
CARPATHIAN J. MATH.
35 (2019), No. 2, 165 - 170

Online version at http://carpathian.ubm.ro

Print Edition: ISSN 1584 - 2851 Online Edition: ISSN 1843 - 4401

Dedicated to Prof. Juan Nieto on the occasion of his 60th anniversary

Ulam-Hyers-Rassias stability of some quasilinear partial
differential equations of first order

NICOLAIE LUNGU and DANIELA MARIAN

ABSTRACT. In this paper we investigate the Ulam-Hyers-Rassias stability for some quasilinear partial diffe-
rential equations.

1. INTRODUCTION

The Ulam stability is an important concept in the theory of functional equations. The
origin of Ulam stability theory was a talk, given at Wisconsin University, in 1940, by S. M.
Ulam [25], who formulated the following problem: We are given a group G1 and a metric
group G2 with metric d. Given ε > 0, does there exist a δ > 0 such that if f : G1 → G2

satisfies
d (f (xy) , f (x) f (y)) ≤ δ, x, y ∈ G1,

then a homomorphism g : G1 → G2 exists with

d (f (x) , g (x)) ≤ ε, x ∈ G1?

The first partial answer to Ulam’s question came within a year, when Hyers [7] proved
the following result, for additive Cauchy equation in Banach spaces.

Let E1, E2 be Banach spaces and let f : E1 → E2 be a transformation such that, for
some δ > 0,

‖f (x+ y)− f (x)− f (y)‖ ≤ δ
for all x, y ∈ E1. There exists a unique additive mapping g : E1 → E2 satisfying

‖f (x)− g (x)‖ ≤ δ, ∀x ∈ E1.

After Hyers’ result a great number of papers on this subject have been published genera-
lizing Hyers’ theorem in many direction (see. e.g. [2, 3, 4, 5, 8, 14, 20, 21, 26, 22]. Alsina
and Ger were the first authors who investigated the Ulam-Hyers stability of a differential
equations ([1]).

They have proved that for every differentiable mapping f : I → R satisying

|f ′ (x)− f (x)| ≤ ε, ∀x ∈ I,
where ε > 0 is a given number and I is an open interval of R, there exists a differentiable
mapping g : I → R such that g′ (x) = g (x) and

|f (x)− g (x)| ≤ 3ε,∀x ∈ I.
The result of Alsina and Ger was extended by Miura, Miyajima, Takahasi, Takagi and
Jung [9, 10, 11, 19, 23, 24] to the stability of the first order linear differential equation and
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linear differential equations of higher order with constant coefficients. The study of Ulam-
Hyers stability of partial differential equations started recently and we will mention here
the results obtained in this direction by Jung [12, 13], Lungu and Ciplea [15], Lungu and
Popa [16, 17], Lungu and Rus [18]. In [3] Brzdek, Popa, Rasa and Xu presented a unified
and systematic approach to the field.

In what follows let D = [a, b)× R, a ∈ R, b ∈ R be a subset of R2. Let n 6= −1, 0.
We deal with the Ulam-Hyers-Rassias stability of the quasilinear partial differential

equation

(1.1) p (x, y)un (x, y)
∂u

∂x
+ q (x, y)un (x, y)

∂u

∂y
= r (x, y)un+1 (x, y) + f (x, y) ,

(1.2) u (a, y) = ψ (y)

where p, q, r ∈ C (D,R) , f ∈ C (D,R) are given functions and u ∈ C1 (D,R) is the
unknown function. We suppose that p (x, y) 6= 0 for every (x, y) ∈ D.

We suppose that there exists L > 0 such that

(1.3)
∣∣∣∣f (x, y)p (x, y)

· 1

un (x, y)
− f (x, y)

p (x, y)
· 1

wn (x, y)

∣∣∣∣ ≤ L |u (x, y)− w (x, y)| ,

for every (x, y) ∈ D and u,w ∈ C1 (D,R) .

Definition 1.1. The equation (1.1) is Ulam-Hyers-Rassias stable with respect to φ ∈C (D,R+)
if there exists cf,φ > 0 such that for each ε > 0 and for each solution u ∈ C1 (D,R) of∣∣∣∣p (x, y)un (x, y) ∂u∂x + q (x, y)un (x, y)

∂u

∂y
− r (x, y)un+1 (x, y)− f (x, y)

∣∣∣∣ ≤ εφ (x, y)
with the initial condition (1.2), there exists a solution w ∈ C1 (D,R) of (1.1) with

|u (x, y)− w (x, y)| ≤ cf,φεφ (x, y) ,∀ (x, y) ∈ D.

2. MAIN RESULTS

We consider the characteristic system corresponding to quasilinear partial differential
equation (1.1)

dx

p · un
=

dy

q · un
=

du

r · un+1 + f
.

From the first equality we have

dx

p (x, y)
=

dy

q (x, y)

and hence

(2.4)
dy

dx
=
q (x, y)

p (x, y)
.

Let ϕ : [a, b)→ R be a solution of the above equation (2.4). Let

(2.5) φ (x, y) = e
∫ x
a
r(θ,ϕ(θ)+y−ϕ(x))
p(θ,ϕ(θ)+y−ϕ(x))

dθ.

We study the Ulam-Hyers-Rassias stability for the equation (1.1), with initial condition
(1.2), with respect to function φ from (2.5).

The main result of this paper is given in the next theorem.

Theorem 2.1. If r(x,y)p(x,y) ≤ M < 0, for every (x, y) ∈ D and φ̃ (s, t) is nondecreasing in s then
the equation (1.1), with initial condition (1.2), is Ulam-Hyers-Rassias stable with respect to φ.
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Proof. We consider the change of coordinates (x, y)→ (s, t){
x = s
y = t+ ϕ (s)

.

Define the function ũ by

ũ (s, t) = u (s, ϕ (s) + t)⇔ u (x, y) = ũ (x, y − ϕ (x)) .

and the function φ̃ by

φ̃ (s, t) = φ (s, ϕ (s) + t)⇔ φ (x, y) = φ̃ (x, y − ϕ (x)) .

We also define p̃ (s, t) = p (s, ϕ (s) + t) , q̃ (s, t) = q (s, ϕ (s) + t) , r̃ (s, t) = r (s, ϕ (s) + t),
f̃ (s, t) = f (s, ϕ (s) + t) and ψ̃ (t) = ψ (ϕ (a) + t).

Hence

(2.6) φ̃ (s, t) = e
∫ s
a
r̃(θ,t)
p̃(θ,t)

dθ.

Then 
∂u
∂x = ∂ũ

∂s − ϕ
′ (s) · ∂ũ∂t

∂u
∂y = ∂ũ

∂t

and replacing in (1.1) it follows

p̃ũn
∂ũ

∂s
− pũnϕ′ (s) · ∂ũ

∂t
+ q̃ũn

∂ũ

∂t
= r̃ũn+1 + f̃ ,

or
p̃ũn

∂ũ

∂s
+ ũn [q̃ − p̃ϕ′ (s)] · ∂ũ

∂t
= r̃ũn+1 + f̃ .

Since q̃ − p̃ϕ′ (s) = 0 we have

p̃ũn
∂ũ

∂s
− r̃ũn+1 = f̃ ,

or

(2.7)
∂ũ

∂s
(s, t)− r̃ (s, t)

p̃ (s, t)
· ũ (s, t) = f̃ (s, t)

p̃ (s, t)
· 1

ũn (s, t)
.

(2.8) ũ (a, t) = ψ̃ (t)

We study the Ulam-Hyers-Rassias stability for the equation (2.7) with initial condition
(2.8), with respect to function φ̃ from (2.6). Let ε > 0 and ũ (s, t) be an approximate
solution of the above problem. Consider the inequality

−εφ̃ (s, t) ≤ ∂ũ

∂s
(s, t)− r̃ (s, t)

p̃ (s, t)
· ũ (s, t)− f̃ (s, t)

p̃ (s, t)
· 1

ũn (s, t)
≤ εφ̃ (s, t)

We have

−εe
∫ s
a
r̃(θ,t)
p̃(θ,t)

dθ ≤ ∂ũ

∂s
(s, t)− r̃ (s, t)

p̃ (s, t)
· ũ (s, t)− f̃ (s, t)

p̃ (s, t)
· 1

ũn (s, t)
≤ ε

∫ s
a
r̃(θ,t)
p̃(θ,t)

dθ

Multiplying by e−
∫ s
a
r̃(θ,t)
p̃(θ,t)

dθ we have

−ε ≤
(
ũ · e−

∫ s
a
r̃(θ,t)
p̃(θ,t)

dθ
)′
s
− e−

∫ s
a
r̃(θ,t)
p̃(θ,t)

dθ · f̃ (s, t)
p̃ (s, t)

· 1

ũn (s, t)
≤ ε

Integrating with respect to s, we have

−ε (s− a) ≤ ũ · e−
∫ s
a
r̃(θ,t)
p̃(θ,t)

dθ − ψ̃ (t)−
∫ s

a

e−
∫ θ
a
r̃(τ,t)
p̃(τ,t)

dτ · f̃ (θ, t)
p̃ (θ, t)

· 1

ũn (θ, t)
dθ ≤ ε (s− a) .
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Multiplying by e
∫ s
a
r̃(θ,t)
p̃(θ,t)

dθ we have

−ε (s− a) e
∫ s
a
r̃(θ,t)
p̃(θ,t)

dθ ≤ ũ− e
∫ s
a
r̃(θ,t)
p̃(θ,t)

dθ

[
ψ̃ (t)+

∫ s

a

e−
∫ θ
a
r̃(τ,t)
p̃(τ,t)

dτ f̃

p̃

1

ũn (θ, t)
dθ

]
≤ ε (s− a) e

∫ s
a
r̃(θ,t)
p̃(θ,t)

dθ.

Hence∣∣∣∣∣ũ− e∫ sa r̃(θ,t)
p̃(θ,t)

dθ

[
ψ̃ (t) +

∫ s

a

e−
∫ θ
a
r̃(τ,t)
p̃(τ,t)

dτ · f̃ (θ, t)
p̃ (θ, t)

· 1

ũn (θ, t)
dθ

]∣∣∣∣∣ ≤ ε (b− a) e∫ sa r̃(θ,t)
p̃(θ,t)

dθ.

It can be easily show that

w̃ (s, t) = e
∫ s
a
r̃(θ,t)
p̃(θ,t)

dθ

[
ψ̃ (t) +

∫ s

a

e−
∫ θ
a
r̃(τ,t)
p̃(τ,t)

dτ · f̃ (θ, t)
p̃ (θ, t)

· 1

w̃n (θ, t)

]
is a solution of the equation (2.7) with initial condition (2.8)

We consider the difference

|ũ (s, t)− w̃ (s, t)| ≤

∣∣∣∣∣ũ (s, t)− e∫ sa r̃(θ,t)
p̃(θ,t)

dθ

[
ψ̃ (t) +

∫ s

a

e−
∫ θ
a
r̃(τ,t)
p̃(τ,)

dτ · f̃ (θ, t)
p̃ (θ, t)

· 1

ũn (θ, t)
dθ

]∣∣∣∣∣∣∣∣∣∣e∫ sa r̃(θ,t)
p̃(θ,t)

dθ ·
∫ s

a

e−
∫ θ
a
r̃(τ,t)
p̃(τ,)

dτ ·

(
f̃ (θ, t)

p̃ (θ, t)
· 1

ũn (θ, t)
− f̃ (θ, t)

p̃ (θ, t)
· 1

w̃n (θ, t)

)
dθ

∣∣∣∣∣
≤ ε (b− a) e

∫ s
a
r̃(θ,t)
p̃(θ,t)

dθ + e
∫ s
a
r̃(θ,t)
p̃(θ,t)

dθ

∫ s

a

e−
∫ θ
a
r̃(τ,t)
p̃(τ,t)

dτ f̃

p̃

∣∣∣∣ 1

ũn (θ, t)
− 1

w̃n (θ, t)

∣∣∣∣ dθ
Using (1.3) we obtain

|ũ (s, t)− w̃ (s, t)| ≤ ε (b− a) e
∫ s
a
r̃(θ,t)
p̃(θ,t)

dθ + Le
∫ s
a
r̃(θ,t)
p̃(θ,t)

dθ

∫ s

a

e−
∫ θ
a
r̃(τ,t)
p̃(τ,t)

dτ |ũ (θ, t)− w̃ (θ, t)| dθ

= ε (b− a) e
∫ s
a
r̃(θ,t)
p̃(θ,t)

dθ + L

∫ s

a

e
∫ s
θ
r̃(τ,t)
p̃(τ,t)

dτ |ũ (θ, t)− w̃ (θ, t)| dθ

Using Gronwall’s inequality we obtain

|ũ (s, t)−w̃ (s, t)| ≤ ε (b− a) e
∫ s
a
r̃(θ,t)
p̃(θ,t)

dθ · eL
∫ s
a
e

∫ s
θ
r̃(τ,t)
p̃(τ,t)

dτ
dθ≤ ε (b− a) e

∫ s
a
r̃(θ,t)
p̃(θ,t)

dθ · eL
∫ s
a
e(s−θ)Mdθ

= ε (b− a) e
∫ s
a
r̃(θ,t)
p̃(θ,t)

dθ · e
− L
M

(
1−e

(s−a)M
)
= ε (b− a) e

∫ s
a
r̃(θ,t)
p̃(θ,t)

dθ · e− L
M .

Consequently

|u (x, y)− w (x, y)| = |ũ (s, t)− w̃ (s, t)| ≤ ε (b− a) e
∫ s
a
r̃(θ,t)
p̃(θ,t)

dθ · e− L
M =

= ε (b− a) e
∫ x
a
r(θ,ϕ(θ)+y−ϕ(x))
p(θ,ϕ(θ)+y−ϕ(x))

dθ · e− L
M .

We denote cf,φ = (b− a) e− L
M Hence

|u (x, y)− w (x, y)| ≤ cf,φεφ (x, y) ,∀ (x, y) ∈ D.

that is the equation (1.1), with initial condition (1.2), is Ulam-Hyers-Rassias stable with
respect to φ. �
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Remark 2.1. We suppose now b =∞. We have

(2.9) |ũ (s, t)− w̃ (s, t)| ≤ ε (s− a) e
∫ s
a
r̃(θ,t)
p̃(θ,t)

dθ · e− L
M ≤ ε (s− a) eM(s−a) · e− L

M .

Setting s→∞ in (2.9), we have lim
s→∞

(s− a) eM(s−a) = 0, so

lim
s→∞

|ũ (s, t)− w̃ (s, t)| = 0.

Consequently the problem is asymptotic stable.

Remark 2.2. If r (x, y) = p (x, y) · r1 (x) and n = 0, the quasilinear differential equation
(1.1) becomes the partial differential equation

p (x, y)
∂u

∂x
+ q (x, y)

∂u

∂y
= p (x, y) r1 (x)u (x, y) + f (x, y) .

Hyers-Ulam stability of this equation was studied in [16].
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