3.9) i.e. f(fxni+1
) = (T (fxni

, fyni
) and f(fyni+1

) = (T (fyni
, fxni

))

Finally, we show that fx∗ = T (x∗, y∗) and fy∗ = T (y∗, x∗). Let T be G - continuous.
Then from (3.6), (3.7) and (3.9), we have limn→∞ f(fxni+1

) = limn→∞ T (fxni
, fyni

) i.e.
fx∗ = T (x∗, y∗)) and limn→∞ f(fyni+1

) = T (fyni
, fxni

) i.e. fy∗ = T (y∗, x∗). Thus,
(x∗, y∗) is coupled coincidence point of the mapping T and f, i.e., CCoin(Tf) 6= φ. �

Theorem 3.2. Suppose that the hypotheses of Theorem (3.1) hold. Besides, let for every (x, y), (x∗, y∗)
∈ X×X there exist (u, v) ∈ X×X such that (T (x, y), T (u, v)) ∈ E(G), (T (y, x), T (v, u)) ∈
E(G−1) and (T (x∗, y∗), T (u, v)) ∈ E(G), (T (y∗, x∗), T (v, u)) ∈ E(G−1). Then T and f
have unique coupled common fixed point.

Proof. Let (x, y) and (x∗, y∗) be coupled coincidence points of T and f , i.e.,

(3.10) fx = T (x, y) and fy = T (y, x)

and

(3.11) fx∗ = T (x∗, y∗) and fy∗ = T (y∗, x∗)

By hypothesis, we have

(3.12) (T (x, y), T (u, v)) ∈ E(G), and (T (y, x), T (v, u)) ∈ E(G−1)

(3.13) (T (x∗, y∗), T (u, v)) ∈ E(G), and (T (y∗, x∗), T (v, u)) ∈ E(G−1)

Set T (un, vn) = fun+1, u0 = u, and T (vn, un) = fvn+1, v0 = v. Then, using (3.10) and
(3.11); (3.12) and (3.13) we have (fx, fu1) ∈ E(G), (fy, fv1) ∈ E(G−1) and(fx∗, fu1) ∈
E(G), (fy∗, fv1) ∈ E(G−1). But T is f -edge preserving, so (T (x, y), T (u1, v1)) ∈
E(G), (T (y, x), T (v1, u1)) ∈ E(G−1) and (T (x∗, y∗), T (u1, v1)) ∈ E(G), (T (y∗, x∗),
T (v1, u1) ∈ E(G−1)i.e. (fx, fu2) ∈ E(G), (fy, fv2) ∈ E(G−1) and (fx∗, fu2) ∈
E(G), (fy∗, fv2) ∈ E(G−1) Using the f -edge preserving property of T repeatedly, we
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obtain (fx, fun) ∈ E(G), (fy, fvn) ∈ E(G−1) and (fx∗, fun) ∈ E(G), (fy∗, fvn) ∈
E(G−1) Since ∗ is a t - norm of H - type, then for any λ > 0, there exists a θ > 0 such that

(3.14) (1− θ) ∗ (1− θ) ∗ ... ∗ (1− θ)︸ ︷︷ ︸
k−times

≥ 1− λ, for all k ∈ N.

Since M(x, y, .) is continuous and limt→+∞M(x, y, t) = 1 for all x, y ∈ X there exists
t0 > 0 such that M(fx, fx∗, t0) ≥ 1− θ,M(fy, fy∗, t0) ≥ 1− θ. On the other hand, for any
t > 0, there exists n0 ∈ N and t0 < t such that t >

∑∞
i=n0

αi(t0), and for t0 > 0, we have

M(fx, fx∗, t0) ≥M
(
fx, fun+1,

t0
2

)
∗M

(
fun+1, fx

∗,
t0
2

)
= M

(
T (x, y), T (un, vn),

t0
2

)
∗M

(
T (un, vn), T

(
x∗, y∗,

t0
2

))
≥M

(
fx, fun,

t0
22

)
∗M

(
fy, fvn,

t0
22

)
∗M

(
fun, fx

∗,
t0
22

)
∗M

(
fvn, fy

∗,
t0
22

)
= M

(
T (x, y), T (un−1, vn−1),

t0
22

)
∗M

(
T (y, x), T (vn−1, un−1),

t0
22

)
∗M

(
T (un−1, vn−1), T (x∗, y∗),

t0
22

)
∗ M

(
T (vn−1, un−1), T (y∗, x∗),

t0
22

)

≥
[
M

(
fx, fun−2,

t0
23

)]2
∗
[
M

(
fy, fvn−2,

t0
23

)]2
∗M

[(
fun−2, fx

∗,
t0
23

)]2
∗
[
M

(
fvn−2, fy

∗,
t0
23

)]2
...

≥
[
M

(
fx, fu0,

t0
2n+1

)]2n
∗
[
M

(
fy, fv0,

t0
2n+1

)]2n
∗
[
M

(
fu0, fx

∗,
t0

2n+1

)]2n

∗
[
M

(
fv0, fy

∗,
t0

2n+1

)]2n
i.e ≥ (1− θ) ∗ (1− θ) ∗ ... ∗ (1− θ) ≥ 1− λ

which implies that

(3.15) fx = fx∗ as n→∞.
Similarly,

(3.16) fy = fy∗.

Let fx = fx∗ = m and fy = fy∗ = n. Then, using commutativity of T and f along with
(3.10) gives f(fx) = f(T (x, y)) = T (fx, fy) and f(fy) = f(T (y, x)) = T (fy, fx) i.e. fm =
T (m,n) and fn = T (n,m). Thus, (m, n) is a coupled coincidence point. So, repeating the
earlier argument for (x, y) and (m, n), fx = fm and fy = fn i.e. m = fm and n = fn.
Thus, m = fm = T (m, n) and n = fn = T (n, m). So, (m, n) is coupled common fixed
point of T and f. Finally, we prove that the coupled common fixed point of T and f is
unique. Let us suppose that (p, q) is another coupled common fixed point of T and f.
Then

(3.17) p = gp = T (p, q) and q = gq = T (q, p).



424 Phumin Sumalai, Poom Kumam and Dhananjay Gopal

But, from (3.15) and (3.16), we have fp = fm = m and fq = fn = n. So, from (3.17), we
have p = m and q = n. Hence the coupled common fixed point of T and f is unique. �
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