A generalization of the Pompeiu mean-value theorem to compact sets

Larisa Cheregi and Vicuţa Neagoş

Abstract

We generalize the Pompeiu mean-value theorem by replacing the graph of a continuous function with a compact set.

1. Introduction and related results

Let $a, b \in \mathbb{R}, a<b$, and $f:[a, b] \rightarrow \mathbb{R}$. Throughout the paper, let $(\alpha, \beta) \in(\mathbb{R} \backslash[a, b]) \times \mathbb{R}$. Denote by $L[a, b ; f](x)=\frac{f(a)(b-x)+f(b)(x-a)}{b-a}$ the interpolating polynomial associated to f at the points a and b, and if f is differentiable at $c \in(a, b)$, let $T_{1}[c ; f](x)=$ $f(c)+(x-c) f^{\prime}(c)$ be the Taylor polynomial associated to f at the point c.

In 1946, Pompeiu gave the following variant of the Lagrange mean-value theorem which has been extensively studied (see. e.g., [18]).

Theorem 1.1 ([13], [18, Theorem 3.1]). Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous on $[a, b]$, differentiable on (a, b) and $0 \notin[a, b]$. Then there exists a point $c \in(a, b)$ such that

$$
\frac{a f(b)-b f(a)}{a-b}=f(c)-c f^{\prime}(c)
$$

He also gave the following geometric interpretation:
The tangent line to the graph of f at the point $(c, f(c))$, the line joining the points $\left(x_{0}, f\left(x_{0}\right)\right)$ and $\left(x_{1}, f\left(x_{1}\right)\right)$ and the y-axis intersect at the same point.

Another Pompeiu-type mean-value theorem is the following.
Theorem $1.2([8,9,10])$. Let $f:[a, b] \rightarrow \mathrm{R}$ be continuous on $[a, b]$ and differentiable on (a, b). If f has no roots in $[a, b]$ and $f(a) \neq f(b)$ then there exists a point $c \in(a, b)$ such that:

$$
\frac{a f(b)-b f(a)}{f(b)-f(a)}=c-\frac{f(c)}{f^{\prime}(c)}
$$

Remark 1.1. We note that, in Theorems 1.1 and 1.2, no condition is imposed on the derivative f^{\prime}.

Geometrically, this means that the graph of the Taylor polynomial $T_{1}[c ; f]$ and the graph of the Lagrange interpolation polynomial $L_{1}[a, b ; f]$ intersect the $O x$ axis at the same point.

In 1948, Boggio obtained the following generalization of Pompeiu's theorem.
Theorem 1.3 ([3, Boggio]). Let $f, g:[a, b] \rightarrow \mathbb{R}$ be two functions satisfying the conditions:
(i) are continuous on $[a, b]$;

[^0](ii) are differentiable on (a, b);
(iii) $g(x) \neq 0, \forall x \in[a, b]$;
(iv) $g^{\prime}(x) \neq 0, \forall x \in(a, b)$.

Then there exists a point $c \in(a, b)$ such that

$$
\frac{g(a) f(b)-g(b) f(a)}{g(a)-g(b)}=f(c)-g(c) \frac{f^{\prime}(c)}{g^{\prime}(c)}
$$

Remark 1.2. Ivan ([10]) showed that the assertion of Boggio's Theorem 1.3 follows by applying Pompeiu's theorem to the function $F=f \circ g^{-1}$. See also [1, 11].

2. Main results

We prove that the geometric property related to the Pompeiu theorem 1.1 remains valid for certain compact sets.
Theorem 2.4. If $M \subset[a, b] \times \mathbb{R}$ is a compact set in the natural topology of \mathbb{R}^{2}, then there exists a point $\left(x_{c}, y_{c}\right) \in[a, b] \times \mathbb{R}$ such that the line passing through the points (α, β) and $\left(x_{c}, y_{c}\right)$ is an affine majorant of M which is exact at $\left(x_{c}, y_{c}\right)$, i.e.,

$$
\begin{equation*}
y \leq \beta+\frac{y_{c}-\beta}{x_{c}-\alpha}(x-\alpha), \quad \forall(x, y) \in M \tag{2.1}
\end{equation*}
$$

A similar statement can be made for the existence of an affine minorant of M.
Proof. The proof is quite simple, but the theorem generalizes certain mean-value theorems with more complicated proofs.

For definiteness, suppose that $\alpha<a$. The function $m: M \rightarrow \mathbb{R}$,

$$
m(x, y)=\frac{y-\beta}{x-\alpha}
$$

is continuous on M hence it attains its maximum at a point $\left(x_{c}, y_{c}\right) \in M$, i.e.,

$$
\frac{y-\beta}{x-\alpha} \leq \frac{y_{c}-\beta}{x_{c}-\alpha}, \quad(x, y) \in M
$$

which is nothing but (2.1), and the proof is complete.
In particular, the set M might be an implicit curve in a plane defined as the set of zeros of a continuous function of two variables, e.g.,

$$
|x|+|y|=1, \quad(x, y) \in \mathbb{R}^{2}
$$

Theorem 2.5. If $f:[a, b] \rightarrow \mathbb{R}$ is continuous on $[a, b]$, then for any $\alpha \in \mathbb{R} \backslash[a, b]$, there exists a point $c \in(a, b)$ such that the line segment

$$
\begin{equation*}
y=(x-\alpha) \frac{f(c)-L[a, b ; f](\alpha)}{c-\alpha}+L[a, b ; f](\alpha), \quad x \in[a, b], \tag{2.2}
\end{equation*}
$$

is an affine support for f at c.
Moreover, if f is differentiable on (a, b), then

$$
\begin{equation*}
\frac{f(a)(b-\alpha)+f(b)(\alpha-a)}{b-a}=(\alpha-c) f^{\prime}(c)+f(c), \tag{2.3}
\end{equation*}
$$

i.e.,

$$
L[a, b ; f](\alpha)=T_{1}[c ; f](\alpha) .
$$

Proof. Suppose that $\alpha<a$. Define the continuous function $m:[a, b] \rightarrow \mathbb{R}$,

$$
m(x)=\frac{f(x)-L[a, b ; f](\alpha)}{x-\alpha} .
$$

Observe that $m(a)=m(b)$. It follows that there exists an interior point of extremum $c \in(a, b)$ such that, for example, $m(x) \geq m(c)$, i.e.,

$$
f(x) \geq(x-\alpha) \frac{f(c)-L[a, b ; f](\alpha)}{c-\alpha}+L[a, b ; f](\alpha), \quad x \in[a, b],
$$

and (2.2) is proved.
In the case when f is differentiable on (a, b), it follows that $m^{\prime}(c)=0$, hence

$$
L[a, b ; f](\alpha)=f(c)+(\alpha-c) f^{\prime}(c) .
$$

and the proof is complete.

Remark 2.3. If $0 \notin[a, b]$, for $\alpha=0$, Eq. (2.3) becomes the Pompeiu mean-value Theorem 1.1.

Remark 2.4. If f does not vanish on $[a, b]$ and $f(a) \neq f(b)$, for $L[a, b ; f](\alpha)=0$, i.e., $\alpha=\frac{b f(a)-a f(b)}{f(a)-f(b)}$, Eq. (2.3) implies Theorem 1.2.
The following is a generalization of Boggio's theorem 1.3.
Theorem 2.6. Let $f, g:[a, b] \rightarrow \mathbb{R}$ be continuous such that $g(a) \neq g(b)$. Let $A \in \mathbb{R}$ be in the exterior of the interval of endpoints $g(a)$ and $g(b)$. Then there exists a point $c \in(a, b)$ such that the function

$$
\begin{equation*}
x \mapsto(g(x)-A) \frac{f(c)-B}{g(c)-A}+B, \quad x \in[a, b], \tag{2.4}
\end{equation*}
$$

where

$$
\begin{equation*}
B=\frac{f(b)(g(a)-A)+f(a)(A-g(b))}{g(a)-g(b)} \tag{2.5}
\end{equation*}
$$

is a support for f which is exact at c.
Moreover, if f and g are differentiable on (a, b), then

$$
\begin{equation*}
(g(c)-A) f^{\prime}(c)+(B-f(c)) g^{\prime}(c)=0 \tag{2.6}
\end{equation*}
$$

Proof. Suppose that $g(a)<g(b)$ and $g(x)>A$, for all $x \in[a, b]$. Consider the continuous function, $m:[a, b] \rightarrow \mathbb{R}$,

$$
m(x)=\frac{f(x)-B}{g(x)-A},
$$

where B is such that $m(a)=m(b)$, i.e., B is given by (2.5). Since m is continuous and $m(a)=m(b)$, there exists a point $c \in(a, b)$ such that, for example,

$$
m(x) \geq m(c), \quad x \in[a, b],
$$

i.e.,

$$
f(x) \geq(g(x)-A) \frac{f(c)-B}{g(c)-A}+B, \quad x \in[a, b]
$$

and (2.4) is proved.
If m is differentiable on (a, b) we deduce that $m^{\prime}(c)=0$ which is equivalent to (2.6) and the proof is complete.

Remark 2.5. If g^{\prime} does not vanish on (a, b) and $A=0$, then Theorem 2.6 simplifies to the Boggio theorem 1.3. See also [16, 17].

Let $\gamma:[0,1] \rightarrow \mathbb{R}^{2}, \gamma(t)=(u(t), v(t))$ be a parameterized differentiable regular and closed curve such that $u([0,1])=[a, b]$. It follows that:

- γ^{\prime} does not vanish;
- $\gamma(0)=\gamma(1)$ and $\gamma^{\prime}\left(0_{+}\right)=\gamma^{\prime}\left(1_{-}\right)$.

The following is a generalization of Pompeiu's theorem for differentiable, regular and closed curves.

Theorem 2.7. There exists $\left(x_{c}, y_{c}\right) \in \gamma([0,1])$ such that the line segment

$$
y=\beta+\frac{y_{c}-\beta}{x_{c}-\alpha}(x-\alpha), \quad x \in[a, b] .
$$

is an affine support for the set $\gamma([0,1])$ which is exact at $\left(x_{c}, y_{c}\right)$.
Proof. Let $m(t):=\frac{v(t)-\beta}{u(t)-\alpha}, t \in[0,1]$. Since m is continuous, there exists $c \in[0,1]$ be such that, e.g.,

$$
m(t) \leq m(c), \quad \forall t \in[0,1] .
$$

Consider the line of equation

$$
\begin{equation*}
y-\beta=m(c)(x-\alpha) . \tag{2.7}
\end{equation*}
$$

We have

$$
y(u(t))-\beta=m(c)(u(t)-\alpha) \geq m(t)(u(t)-\alpha)=v(t)-\beta, \quad \forall t \in[0,1]
$$

i.e., $y(u(t)) \geq v(t)$, for all $t \in[0,1]$, hence (2.7) is an affine support of $\gamma([0,1])$. Put $x_{c}:=$ $u(c)$ and $y_{c}:=v(c)$. Since γ is closed and differentiable on $[0,1]$ we deduce that $m^{\prime}(c)=0$, hence

$$
v^{\prime}(c)\left((u(c)-\alpha)=u^{\prime}(c)(v(c)-\beta)\right.
$$

i.e., (2.7) is tangent to $\gamma([0,1])$ at $\left(x_{c}, y_{c}\right)$.

The proof is complete.

Without claiming exhaustiveness, we also mention other works related to the Pompeiu mean-value theorem: [2], [4, 5], [7, 6], [12], [14, 15], [19, 20]. We hope that some results in the above papers may be extended to compact sets.

Acknowledgment. We thank Professor Mircea Ivan for suggesting the topic of this paper.

References

[1] Abel, U. and Ivan, M., A new proof of a Stamate mean-value theorem, Automat. Comput. Appl. Math., 11 (2002), No. 1, 10-14
[2] Aziz, A. K. and Diaz, J. B., On Pompeiu's proof of the mean-value theorem of the differential calculus of real-valued function,. Contributions to Differential Equations, 1 (1963), 467-481
[3] Boggio, T., Sur une proposition de M. Pompeiu, Mathematica, Timişoara, 23 (1948), 101-102
[4] Cerone, P., Dragomir, S. S. and Kikianty, E., Ostrowski and trapezoid type inequalities related to Pompeiu's mean value theorem, J. Math. Inequal., $9(2015)$, No. 3, $739-762$, DOI 10.7153/jmi-09-61. URL https://doi.org/10.7153/jmi-09-61
[5] Cerone, P., Dragomir, S. S. and Kikianty, E., Ostrowski and trapezoid type inequalities related to Pompeiu's mean value theorem with complex exponential weight, J. Math. Inequal., 11 (2017), No. 4, 947-964, DOI 10.7153/jmi-2017-11-72, URL https:/ / doi.org/10.7153/jmi-2017-11-72
[6] Dragomir, S. S., An inequality of Ostrowski type via Pompeiu's mean value theorem, JIPAM. J. Inequal. Pure Appl. Math., 6 (2005), No. 3, Article 83, 9 pp.
[7] Dragomir, S. S., A survey on Ostrowski type inequalities related to Pompeiu's mean value theorem, Khayyam J. Math., 1 (2015), No. 1, 1-35
[8] Ivan, M., On some mean value theorems, Atheneum, Cluj, (1970), 23-25
[9] Ivan, M., Mean value theorems in mathematical analysis (in Romanian), Master's thesis, Babeş-Bolyai University, Cluj (1973)
[10] Ivan, M., A note on a Pompeiu-type theorem, In: Mathematical analysis and approximation theory, Burg, Sibiu, (2002), 129-134
[11] Ivan, M. and Abel, U., A Pompeiu-type mean-value theorem and divided differences, In: B. Bojanov (ed.) Constructive Theory of Functions, Varna 2002, 314-319, DARBA, Sofia (2003), ISBN 954-90126-6-2
[12] Pachpatte, B. G., On Grüss like integral inequalities via Pompeiu's mean value theorem, JIPAM. J. Inequal. Pure Appl. Math., 6 (2005), No. 3, Article 82, 5 pp.
[13] Pompeiu, D., Sur une proposition analogue au théorème des accroissements finis, Mathematica, 22 (1946), 143-146
[14] Pop, M. S., Asupra unei teoreme de medie a lui Flett, Lucr. Semin. Creativ. Mat., 3 (1993-1994), 79-88 (in Romanian)
[15] Pop, M. S. and Kovacs, G., Generalizari ale unei formule de medie, Lucr. Semin. Creativ. Mat., 3 (1994-1995), 119-126 (in Romanian)
[16] Pop, O. T., About some mean-value theorems, Creat. Math. Inform., 14 (2005), 49-52
[17] Pop, O. T. and Bărbosu, D., A mean-value theorem and some applications Didactica Matematica, 31 (2013), No. 1, 47-50
[18] Sahoo, P. K. and Riedel, T., Mean value theorems and functional equations, World Scientific Publishing Co., Inc., River Edge, NJ (1998), URL https:/ /doi.org/10.1142/9789812816047
[19] Sarikaya, M. Z., Some new integral inequalities via variant of Pompeiu's mean value theorem, Math. Morav., 19 (2015), No. 2, 89-95, DOI 10.5937/matmor1502089s. URL https://doi.org/10.5937/matmor1502089s
[20] Sarikaya, M. Z. and Budak, H., An inequality of Griuss like via variant of Pompeiu's mean value theorem Konuralp J. Math., 3 (2015), No. 1, 29-35

Department of Mathematics
Technical University of Cluj-Napoca
Memorandumului 28, 400114 Cluj-Napoca, Romania
E-mail address: larisa.cheregi@math.utcluj.ro
E-mail address: vicuta.neagos@math.utcluj.ro

[^0]: Received: 24.12.2018. In revised form: 10.06.2019. Accepted: 17.06.2019
 2010 Mathematics Subject Classification. D41A10, (26E60).
 Key words and phrases. Pompeiu mean-value theorem, compact set, affine majorant, Boggio's theorem.
 Corresponding author: Vicuța Neagoş; vicuta.neagos@math.utcluj.ro

