Dedicated to Prof. Juan Nieto on the occasion of his $60^{\text {th }}$ anniversary

Ulam-Hyers-Rassias stability of some quasilinear partial differential equations of first order

Nicolaie Lungu and Daniela Marian

ABSTRACT. In this paper we investigate the Ulam-Hyers-Rassias stability for some quasilinear partial differential equations.

1. Introduction

The Ulam stability is an important concept in the theory of functional equations. The origin of Ulam stability theory was a talk, given at Wisconsin University, in 1940, by S. M. Ulam [25], who formulated the following problem: We are given a group G_{1} and a metric group G_{2} with metric d. Given $\varepsilon>0$, does there exist a $\delta>0$ such that if $f: G_{1} \rightarrow G_{2}$ satisfies

$$
d(f(x y), f(x) f(y)) \leq \delta, x, y \in G_{1},
$$

then a homomorphism $g: G_{1} \rightarrow G_{2}$ exists with

$$
d(f(x), g(x)) \leq \varepsilon, x \in G_{1} ?
$$

The first partial answer to Ulam's question came within a year, when Hyers [7] proved the following result, for additive Cauchy equation in Banach spaces.

Let E_{1}, E_{2} be Banach spaces and let $f: E_{1} \rightarrow E_{2}$ be a transformation such that, for some $\delta>0$,

$$
\|f(x+y)-f(x)-f(y)\| \leq \delta
$$

for all $x, y \in E_{1}$. There exists a unique additive mapping $g: E_{1} \rightarrow E_{2}$ satisfying

$$
\|f(x)-g(x)\| \leq \delta, \forall x \in E_{1} .
$$

After Hyers' result a great number of papers on this subject have been published generalizing Hyers' theorem in many direction (see. e.g. [2, 3, 4, 5, 8, 14, 20, 21, 26, 22]. Alsina and Ger were the first authors who investigated the Ulam-Hyers stability of a differential equations ([1]).

They have proved that for every differentiable mapping $f: I \rightarrow \mathbb{R}$ satisying

$$
\left|f^{\prime}(x)-f(x)\right| \leq \varepsilon, \forall x \in I
$$

where $\varepsilon>0$ is a given number and I is an open interval of \mathbb{R}, there exists a differentiable mapping $g: I \rightarrow \mathbb{R}$ such that $g^{\prime}(x)=g(x)$ and

$$
|f(x)-g(x)| \leq 3 \varepsilon, \forall x \in I
$$

The result of Alsina and Ger was extended by Miura, Miyajima, Takahasi, Takagi and Jung $[9,10,11,19,23,24]$ to the stability of the first order linear differential equation and

[^0]linear differential equations of higher order with constant coefficients. The study of UlamHyers stability of partial differential equations started recently and we will mention here the results obtained in this direction by Jung [12, 13], Lungu and Ciplea [15], Lungu and Popa [16, 17], Lungu and Rus [18]. In [3] Brzdek, Popa, Rasa and Xu presented a unified and systematic approach to the field.

In what follows let $D=[a, b) \times \mathbb{R}, a \in \mathbb{R}, b \in \mathbb{R}$ be a subset of \mathbb{R}^{2}. Let $n \neq-1,0$.
We deal with the Ulam-Hyers-Rassias stability of the quasilinear partial differential equation

$$
\begin{gather*}
p(x, y) u^{n}(x, y) \frac{\partial u}{\partial x}+q(x, y) u^{n}(x, y) \frac{\partial u}{\partial y}=r(x, y) u^{n+1}(x, y)+f(x, y) \tag{1.1}\\
u(a, y)=\psi(y) \tag{1.2}
\end{gather*}
$$

where $p, q, r \in C(D, \mathbb{R}), f \in C(D, \mathbb{R})$ are given functions and $u \in C^{1}(D, \mathbb{R})$ is the unknown function. We suppose that $p(x, y) \neq 0$ for every $(x, y) \in D$.

We suppose that there exists $L>0$ such that

$$
\begin{equation*}
\left|\frac{f(x, y)}{p(x, y)} \cdot \frac{1}{u^{n}(x, y)}-\frac{f(x, y)}{p(x, y)} \cdot \frac{1}{w^{n}(x, y)}\right| \leq L|u(x, y)-w(x, y)| \tag{1.3}
\end{equation*}
$$

for every $(x, y) \in D$ and $u, w \in C^{1}(D, \mathbb{R})$.
Definition 1.1. The equation (1.1) is Ulam-Hyers-Rassias stable with respect to $\phi \in C\left(D, R_{+}\right)$ if there exists $c_{f, \phi}>0$ such that for each $\varepsilon>0$ and for each solution $u \in C^{1}(D, \mathbb{R})$ of

$$
\left|p(x, y) u^{n}(x, y) \frac{\partial u}{\partial x}+q(x, y) u^{n}(x, y) \frac{\partial u}{\partial y}-r(x, y) u^{n+1}(x, y)-f(x, y)\right| \leq \varepsilon \phi(x, y)
$$

with the initial condition (1.2), there exists a solution $w \in C^{1}(D, \mathbb{R})$ of (1.1) with

$$
|u(x, y)-w(x, y)| \leq c_{f, \phi} \varepsilon \phi(x, y), \forall(x, y) \in D
$$

2. Main results

We consider the characteristic system corresponding to quasilinear partial differential equation (1.1)

$$
\frac{d x}{p \cdot u^{n}}=\frac{d y}{q \cdot u^{n}}=\frac{d u}{r \cdot u^{n+1}+f} .
$$

From the first equality we have

$$
\frac{d x}{p(x, y)}=\frac{d y}{q(x, y)}
$$

and hence

$$
\begin{equation*}
\frac{d y}{d x}=\frac{q(x, y)}{p(x, y)} \tag{2.4}
\end{equation*}
$$

Let $\varphi:[a, b) \rightarrow R$ be a solution of the above equation (2.4). Let

$$
\begin{equation*}
\phi(x, y)=e^{\int_{a}^{x} \frac{r(\theta, \varphi(\theta)+y-\varphi(x))}{p(\theta, \varphi(\theta)+y-\varphi(x))} d \theta} \tag{2.5}
\end{equation*}
$$

We study the Ulam-Hyers-Rassias stability for the equation (1.1), with initial condition (1.2), with respect to function ϕ from (2.5).

The main result of this paper is given in the next theorem.
Theorem 2.1. If $\frac{r(x, y)}{p(x, y)} \leq M<0$, for every $(x, y) \in D$ and $\widetilde{\phi}(s, t)$ is nondecreasing in s then the equation (1.1), with initial condition (1.2), is Ulam-Hyers-Rassias stable with respect to ϕ.

Proof. We consider the change of coordinates $(x, y) \rightarrow(s, t)$

$$
\left\{\begin{array}{l}
x=s \\
y=t+\varphi(s)
\end{array}\right.
$$

Define the function \widetilde{u} by

$$
\widetilde{u}(s, t)=u(s, \varphi(s)+t) \Leftrightarrow u(x, y)=\widetilde{u}(x, y-\varphi(x)) .
$$

and the function $\widetilde{\phi}$ by

$$
\widetilde{\phi}(s, t)=\phi(s, \varphi(s)+t) \Leftrightarrow \phi(x, y)=\widetilde{\phi}(x, y-\varphi(x)) .
$$

We also define $\widetilde{p}(s, t)=p(s, \varphi(s)+t), \widetilde{q}(s, t)=q(s, \varphi(s)+t), \widetilde{r}(s, t)=r(s, \varphi(s)+t)$, $\widetilde{f}(s, t)=f(s, \varphi(s)+t)$ and $\widetilde{\psi}(t)=\psi(\varphi(a)+t)$.

Hence

$$
\begin{equation*}
\widetilde{\phi}(s, t)=e^{\int_{a}^{s} \frac{\tilde{\gamma}(\theta, t)}{\bar{p}(\theta, t)} d \theta} . \tag{2.6}
\end{equation*}
$$

Then

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial x}=\frac{\partial \widetilde{u}}{\partial s}-\varphi^{\prime}(s) \cdot \frac{\partial \widetilde{u}}{\partial t} \\
\frac{\partial u}{\partial y}=\frac{\partial \widetilde{u}}{\partial t}
\end{array}\right.
$$

and replacing in (1.1) it follows

$$
\widetilde{p} \widetilde{u}^{n} \frac{\partial \widetilde{u}}{\partial s}-p \widetilde{u}^{n} \varphi^{\prime}(s) \cdot \frac{\partial \widetilde{u}}{\partial t}+\widetilde{q} \widetilde{u}^{n} \frac{\partial \widetilde{u}}{\partial t}=\widetilde{r} \widetilde{u}^{n+1}+\widetilde{f}
$$

or

$$
\widetilde{p} \widetilde{u}^{n} \frac{\partial \widetilde{u}}{\partial s}+\widetilde{u}^{n}\left[\widetilde{q}-\widetilde{p} \varphi^{\prime}(s)\right] \cdot \frac{\partial \widetilde{u}}{\partial t}=\widetilde{r} \widetilde{u}^{n+1}+\widetilde{f} .
$$

Since $\widetilde{q}-\widetilde{p} \varphi^{\prime}(s)=0$ we have

$$
\widetilde{p} \widetilde{u}^{n} \frac{\partial \widetilde{u}}{\partial s}-\widetilde{r} \widetilde{u}^{n+1}=\widetilde{f},
$$

or

$$
\begin{gather*}
\frac{\partial \widetilde{u}}{\partial s}(s, t)-\frac{\widetilde{r}(s, t)}{\widetilde{p}(s, t)} \cdot \widetilde{u}(s, t)=\frac{\widetilde{f}(s, t)}{\widetilde{p}(s, t)} \cdot \frac{1}{\widetilde{u}^{n}(s, t)} . \tag{2.7}\\
\widetilde{u}(a, t)=\widetilde{\psi}(t) \tag{2.8}
\end{gather*}
$$

We study the Ulam-Hyers-Rassias stability for the equation (2.7) with initial condition (2.8), with respect to function $\widetilde{\phi}$ from (2.6). Let $\varepsilon>0$ and $\widetilde{u}(s, t)$ be an approximate solution of the above problem. Consider the inequality

$$
-\varepsilon \widetilde{\phi}(s, t) \leq \frac{\partial \widetilde{u}}{\partial s}(s, t)-\frac{\widetilde{r}(s, t)}{\widetilde{p}(s, t)} \cdot \widetilde{u}(s, t)-\frac{\widetilde{f}(s, t)}{\widetilde{p}(s, t)} \cdot \frac{1}{\widetilde{u}^{n}(s, t)} \leq \varepsilon \widetilde{\phi}(s, t)
$$

We have

$$
-\varepsilon e^{\int_{a}^{s} \frac{\tilde{r}(\theta, t)}{\bar{p}(\theta, t)} d \theta} \leq \frac{\partial \widetilde{u}}{\partial s}(s, t)-\frac{\widetilde{r}(s, t)}{\widetilde{p}(s, t)} \cdot \widetilde{u}(s, t)-\frac{\widetilde{f}(s, t)}{\widetilde{p}(s, t)} \cdot \frac{1}{\widetilde{u}^{n}(s, t)} \leq \varepsilon^{\int_{a}^{s} \frac{\tilde{\widetilde{p}}(\theta, t)}{\bar{p}(\theta, t)} d \theta}
$$

Multiplying by $e^{-\int_{a}^{s} \frac{\tilde{\tilde{r}}(\theta, t)}{\bar{p}(\theta, t)} d \theta}$ we have

$$
-\varepsilon \leq\left(\widetilde{u} \cdot e^{-\int_{a}^{s} \frac{\tilde{\tilde{p}}(\theta, t)}{\bar{p}(\theta, t)} d \theta}\right)_{s}^{\prime}-e^{-\int_{a}^{s} \frac{\tilde{\bar{p}}(\theta, t)}{\bar{p}}(\theta, t)} d \theta \cdot \frac{\tilde{f}(s, t)}{\widetilde{p}(s, t)} \cdot \frac{1}{\widetilde{u}^{n}(s, t)} \leq \varepsilon
$$

Integrating with respect to s, we have

$$
-\varepsilon(s-a) \leq \widetilde{u} \cdot e^{-\int_{a}^{s} \frac{\tilde{r}(\theta, t)}{\bar{p}(\theta, t)} d \theta}-\widetilde{\psi}(t)-\int_{a}^{s} e^{-\int_{a}^{\theta} \frac{\tilde{\tilde{p}}(\tau, t)}{\bar{p}(\tau, t)} d \tau} \cdot \frac{\tilde{f}(\theta, t)}{\widetilde{p}(\theta, t)} \cdot \frac{1}{\widetilde{u}^{n}(\theta, t)} d \theta \leq \varepsilon(s-a)
$$

Multiplying by $e^{\int_{a}^{s} \frac{\tilde{\gamma}(\theta, t)}{\bar{p}(\theta, t)} d \theta}$ we have

$$
\left.\begin{array}{rl}
-\varepsilon(s-a) e^{\int_{a}^{s} \frac{\tilde{\tilde{\gamma}}(\theta, t)}{\tilde{p}(\theta, t)} d \theta} & \leq \widetilde{u}-e^{\int_{a}^{s} \frac{\tilde{\tilde{\gamma}}(\theta, t)}{\bar{p}(\theta, t)} d \theta}\left[\widetilde{\psi}(t)+\int_{a}^{s} e^{-\int_{a}^{\theta} \frac{\tilde{\tilde{p}}(\tau, t)}{\tilde{p}(\tau, t)} d \tau} \frac{\widetilde{f}}{\widetilde{p}} \frac{1}{\widetilde{u}} \widetilde{u}^{n}(\theta, t)\right.
\end{array} \theta\right]
$$

Hence

$$
\left|\widetilde{u}-e^{\int_{a}^{s} \frac{\tilde{\tilde{r}}(\theta, t)}{\bar{p}(\theta, t)}} d \theta\left[\widetilde{\psi}(t)+\int_{a}^{s} e^{-\int_{a}^{\theta} \frac{\tilde{\tilde{\gamma}}(\tau, t)}{\bar{p}(\tau, t)} d \tau} \cdot \frac{\widetilde{f}(\theta, t)}{\widetilde{p}(\theta, t)} \cdot \frac{1}{\widetilde{u}^{n}(\theta, t)} d \theta\right]\right| \leq \varepsilon(b-a) e^{\int_{a}^{s} \frac{\tilde{\tilde{r}}(\theta, t)}{\tilde{p}(\theta, t)} d \theta} .
$$

It can be easily show that

$$
\widetilde{w}(s, t)=e^{\int_{a}^{s} \frac{\tilde{\tilde{p}}(\theta, t)}{\bar{p}(\theta, t)} d \theta}\left[\widetilde{\psi}(t)+\int_{a}^{s} e^{-\int_{a}^{\theta} \frac{\tilde{\tilde{p}}(\tau, t)}{\bar{p}(\tau, t)} d \tau} \cdot \frac{\widetilde{f}(\theta, t)}{\widetilde{p}(\theta, t)} \cdot \frac{1}{\widetilde{w}^{n}(\theta, t)}\right]
$$

is a solution of the equation (2.7) with initial condition (2.8)
We consider the difference

$$
\begin{aligned}
& |\widetilde{u}(s, t)-\widetilde{w}(s, t)| \leq\left|\widetilde{u}(s, t)-e^{\int_{a}^{s} \frac{\tilde{r}(\theta, t)}{\bar{p}(\theta, t)} d \theta}\left[\widetilde{\psi}(t)+\int_{a}^{s} e^{-\int_{a}^{\theta} \frac{\tilde{\tilde{r}}(\tau, t)}{\bar{p}(\tau,)} d \tau} \cdot \frac{\widetilde{f}(\theta, t)}{\widetilde{p}(\theta, t)} \cdot \frac{1}{\widetilde{u}^{n}(\theta, t)} d \theta\right]\right| \\
& \quad\left|e^{\int_{a}^{s} \frac{\tilde{\tilde{r}}(\theta, t)}{\bar{p}(\theta, t)} d \theta} \cdot \int_{a}^{s} e^{-\int_{a}^{\theta} \frac{\tilde{\tilde{r}}(\tau, t)}{\bar{p}(\tau,)} d \tau} \cdot\left(\frac{\widetilde{f}(\theta, t)}{\widetilde{p}(\theta, t)} \cdot \frac{1}{\widetilde{u}^{n}(\theta, t)}-\frac{\widetilde{f}(\theta, t)}{\widetilde{p}(\theta, t)} \cdot \frac{1}{\widetilde{w}^{n}(\theta, t)}\right) d \theta\right| \\
& \quad \leq \varepsilon(b-a) e^{\int_{a}^{s} \frac{\tilde{\gamma}(\theta, t)}{\widetilde{p}(\theta, t)} d \theta}+e^{\int_{a}^{s} \frac{\tilde{\gamma}(\theta, t)}{\widetilde{p}(\theta, t)} d \theta} \int_{a}^{s} e^{-\int_{a}^{\theta} \frac{\tilde{\gamma}(\tau, t)}{\widetilde{p}(\tau, t)} d \tau} \frac{\widetilde{f}}{\widetilde{p}}\left|\frac{1}{\widetilde{u}^{n}(\theta, t)}-\frac{1}{\widetilde{w}^{n}(\theta, t)}\right| d \theta
\end{aligned}
$$

Using (1.3) we obtain

$$
\begin{aligned}
|\widetilde{u}(s, t)-\widetilde{w}(s, t)| & \leq \varepsilon(b-a) e^{\int_{a}^{s} \frac{\tilde{r}(\theta, t)}{\bar{p}(\theta, t)} d \theta}+L e^{\int_{a}^{s} \frac{\tilde{\gamma}(\theta, t)}{\bar{p}(\theta, t)} d \theta} \int_{a}^{s} e^{-\int_{a}^{\theta} \frac{\tilde{\gamma}(\tau, t)}{\bar{p}(\tau, t)} d \tau}|\widetilde{u}(\theta, t)-\widetilde{w}(\theta, t)| d \theta \\
& =\varepsilon(b-a) e^{\int_{a}^{s} \frac{\tilde{\gamma}(\theta, t)}{\bar{p}(\theta, t)} d \theta}+L \int_{a}^{s} e^{\int_{\theta}^{s} \frac{\tilde{\tilde{\gamma}}(\tau, t)}{\bar{p}(\tau, t)} d \tau}|\widetilde{u}(\theta, t)-\widetilde{w}(\theta, t)| d \theta
\end{aligned}
$$

Using Gronwall's inequality we obtain

$$
\begin{aligned}
|\widetilde{u}(s, t)-\widetilde{w}(s, t)| & \leq \varepsilon(b-a) e^{\int_{a}^{s} \frac{\tilde{\gamma}(\theta, t)}{\tilde{p}(\theta, t)} d \theta} \cdot e^{L \int_{a}^{s} e^{\int_{\theta}^{s} \frac{\tilde{r}(\tau, t)}{\bar{p}(\tau, t)} d \tau} d \theta} \leq \varepsilon(b-a) e^{\int_{a}^{s} \frac{\tilde{\gamma}(\theta, t)}{\bar{p}(\theta, t)} d \theta} \cdot e^{L \int_{a}^{s} e^{(s-\theta) M} d \theta} \\
& \left.=\varepsilon(b-a) e^{\int_{a}^{s} \frac{\tilde{r}(\theta, t)}{\bar{p}(\theta, t)} d \theta} \cdot e^{-\frac{L}{M}\left(1-e^{(s-a) M}\right.}\right)=\varepsilon(b-a) e^{\int_{a}^{s} \frac{\tilde{\tilde{r}}(\theta, t)}{\bar{p}(\theta, t)} d \theta} \cdot e^{-\frac{L}{M}}
\end{aligned}
$$

Consequently

$$
\begin{aligned}
|u(x, y)-w(x, y)| & =|\widetilde{u}(s, t)-\widetilde{w}(s, t)| \leq \varepsilon(b-a) e^{\int_{a}^{s} \frac{\widetilde{\gamma}(\theta, t)}{\bar{p}(\theta, t)} d \theta} \cdot e^{-\frac{L}{M}}= \\
& =\varepsilon(b-a) e^{\int_{a}^{x} \frac{r(\theta, \varphi(\theta)+y-\varphi(x))}{p(\theta, \varphi(\theta)+y-\varphi(x))} d \theta} \cdot e^{-\frac{L}{M}} .
\end{aligned}
$$

We denote $c_{f, \phi}=(b-a) e^{-\frac{L}{M}}$ Hence

$$
|u(x, y)-w(x, y)| \leq c_{f, \phi} \varepsilon \phi(x, y), \forall(x, y) \in D
$$

that is the equation (1.1), with initial condition (1.2), is Ulam-Hyers-Rassias stable with respect to ϕ.

Remark 2.1. We suppose now $b=\infty$. We have

$$
\begin{equation*}
|\widetilde{u}(s, t)-\widetilde{w}(s, t)| \leq \varepsilon(s-a) e^{\int_{a}^{s} \frac{\tilde{\gamma}(\theta, t)}{\tilde{p}(t, t)} d \theta} \cdot e^{-\frac{L}{M}} \leq \varepsilon(s-a) e^{M(s-a)} \cdot e^{-\frac{L}{M}} . \tag{2.9}
\end{equation*}
$$

Setting $s \rightarrow \infty$ in (2.9), we have $\lim _{s \rightarrow \infty}(s-a) e^{M(s-a)}=0$, so

$$
\lim _{s \rightarrow \infty}|\widetilde{u}(s, t)-\widetilde{w}(s, t)|=0
$$

Consequently the problem is asymptotic stable.

Remark 2.2. If $r(x, y)=p(x, y) \cdot r_{1}(x)$ and $n=0$, the quasilinear differential equation (1.1) becomes the partial differential equation

$$
p(x, y) \frac{\partial u}{\partial x}+q(x, y) \frac{\partial u}{\partial y}=p(x, y) r_{1}(x) u(x, y)+f(x, y) .
$$

Hyers-Ulam stability of this equation was studied in [16].

References

[1] Alsina, C. and Ger, R., On some inequalities and stability results related to exponential function, J. Inequal. Appl., 2 (1998), 373-380
[2] Aoki, T., On the stability of the linear transformations in Banach spaces, J. Math. Soc. Japan, 2 (1950), 64-66
[3] Brzdek, J., Popa, D., Rasa, I. and Xu, B., Ulam Stability of Operators, Elsevier, 2018
[4] Brzdek, J., Popa, D. and Xu, B., The Hyers-Ulam stability of nonlinear recurrences, J. Math. Anal. Appl., 335 (2007), 443-449
[5] Cimpean, D. S. and Popa, D., Hyers-Ulam stability of Euler's equations, Appl. Math. Lett., 24 (2011), 1539-1543
[6] Czerwik, S., Functional equations and inequalities in several variables, World Scientific, 2002
[7] Hyers, D. H., On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA, 27 (1941), 222-224
[8] Hyers, D. H., Isac, G., Rassias, Th. M., Stability of functional equations in several variables, Birkhäuser, Basel, 1998
[9] Jung, S.-M., Hyers-Ulam stability of linear differential equations of first order, Appl. Math. Lett., 17 (2004), 1135-1140
[10] Jung, S.-M., Hyers-Ulam stability of linear differential equations of first order, II, Appl. Math. Lett., 19 (2006), 854-858
[11] Jung, S.-M., Hyers-Ulam stability of linear differential equations of first order, III, J. Math. Anal. Appl., 311 (2005), 139-146
[12] Jung, S.-M., Hyers-Ulam stability of linear partial differential equations of first order, Appl. Math. Lett., 22 (2009), 70-74
[13] Jung, S.-M. and Lee, K.-S., Hyers-Ulam stability of first order linear partial differential equations with constant coefficients, Math. Inequal. Appl., 10 (2007), No. 2, 261-266
[14] Jung, S.-M. and Rassias, Th. M., Ulam's problem for approximate homomorphisms in connection with Bernoulli's differential equation, Appl. Math. Comput., 187 (2007), 223-227
[15] Lungu, N. and Ciplea, S. A., Ulam-Hyers-Rassias stability of pseudoparabolic partial differential equations, Carpatian J. Math., 31 (2015), No. 2, 233-240
[16] Lungu, N. and Popa, D., Hyers-Ulam stability of a first order partial differential equation, J. Math. Anal. Appl., 385 (2012), 86-91
[17] Lungu, N. and Popa, D., Hyers-Ulam stability of some partial differential equation, Carpatian J. Math., 30 (2014), 327-334
[18] Lungu, N. and Rus, I. A., Ulam stability of nonlinear hyperbolic partial differential equations, Carpatian J. Math., 24 (2008), 403-408
[19] Miura, T., Miyajima, S. and Takahasi, S. E, Hyers-Ulam stability of linear differential operator with constant coeffiients, Math. Nachr., 258 (2003), 90-96
[20] Popa, D., Hyers-Ulam-Rassias stability of linear recurrence, J. Math. Anal. Appl., 309 (2005), 591-597
[21] Qarawani, M. N., On Hyers-Ulam-Rassias stability for Bernoulli's and first order linear and nonlinear differential equations, Br. J. Math. Comput. Sci., 4 (2014), No. 11, 1615-1628
[22] Rus, I. A., Ulam stability of ordinay differential equations, Studia Univ. "Babeş-Bolyai", Mathematica LIV (2009), No. 4, 125-133
[23] Takahasi., S. E., Miura, T. and Miyajima, S., On the Hyers-Ulam stability of the Banach space-valued differential equation $y^{\prime}=\lambda y$, Bull. Korean Math. Soc., 39 (2002), No. 2, 309-315
[24] Takahasi, S. E., Takagi, H., Miura, T. and Miyajima, S., The Hyers-Ulam stability constant of first order linear differential operators, J. Math. Anal. Appl., 296 (2004), 403-409
[25] Ulam, S. M., A Collection of Mathematical Problems, Interscience, New York, 1960
[26] Wang, G., Zhou, M. and Sun, L., Hyers-Ulam stability of linear differential equations of first order, Appl. Math. Lett., 21 (2008), 1024-1028

Department of Mathematics
Technical University of Cluj-Napoca
Memorandumului 28, 400114 Cluj-Napoca, Romania
E-mail address: nlungu@math.utcluj.ro
E-mail address: daniela.marian@math.utcluj.ro

[^0]: Received: 31.08.2018. In revised form: 10.01.2019. Accepted: 17.01.2019
 2010 Mathematics Subject Classification. 45M10, 45G10.
 Key words and phrases. quasilinear partial differential equations, Llam-Hyers-Rassias stability, Gronwall lemma.
 Corresponding author: Daniela Marian; daniela.marian@math.utcluj.ro

