Weighted G-Drazin inverse for operators on Banach spaces

Dijana Mosić

Abstract

We define an extension of weighted G-Drazin inverses of rectangular matrices to operators between two Banach spaces. Some properties of weighted G-Drazin inverses are generalized and some new ones are proved. Using weighted G-Drazin inverses, we introduce and characterize a new weighted pre-order on the set of all bounded linear operators between two Banach spaces. As an application, we present and study the G-Drazin inverse and the G-Drazin partial order for operators on Banach space.

1. Introduction

Let X and Y be arbitrary Banach spaces. We use $\mathbf{B}(X, Y)$ to denote the set of all bounded linear operators from X to Y. Set $\mathbf{B}(X)=\mathbf{B}(X, X)$. For $A \in \mathbf{B}(X, Y)$, the notations $N(A)$ and $R(A)$ stand for the null space and the range of A, respectively.

An operator $A \in \mathbf{B}(X, Y)$ is relatively regular if there exists some $B \in \mathbf{B}(Y, X)$ such that $A B A=A$. The operator B is called an inner inverse of A and it is not unique. By $A\{1\}$ we denote the set of all inner inverses of A. Recall that $A \in \mathbf{B}(X, Y)$ is relatively regular if and only if $N(A)$ and $R(A)$ are closed and complemented subspaces of X and Y, respectively. In the case that X and Y are Hilbert spaces, A is relatively regular if and only if $R(A)$ is closed.

Let $W \in \mathbf{B}(Y, X)$ be a fixed nonzero operator. An operator $A \in \mathbf{B}(X, Y)$ is $\mathrm{W} g$-Drazin invertible if there exists a unique $B \in \mathbf{B}(X, Y)$ such that

$$
A W B=B W A, \quad B W A W B=B \quad \text { and } \quad A-A W B W A \text { is quasinilpotent. }
$$

The W g-Drazin inverse B of A will be denoted by $A^{d, W}$ [5]. In the case that $A-A W B W A$ is nilpotent in the above definition, $A^{d, W}=A^{D, W}$ is the W -weighted Drazin inverse of $A[3,16]$. When $X=Y$ and $W=I$, then $A^{d}=A^{d, W}$ is the generalized Drazin inverse (or the Koliha-Drazin inverse) of $A[8]$ and $A^{D}=A^{D, W}$ is the Drazin inverse of A. The symbol $\mathbf{B}(X)^{d}$ denotes the set of all generalized Drazin invertible operators of $\mathbf{B}(X)$. The group inverse is a particular case of Drazin inverse for which the condition $A-A B A$ is nilpotent is replaced with $A=A B A$. By $A^{\#}$ will be denoted the group inverse of A.

For $A \in \mathbf{B}(X, Y)$ and $W \in \mathbf{B}(Y, X)$, the following conditions are equivalent [5]:
(1) A is $W g$-Drazin invertible and $A^{d, W}=B \in \mathbf{B}(X, Y)$,
(2) $A W \in \mathbf{B}(Y)^{d}$ with $(A W)^{d}=B W$,
(3) $W A \in \mathbf{B}(X)^{d}$ with $(W A)^{d}=W B$.

Then, the $W g$-Drazin inverse $A^{d, W}$ of A satisfies

$$
A^{d, W}=\left((A W)^{d}\right)^{2} A=A\left((W A)^{d}\right)^{2} .
$$

[^0]Lemma 1.1. [5] Let $A \in \mathbf{B}(X, Y)$ and $W \in \mathbf{B}(Y, X) \backslash\{0\}$. Then A is $W g$-Drazin invertible if and only if there exist topological direct sums $X=X_{1} \oplus X_{2}, Y=Y_{1} \oplus Y_{2}$ such that

$$
A=\left[\begin{array}{cc}
A_{1} & 0 \tag{1.1}\\
0 & A_{2}
\end{array}\right], \quad W=\left[\begin{array}{cc}
W_{1} & 0 \\
0 & W_{2}
\end{array}\right]
$$

where $A_{i} \in \mathbf{B}\left(X_{i}, Y_{i}\right), W_{i} \in \mathbf{B}\left(Y_{i}, X_{i}\right)$, for $i=1,2$, with A_{1}, W_{1} invertible, and $W_{2} A_{2}$ and $A_{2} W_{2}$ quasinilpotent in $\mathbf{B}\left(X_{2}\right)$ and $\mathbf{B}\left(Y_{2}\right)$, respectively. The $W g$-Drazin inverse of A is given by

$$
A^{d, W}=\left[\begin{array}{cc}
\left(W_{1} A_{1} W_{1}\right)^{-1} & 0 \tag{1.2}\\
0 & 0
\end{array}\right]
$$

with $\left(W_{1} A_{1} W_{1}\right)^{-1} \in \mathbf{B}\left(X_{1}, Y_{1}\right)$ and the $(2,2)$ matrix block satisfies that $0 \in \mathbf{B}\left(X_{2}, Y_{2}\right)$.
For recent results related to the (generalized) Drazin and (generalized) weighted Drazin inverse see [$11,12,14,17,18,20,21]$.

Various kinds of pre-orders (i.e. reflexive and transitive binary relations) and partial orders were defined using various generalized inverses $[1,9,10]$.

Let $A, B \in \mathbf{B}(X, Y)$ be relatively regular. Then A is said to be below B under the minus partial order (denoted by $A \leq^{-} B$) if there exists an inner generalized inverse A^{-}of A such that $A A^{-}=B A^{-}$and $A^{-} A=A^{-} B$.

For $A, B \in \mathbf{B}(X)$ such that A is group invertible, we say that A is below B under the sharp partial order $\left(A \leq{ }^{\#} B\right)$ if $A^{\#} A=A^{\#} B$ and $A A^{\#}=B A^{\#}$.

Let $A, B \in \mathbf{B}(X)^{d}$. The operator A is below to B under the generalized Drazin preorder $\left(A \leq^{d} B\right)$ if $A^{2} A^{d} \leq{ }^{\#} B^{2} B^{d}$. Recall that $A \leq^{d} B$ if and only if $A^{d} A=A^{d} B$ and $A A^{d}=B A^{d}$ [15].

Let $A, B \in \mathbf{B}(X, Y)$ and $W \in \mathbf{B}(Y, X) \backslash\{0\}$. If A is $W g$-Drazin invertible, then we say that $A \leq^{d, W} B$ if $A W \leq^{d} B W$ and $W A \leq^{d} W B$, where \leq^{d} is considered on $\mathbf{B}(Y)$ and $\mathbf{B}(X)$, respectively. The relation $\leq^{d, W}$ is a pre-order on the set of all $\mathrm{W} g$-Drazin invertible operators of $\mathbf{B}(X, Y)$ [15]. For more related results see [6, 7, 13].

The G-Drazin inverse of a square matrix was defined in [19]. Coll, Lattanzi, and Thome [4] extended the notion of G-Drazin inverses to rectangular matrices considering a weight matrix. Let $\mathbb{C}^{m \times n}$ denote the set of $m \times n$ complex matrices. If $W \in \mathbb{C}^{n \times m} \backslash\{0\}$, the W-weighted G-Drazin inverse of $A \in \mathbb{C}^{m \times n}$ is a matrix C satisfying the following three equations $W A W C W A W=W A W,(A W)^{k+1} C W=(A W)^{k}, W C(W A)^{k+1}=(W A)^{k}$, where $k=\max \{\operatorname{ind}(A W), \operatorname{ind}(W A)\}$ and $\operatorname{ind}(D)$ is the index of D. If $m=n$ and $W=I$, then C is a G-Drazin inverse of A. A new pre-order, which generalizes the G-Drazin partial order studied in [19] to the rectangular case, was also characterized in [4].

We introduce the definition of weighted G-Drazin inverses of an operator between two Banach spaces and prove that our definition and the above definition of weighted GDrazin inverses for a rectangular matrix are equivalent in complex matrix case. Several new characterizations of weighted G-Drazin inverses are given and some known results are extended. Also, we define and investigate a new pre-order on the corresponding subset of all operators between two Banach spaces. As consequences of our results, we present definitions of the G-Drazin inverse and the G-Drazin partial order for operators on Banach spaces and give their new characterizations. Thus, the recent results from [4, 19] are extended to more general settings.

2. Weighted G-Drazin inverses

In the beginning of this section, we define the weighted G-Drazin inverse of an operator between two Banach spaces as an extension of the weighted G-Drazin inverse for a rectangular matrix.

Definition 2.1. Let $W \in \mathbf{B}(Y, X) \backslash\{0\}$ and let $A \in \mathbf{B}(X, Y)$ be $W g$-Drazin invertible such that $W A W$ is relatively regular. An operator $C \in \mathbf{B}(X, Y)$ is a W-weighted G-Drazin inverse of A if the following equalities hold:
$W A W C W A W=W A W \quad$ and $\quad W A^{d, W} W A W C W=W C W A^{d, W} W A W$.
We use $A\{W-G D\}$ to denote the set of all W-weighted G-Drazin inverses of A. Obviously, $A\{W-G D\} \subseteq(W A W)\{1\}$. If $A W$ (or equivalently $W A$) is quasinilpotent, then $(W A W)\{1\} \subseteq A\{W-G D\}$ and so $A\{W-G D\}=(W A W)\{1\}$.

Now, we present necessary and sufficient conditions for an operator to be a W-weighted G-Drazin inverse of a given operator.

Theorem 2.1. Let $W \in \mathbf{B}(Y, X) \backslash\{0\}$ and let $A \in \mathbf{B}(X, Y)$ be $W g$-Drazin invertible such that $W A W$ is relatively regular. For $C \in \mathbf{B}(X, Y)$, the following statements are equivalent:
(i) $C \in A\{W-G D\}$;
(ii) $W A W C W A W=W A W$ and $W(A W)^{d} A W C W=W C W(A W)^{d} A W$;
(iii) $W A W C W A W=W A W$ and $(W A)^{d} W A W C W=W C W(A W)^{d} A W$;
(iv) $W A W C W A W=W A W$ and $(W A)^{d}(W A)^{2} W C W=W A W(A W)^{d}=$ $W C W(A W)^{d}(A W)^{2}$;
(v) $W A W C W A W=W A W$ and $(W A)^{d} W A W C W=W(A W)^{d}=W C W(A W)^{d} A W$;
(vi) there exist topological direct sums $X=X_{1} \oplus X_{2}$ and $Y=Y_{1} \oplus Y_{2}$ such that

$$
A=\left[\begin{array}{cc}
A_{1} & 0 \\
0 & A_{2}
\end{array}\right], \quad W=\left[\begin{array}{cc}
W_{1} & 0 \\
0 & W_{2}
\end{array}\right], \quad C=\left[\begin{array}{cc}
\left(W_{1} A_{1} W_{1}\right)^{-1} & C_{12} \\
C_{21} & C_{2}
\end{array}\right],
$$

where A_{1} and W_{1} are invertible, $W_{2} A_{2}$ and $A_{2} W_{2}$ are quasinilpotent, $C_{12} W_{2}=0$, $W_{2} C_{21}=0, W_{2} A_{2} W_{2}$ is relatively regular and $C_{2} \in\left(W_{2} A_{2} W_{2}\right)\{1\}$.

Proof. (i) \Leftrightarrow (ii)-(iii): These equivalences follow by properties of the $W g$-Drazin inverse.
(iii) \Rightarrow (iv): Notice that
$(W A)^{d}(W A)^{2} W C W=W A\left((W A)^{d} W A W C W\right)=(W A W C W A W)(A W)^{d}=W A W(A W)^{d}$ and similarly $W A W(A W)^{d}=W C W(A W)^{d}(A W)^{2}$.
(iv) $\Rightarrow(\mathrm{v})$: Multiplying $(W A)^{d}(W A)^{2} W C W=W A W(A W)^{d}$ by $(W A)^{d}$ from the left side, we get $(W A)^{d} W A W C W=W(A W)^{d} A W(A W)^{d}=W(A W)^{d}$. In an analogy way, we prove that $W(A W)^{d}=W C B W(A W)^{d} A W$.
(v) \Rightarrow (iii): This is clear.
(ii) \Leftrightarrow (vi): By Lemma 1.1, there exist topological direct sums $X=X_{1} \oplus X_{2}$ and $Y=$ $Y_{1} \oplus Y_{2}$ such that

$$
A=\left[\begin{array}{cc}
A_{1} & 0 \\
0 & A_{2}
\end{array}\right], \quad W=\left[\begin{array}{cc}
W_{1} & 0 \\
0 & W_{2}
\end{array}\right]
$$

where A_{1}, W_{1} invertible, and $W_{2} A_{2}$ and $A_{2} W_{2}$ quasinilpotent in $\mathbf{B}\left(X_{2}\right)$ and $\mathbf{B}\left(Y_{2}\right)$, respectively. Suppose that

$$
C=\left[\begin{array}{cc}
C_{1} & C_{12} \\
C_{21} & C_{2}
\end{array}\right]
$$

Since $W A W=\left[\begin{array}{cc}W_{1} A_{1} W_{1} & 0 \\ 0 & W_{2} A_{2} W_{2}\end{array}\right]$ and

$$
W A W C W A W=\left[\begin{array}{cc}
W_{1} A_{1} W_{1} C_{1} W_{1} A_{1} W_{1} & W_{1} A_{1} W_{1} C_{12} W_{2} A_{2} W_{2} \\
W_{2} A_{2} W_{2} C_{21} W_{1} A_{1} W_{1} & W_{2} A_{2} W_{2} C_{2} W_{2} A_{2} W_{2}
\end{array}\right],
$$

then $W A W C W A W=W A W$ if and only if $C_{1}=\left(W_{1} A_{1} W_{1}\right)^{-1}, C_{12} W_{2} A_{2} W_{2}=0$, $W_{2} A_{2} W_{2} C_{21}=0$ and $W_{2} A_{2} W_{2} C_{2} W_{2} A_{2} W_{2}=W_{2} A_{2} W_{2} . \operatorname{By}(A W)^{d}=\left[\begin{array}{cc}\left(A_{1} W_{1}\right)^{-1} & 0 \\ 0 & 0\end{array}\right]$,
we get

$$
W(A W)^{d} A W C W=\left[\begin{array}{cc}
W_{1} C_{1} W_{1} & W_{1} C_{12} W_{2} \\
0 & 0
\end{array}\right]
$$

and

$$
W C W(A W)^{d} A W=\left[\begin{array}{cc}
W_{1} C_{1} W_{1} & 0 \\
W_{2} C_{21} W_{1} & 0
\end{array}\right] .
$$

We deduce that $W(A W)^{d} A W C W=W C W(A W)^{d} A W$ is equivalent to $C_{12} W_{2}=0$ and $W_{2} C_{21}=0$. Therefore, this equivalence holds.

In the case that A is $W g$-Drazin invertible such that $W A W$ is relatively regular, by Theorem 2.1(vi), notice that the W-weighted G-Drazin inverse of A exists and it is not unique.

We show that the Definition 2.1 and [4, Definition 2.1] are equivalent in the complex matrix case. Applying Theorem 2.1, we obtain new characterizations for the weighted G-Drazin inverse in the finite dimensional case.

Corollary 2.1. Let $W \in \mathbb{C}^{n \times m} \backslash\{0\}$ and $A \in \mathbb{C}^{m \times n}$. For $C \in \mathbb{C}^{m \times n}$, the following statements are equivalent:
(i) $C \in A\{W-G D\}$;
(ii) $W A W C W A W=W A W$ and $W(A W)^{D} A W C W=W C W(A W)^{D} A W$;
(iii) $W A W C W A W=W A W$ and $(W A)^{D} W A W C W=W C W(A W)^{D} A W$;
(iv) $W A W C W A W=W A W$ and $(W A)^{D}(W A)^{2} W C W=W A W(A W)^{D}=$ $W C W(A W)^{D}(A W)^{2}$;
(v) $W A W C W A W=W A W$ and $(W A)^{D} W A W C W=W(A W)^{D}=W C W(A W)^{D} A W$.

Proof. (i) \Leftrightarrow (ii): By [4, Theorem 2.2], $C \in A\{W-G D\}$ if and only if $W A W C W A W=$ $W A W$ and $W(A W)^{k} C W=W C W(A W)^{k}$, for $k=\max \{\operatorname{ind}(A W), \operatorname{ind}(W A)\}$. Using properties of the Drazin inverse and $W A W C W A W=W A W$, we easily check that $W(A W)^{k} C W=W C W(A W)^{k}$ is equivalent to $W(A W)^{D} A W C W=W C W(A W)^{D} A W$.
(i) \Leftrightarrow (iii)-(v): It follows by Theorem 2.1.

Lemma 2.2. Let $W \in \mathbf{B}(Y, X) \backslash\{0\}$ and let $A \in \mathbf{B}(X, Y)$ be $W g$-Drazin invertible such that $W A W$ is relatively regular. If $C \in A\{W-G D\}$, then $(I-C W A W) W A W$ and $W A W(I-$ $W A W C$) are quasinilpotent.

Proof. Using $W A W C W A W=W A W$, we have that

$$
\sigma((I-C W A W) W A W)=\sigma(W A W(I-C W A W))=\sigma(0)=\{0\}
$$

i.e. $(I-C W A W) W A W$ is quasinilpotent. In a same manner, we obtain that $W A W(I-$ $W A W C)$ is quasinilpotent.

Using corresponding idempotents, we give one more characterization for the W-weighted G-Drazin inverse, which is new in the finite dimensional case too.

Theorem 2.2. Let $W \in \mathbf{B}(Y, X) \backslash\{0\}$ and let $A \in \mathbf{B}(X, Y)$ be $W g$-Drazin invertible such that $W A W$ is relatively regular. The following statements are equivalent:
(i) $A\{W-G D\} \neq \emptyset$;
(ii) there exist idempotents $P \in \mathbf{B}(X)$ and $Q \in \mathbf{B}(Y)$ such that

$$
R(P)=R(W A W), \quad N(Q)=N(W A W) \quad \text { and } \quad W A^{d, W} P W=W Q A^{d, W} W
$$

In addition, for arbitrary $(W A W)^{-} \in(W A W)\{1\}, Q(W A W)^{-} P \in A\{W-G D\}$, that is,

$$
Q \cdot(W A W)\{1\} \cdot P \subseteq A\{W-G D\}
$$

Proof. (i) \Rightarrow (ii): Let $C \in A\{W-G D\}$. Denote by $P=W A W C$ and $Q=C W A W$. Because $C \in(W A W)\{1\}$, then $P=P^{2}, Q=Q^{2}, R(P)=R(W A W)$ and $N(Q)=N(W A W)$. Also, we get

$$
W A^{d, W} P W=W A^{d, W} W A W C W=W C W A^{d, W} W A W=W Q A^{d, W} W
$$

(ii) \Rightarrow (i): Suppose that $(W A W)^{-} \in(W A W)\{1\}$ and $C=Q(W A W)^{-} P$. The assumption $R(P)=R(W A W)$ gives $P=W A W(W A W)^{-} P$ and $W A W=P W A W$. Since $N(Q)=N(W A W)$, then $R(I-Q)=N(W A W)$ and $N(Q)=N\left((W A W)^{-} W A W\right)=$ $R\left(I-(W A W)^{-} W A W\right)$ which imply $W A W=W A W Q$ and $Q=Q(W A W)^{-} W A W$. Hence,

$$
W A W C W A W=(W A W Q)(W A W)^{-}(P W A W)=W A W(W A W)^{-} W A W=W A W
$$ and, by $W A^{d, W} P W=W Q A^{d, W} W$,

$$
\begin{aligned}
W A^{d, W} W A W C W & =W A^{d, W}(W A W Q)(W A W)^{-} P W=W A^{d, W}\left(W A W(W A W)^{-} P\right) W \\
& =W A^{d, W} P W=W Q A^{d, W} W=W Q(W A W)^{-} W A W A^{d, W} W \\
& =W Q(W A W)^{-} P W A W A^{d, W} W=W C W A W A^{d, W} W
\end{aligned}
$$

i.e. $C \in A\{W-G D\}$.

Also, we prove the following result.
Theorem 2.3. Let $W \in \mathbf{B}(Y, X) \backslash\{0\}$ and let $A \in \mathbf{B}(X, Y)$ be W g-Drazin invertible such that $W A W$ is relatively regular. Then

$$
A\{W-G D\} \cdot W A W \cdot A\{W-G D\} \subseteq A\{W-G D\} .
$$

Proof. Assume that $C, C^{\prime} \in A\{W-G D\}$ and $Z=C W A W C^{\prime}$. We observe that $Z \in A\{W-G D\}$, by

$$
W A W Z W A W=(W A W C W A W) C^{\prime} W A W=W A W C^{\prime} W A W=W A W
$$

and

$$
\begin{aligned}
W A^{d, W} W A W Z W & =\left(W A^{d, W} W A W C W\right) A W C^{\prime} W=W C W A\left(W A^{d, W} W A W C^{\prime} W\right) \\
& =W C W A W C^{\prime} W A W A^{d, W} W=W Z W A W A^{d, W} W
\end{aligned}
$$

3. Weighted G-Drazin pre-order

Firstly, we introduce a new binary relation on $\mathbf{B}(X, Y)$ generalizing the definition of the weighted G-Drazin relation presented in [4] for complex rectangular matrices to the class of bounded linear operators between Banach spaces.

Definition 3.2. Let $W \in \mathbf{B}(Y, X) \backslash\{0\}, B \in \mathbf{B}(X, Y)$ and let $A \in \mathbf{B}(X, Y)$ be $W g$-Drazin invertible such that $W A W$ is relatively regular. Then we say that A is below to B under the W-weighted GDrazin relation (denoted by $A \leq{ }^{G D, W} B$) if there exist $C_{1}, C_{2} \in A\{W-G D\}$ such that

$$
W A W C_{1}=W B W C_{1} \quad \text { and } \quad C_{2} W A W=C_{2} W B W
$$

We characterize the relation $\leq{ }^{G D, W}$ in the following theorem, extending some results from [4].

Theorem 3.4. Let $W \in \mathbf{B}(Y, X) \backslash\{0\}, B \in \mathbf{B}(X, Y)$ and let $A \in \mathbf{B}(X, Y)$ be $W g$-Drazin invertible such that $W A W$ is relatively regular. Then the following statements are equivalent:
(i) $A \leq{ }^{G D, W} B$;
(ii) there exist $C \in A\{W-G D\}$ such that

$$
W A W C=W B W C \quad \text { and } \quad C W A W=C W B W ;
$$

(iii) there exist topological direct sums $X=X_{1} \oplus X_{2}$ and $Y=Y_{1} \oplus Y_{2}$ such that

$$
A=\left[\begin{array}{cc}
A_{1} & 0 \\
0 & A_{2}
\end{array}\right], \quad W=\left[\begin{array}{cc}
W_{1} & 0 \\
0 & W_{2}
\end{array}\right], \quad B=\left[\begin{array}{cc}
A_{1} & B_{3} \\
B_{4} & B_{2}
\end{array}\right],
$$

where A_{1} and W_{1} are invertible, $W_{2} A_{2}$ and $A_{2} W_{2}$ are quasinilpotent, $B_{3} W_{2}=0$, $W_{2} B_{4}=0, W_{2} A_{2} W_{2}$ is relatively regular and $W_{2} A_{2} W_{2} \leq^{-} W_{2} B_{2} W_{2}$.
In addition, if B is $W g$-Drazin invertible such that $W B W$ is relatively regular, then $D \in B\{W-G D\}$ if and only if

$$
D=\left[\begin{array}{cc}
\left(W_{1} A_{1} W_{1}\right)^{-1} & D_{12} \\
D_{21} & D_{2}
\end{array}\right],
$$

where $D_{12} W_{2}=0, W_{2} D_{21}=0$ and $D_{2} \in B_{2}\left\{W_{2}-G D\right\}$.
Proof. (i) \Rightarrow (ii): The proof is analogous to that given in [4, Theorem 3.1].
(ii) \Rightarrow (iii): Assume that there exist $C \in A\{W-G D\}$ such that $W A W C=W B W C$ and $C W A W=C W B W$. By Theorem 2.1(vi), there exist topological direct sums $X=X_{1} \oplus X_{2}$ and $Y=Y_{1} \oplus Y_{2}$ such that

$$
A=\left[\begin{array}{cc}
A_{1} & 0 \\
0 & A_{2}
\end{array}\right], \quad W=\left[\begin{array}{cc}
W_{1} & 0 \\
0 & W_{2}
\end{array}\right], \quad C=\left[\begin{array}{cc}
\left(W_{1} A_{1} W_{1}\right)^{-1} & C_{12} \\
C_{21} & C_{2}
\end{array}\right]
$$

where A_{1} and W_{1} are invertible, $W_{2} A_{2}$ and $A_{2} W_{2}$ are quasinilpotent, $C_{12} W_{2}=0, W_{2} C_{21}=$ $0, W_{2} A_{2} W_{2}$ is relatively regular and $C_{2} \in\left(W_{2} A_{2} W_{2}\right)\{1\}$. Let

$$
B=\left[\begin{array}{ll}
B_{1} & B_{3} \\
B_{4} & B_{2}
\end{array}\right]
$$

The equalities $W A W C=W B W C$,

$$
W A W C=\left[\begin{array}{ll}
I & W_{1} A_{1} W_{1} C_{12} \\
0 & W_{2} A_{2} W_{2} C_{2}
\end{array}\right]
$$

and

$$
W B W C=\left[\begin{array}{ll}
W_{1} B_{1}\left(W_{1} A_{1}\right)^{-1} & W_{1} B_{1} W_{1} C_{12}+W_{1} B_{3} W_{2} C_{2} \\
W_{2} B_{4}\left(W_{1} A_{1}\right)^{-1} & W_{2} B_{4} W_{1} C_{12}+W_{2} B_{2} W_{2} C_{2}
\end{array}\right]
$$

imply $B_{1}=A_{1}, W_{2} B_{4}=0$ and $W_{2} A_{2} W_{2} C_{2}=W_{2} B_{2} W_{2} C_{2}$. From $C W A W=C W B W$,

$$
C W A W=\left[\begin{array}{cc}
I & 0 \\
C_{21} W_{1} A_{1} W_{1} & C_{2} W_{2} A_{2} W_{2}
\end{array}\right]
$$

and

$$
C W B W=\left[\begin{array}{cc}
I & \left(A_{1} W_{1}\right)^{-1} B_{3} W_{2} \\
C_{21} W_{1} A_{1} W_{1} & C_{21} W_{1} B_{3} W_{2}+C_{2} W_{2} B_{2} W_{2}
\end{array}\right]
$$

we get $B_{3} W_{2}=0$ and $C_{2} W_{2} A_{2} W_{2}=C_{2} W_{2} B_{2} W_{2}$. So, $W_{2} A_{2} W_{2} \leq^{-} W_{2} B_{2} W_{2}$.
(iii) \Rightarrow (i): By the hypothesis $W_{2} A_{2} W_{2} \leq^{-} W_{2} B_{2} W_{2}$, there exists $C_{2} \in\left(W_{2} A_{2} W_{2}\right)\{1\}$ such that $W_{2} A_{2} W_{2} C_{2}=W_{2} B_{2} W_{2} C_{2}$ and $C_{2} W_{2} A_{2} W_{2}=C_{2} W_{2} B_{2} W_{2}$. Suppose that

$$
C=\left[\begin{array}{cc}
\left(W_{1} A_{1} W_{1}\right)^{-1} & 0 \\
0 & C_{2}
\end{array}\right] .
$$

Applying Theorem 2.1(vi), we deduce that $C \in A\{W-G D\}$. Notice that $W A W C=$ $W B W C$ and $C W A W=C W B W$ which imply $A \leq^{G D, W} B$.

Assume that $D \in B\{W-G D\}$ and

$$
D=\left[\begin{array}{cc}
D_{1} & D_{12} \\
D_{21} & D_{2}
\end{array}\right]
$$

Then $W B W=W B W D W B W$ is equivalent to

$$
\left[\begin{array}{cc}
W_{1} A_{1} W_{1} & 0 \\
0 & W_{2} B_{2} W_{2}
\end{array}\right]=\left[\begin{array}{cc}
W_{1} A_{1} W_{1} D_{1} W_{1} A_{1} W_{1} & W_{1} A_{1} W_{1} D_{12} W_{2} B_{2} W_{2} \\
W_{2} B_{2} W_{2} D_{21} W_{1} A_{1} W_{1} & W_{2} B_{2} W_{2} D_{2} W_{2} B_{2} W_{2}
\end{array}\right]
$$

which yields $D_{1}=\left(W_{1} A_{1} W_{1}\right)^{-1}, D_{12} W_{2} B_{2} W_{2}=0, W_{2} B_{2} W_{2} D_{21}=0$ and $W_{2} B_{2} W_{2}=$ $W_{2} B_{2} W_{2} D_{2} W_{2} B_{2} W_{2}$. Using [2, Theorem 2.3], we obtain

$$
B W=\left[\begin{array}{cc}
A_{1} W_{1} & 0 \tag{3.3}\\
B_{4} W_{1} & B_{2} W_{2}
\end{array}\right] \quad \text { and } \quad(B W)^{d}=\left[\begin{array}{cc}
\left(A_{1} W_{1}\right)^{-1} & 0 \\
S & \left(B_{2} W_{2}\right)^{d}
\end{array}\right],
$$

where $S=B_{4} W_{1}\left(A_{1} W_{1}\right)^{-2}$ by $\left(B_{2} W_{2}\right)^{d} B_{4}=\left[\left(B_{2} W_{2}\right)^{d}\right]^{2} B_{2} W_{2} B_{4}=0$. Now, we have that $W_{2} S=0$,

$$
W(B W)^{d} B W D W=\left[\begin{array}{cc}
A_{1}^{-1} & W_{1} D_{12} W_{2} \\
0 & W_{2}\left(B_{2} W_{2}\right)^{d} B_{2} W_{2} D_{2} W_{2}
\end{array}\right]
$$

and

$$
W D W(B W)^{d} B W=\left[\begin{array}{cc}
A_{1}^{-1} & 0 \\
W_{2} D_{21} W_{1} & W_{2} D_{2} W_{2}\left(B_{2} W_{2}\right)^{d} B_{2} W_{2}
\end{array}\right]
$$

The equality $W(B W)^{d} B W D W=W D W(B W)^{d} B W$ gives $D_{12} W_{2}=0, W_{2} D_{21}=0$ and $W_{2}\left(B_{2} W_{2}\right)^{d} B_{2} W_{2} D_{2} W_{2}=W_{2} D_{2} W_{2}\left(B_{2} W_{2}\right)^{d} B_{2} W_{2}$. Hence, $D_{2} \in B_{2}\left\{W_{2}-G D\right\}$.

If

$$
D=\left[\begin{array}{cc}
\left(W_{1} A_{1} W_{1}\right)^{-1} & D_{12} \\
D_{21} & D_{2}
\end{array}\right]
$$

where $D_{12} W_{2}=0, W_{2} D_{21}=0$ and $D_{2} \in B_{2}\left\{W_{2}-G D\right\}$, by elementary computations, we verify that $D \in B\{W-G D\}$.

Remark that $A \leq{ }^{G D, W} B$ implies $W A W \leq^{-} W B W$, because $A\{W-G D\} \subseteq(W A W)\{1\}$.
Corollary 3.2. Let $W \in \mathbf{B}(Y, X) \backslash\{0\}$ and let $A, B \in \mathbf{B}(X, Y)$ be $W g$-Drazin invertible such that $W A W$ and $W B W$ are relatively regular. If $A \leq{ }^{G D, W} B$, then

$$
B\{W-G D\} \subseteq A\{W-G D\}
$$

Proof. The proof is analogous to that given in [4, Corollary 3.2].
Before we prove that the W-weighted G-Drazin relation is a pre-order, recall that the W-weighted G-Drazin relation is not antisymmetric (see [4, Example 3.1]).

Theorem 3.5. Let $W \in \mathbf{B}(Y, X) \backslash\{0\}$. The W-weighted G-Drazin relation is a pre-order on the set $\{A \in \mathbf{B}(X, Y): A$ is $W g-D r a z i n ~ i n v e r t i b l e ~ s u c h ~ t h a t ~ W A W ~ i s ~ r e l a t i v e l y ~ r e g u l a r ~\} . ~$
Proof. The proof is analogous to that given in [4, Theorem 3.3].
We give equivalent conditions for $A \leq{ }^{G D, W} B$ to be satisfied, generalizing those in [4, Theorem 3.4] and adding the new condition (vii).
Theorem 3.6. Let $W \in \mathbf{B}(Y, X) \backslash\{0\}, B \in \mathbf{B}(X, Y)$ and let $A \in \mathbf{B}(X, Y)$ be W g-Drazin invertible such that $W A W$ is relatively regular. Then the following statements are equivalent:
(i) $A \leq{ }^{G D, W} B$;
(ii) $W A W \leq^{-} W B W,(A W)^{d} B W=(A W)^{d} A W$ and $W B(W A)^{d}=W A(W A)^{d}$;
(iii) $W A W \leq^{-} W B W, N\left((A W)^{d}\right) \subseteq N\left((A W)^{d} B W\right)$ and $R\left(W B(W A)^{d}\right) \subseteq R\left((W A)^{d}\right)$;
(iv) $W A W \leq^{-} W B W$ and $W(A W)^{d} B W=W B(W A)^{d} W$;
(v) $W A W \leq^{-} W B W$ and $W A^{d, W} W B W=W B W A^{d, W} W$;
(vi) (a) There exists $A^{W-G D} \in A\{W-G D\}$ such that $W A W A^{W-G D} W B W=W A W=$ $W B W A^{W-G D} W A W$.
(b) For every $C \in A\{W-G D\}, W C W(A W)^{d} B W=W B(W A)^{d} W C W$.
(vii) There exist idempotents $P \in \mathbf{B}(X)$ and $Q \in \mathbf{B}(Y)$ such that $R(P)=R(W A W)$, $N(Q)=N(W A W), W A^{d, W} P W=W Q A^{d, W} W$ and $P W B W=W A W=W B W Q$.

Proof. (i) \Rightarrow (ii): Applying Theorem 3.4, there exist topological direct sums $X=X_{1} \oplus X_{2}$ and $Y=Y_{1} \oplus Y_{2}$ such that

$$
A=\left[\begin{array}{cc}
A_{1} & 0 \\
0 & A_{2}
\end{array}\right], \quad W=\left[\begin{array}{cc}
W_{1} & 0 \\
0 & W_{2}
\end{array}\right], \quad B=\left[\begin{array}{ll}
A_{1} & B_{3} \\
B_{4} & B_{2}
\end{array}\right]
$$

where A_{1} and W_{1} are invertible, $W_{2} A_{2}$ and $A_{2} W_{2}$ are quasinilpotent, $B_{3} W_{2}=0, W_{2} B_{4}=$ $0, W_{2} A_{2} W_{2}$ is relatively regular and $W_{2} A_{2} W_{2} \leq^{-} W_{2} B_{2} W_{2}$. Thus, there exists $C_{2} \in\left(W_{2} A_{2} W_{2}\right)\{1\}$ such that $W_{2} A_{2} W_{2} C_{2}=W_{2} B_{2} W_{2} C_{2}$ and $C_{2} W_{2} A_{2} W_{2}=C_{2} W_{2} B_{2} W_{2}$. Set

$$
C=\left[\begin{array}{cc}
\left(W_{1} A_{1} W_{1}\right)^{-1} & 0 \\
0 & C_{2}
\end{array}\right] .
$$

Then $W A W C W A W=W A W, W A W C=W B W C$ and $C W A W=C W B W$ yield $W A W \leq^{-} W B W$. Furthermore, we obtain

$$
(A W)^{d} B W=\left[\begin{array}{cc}
\left(A_{1} W_{1}\right)^{-1} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
A_{1} W_{1} & 0 \\
B_{4} W_{1} & B_{2} W_{2}
\end{array}\right]=\left[\begin{array}{ll}
I & 0 \\
0 & 0
\end{array}\right]=(A W)^{d} A W
$$

and similarly $W B(W A)^{d}=W A(W A)^{d}$.
(ii) \Rightarrow (iii): This implication is clear.
(iii) \Rightarrow (i): Let A and W be represented as in (1.1). If

$$
B=\left[\begin{array}{ll}
B_{1} & B_{3} \\
B_{4} & B_{2}
\end{array}\right]
$$

then

$$
(A W)^{d} B W=\left[\begin{array}{cc}
\left(A_{1} W_{1}\right)^{-1} B_{1} W_{1} & \left(A_{1} W_{1}\right)^{-1} B_{3} W_{2} \\
0 & 0
\end{array}\right] \quad \text { and } \quad(A W)^{d} A W=\left[\begin{array}{ll}
I & 0 \\
0 & 0
\end{array}\right]
$$

Because $N\left((A W)^{d} A W\right)=N\left((A W)^{d}\right) \subseteq N\left((A W)^{d} B W\right)$, we have that $B_{3} W_{2}=0$. Also $R\left(W B(W A)^{d}\right) \subseteq R\left((W A)^{d}\right)$,

$$
W B(W A)^{d}=\left[\begin{array}{ll}
W_{1} B_{1}\left(W_{1} A_{1}\right)^{-1} & 0 \\
W_{2} B_{4}\left(W_{1} A_{1}\right)^{-1} & 0
\end{array}\right] \quad \text { and } \quad(W A)^{d} A W=\left[\begin{array}{cc}
I & 0 \\
0 & 0
\end{array}\right]
$$

imply $W_{2} B_{4}=0$.
The assumption $W A W \leq^{-} W B W$ implies that there exists $C \in(W A W)\{1\}$ such that $W A W C=W B W C$ and $C W A W=C W B W$. Let

$$
C=\left[\begin{array}{ll}
C_{1} & C_{3} \\
C_{4} & C_{2}
\end{array}\right] .
$$

From $W A W C W A W=W A W$, we get $C_{1}=\left(W_{1} A_{1} W_{1}\right)^{-1}, C_{3} W_{2} A_{2} W_{2}=0, W_{2} A_{2} W_{2} C_{4}=$ 0 and $W_{2} A_{2} W_{2} C_{2} W_{2} A_{2} W_{2}=W_{2} A_{2} W_{2}$. By $W A W C=W B W C$, we have that $B_{1}=A_{1}$ and $W_{2} A_{2} W C_{2}=W_{2} B_{2} W_{2} C_{2}$. Also, $C W A W=C W B W$ gives $C_{2} W_{2} A_{2} W_{2}=C_{2} W_{2} B_{2} W_{2}$. Hence, $W_{2} A_{2} W_{2} \leq^{-} W_{2} B_{2} W_{2}$ and, by Theorem 3.4, $A \leq \leq^{G D, W} B$.
(ii) \Rightarrow (iv): Consequently, by $(A W)^{d} A=A(W A)^{d}$.
(iv) \Rightarrow (ii): Suppose that A and W are given as in (1.1) and

$$
B=\left[\begin{array}{ll}
B_{1} & B_{3} \\
B_{4} & B_{2}
\end{array}\right]
$$

Since

$$
\left[\begin{array}{cc}
A_{1}^{-1} B_{1} W_{1} & A_{1}^{-1} B_{3} W_{2} \\
0 & 0
\end{array}\right]=W(A W)^{d} B W=W B(W A)^{d} W=\left[\begin{array}{cc}
W_{1} B_{1} A_{1}^{-1} & 0 \\
W_{2} B_{4} A_{1}^{-1} & 0
\end{array}\right]
$$

then $B_{3} W_{2}=0$ and $W_{2} B_{4}=0$. Using the condition $W A W \leq^{-} W B W$, the rest follows as in part (iii) \Rightarrow (i).
(iv) \Leftrightarrow (v): This equivalence is obvious.
(ii) \Rightarrow (vi): Assume that A, W, B and C are represented as in the part (i) \Rightarrow (ii). By Theorem 2.1, we deduce that $C \in A\{W-G D\}$. Also, we can verify that $W A W C W B W=$ $W A W=W B W C W A W$. Thus, the part (a) is satisfied.

To prove that part (b) holds, we suppose that $C^{\prime} \in A\{W-G D\}$. Applying Theorem 2.1, we have that

$$
C^{\prime}=\left[\begin{array}{cc}
\left(W_{1} A_{1} W_{1}\right)^{-1} & C_{12}^{\prime} \\
C_{21}^{\prime} & C_{2}^{\prime}
\end{array}\right],
$$

where $C_{12}^{\prime} W_{2}=0, W_{2} C_{21}^{\prime}=0, W_{2} A_{2} W_{2}$ is relatively regular and $C_{2}^{\prime} \in\left(W_{2} A_{2} W_{2}\right)\{1\}$. Then

$$
W C^{\prime} W(A W)^{d} B W=\left[\begin{array}{cc}
A_{1}^{-1} & 0 \\
0 & 0
\end{array}\right]=W B(W A)^{d} W C^{\prime} W
$$

(vi) \Rightarrow (ii): If $A^{W-G D} \in A\{W-G D\}$ such that $W A W A^{W-G D} W B W=W A W=$ $W B W A^{W-G D} W A W$, by Theorem 2.1, there exist topological direct sums $X=X_{1} \oplus X_{2}$ and $Y=Y_{1} \oplus Y_{2}$ such that

$$
A=\left[\begin{array}{cc}
A_{1} & 0 \\
0 & A_{2}
\end{array}\right], \quad W=\left[\begin{array}{cc}
W_{1} & 0 \\
0 & W_{2}
\end{array}\right], \quad A^{W-G D}=\left[\begin{array}{cc}
\left(W_{1} A_{1} W_{1}\right)^{-1} & C_{12} \\
C_{21} & C_{2}
\end{array}\right],
$$

where A_{1} and W_{1} are invertible, $W_{2} A_{2}$ and $A_{2} W_{2}$ are quasinilpotent, $C_{12} W_{2}=0, W_{2} C_{21}=$ $0, W_{2} A_{2} W_{2}$ is relatively regular and $C_{2} \in\left(W_{2} A_{2} W_{2}\right)\{1\}$. For

$$
B=\left[\begin{array}{ll}
B_{1} & B_{3} \\
B_{4} & B_{2}
\end{array}\right]
$$

we get

$$
W A^{W-G D} W(A W)^{d} B W=\left[\begin{array}{cc}
A_{1}^{-1}\left(A_{1} W_{1}\right)^{-1} B_{1} W_{1} & A_{1}^{-1}\left(A_{1} W_{1}\right)^{-1} B_{3} W_{2} \\
0 & 0
\end{array}\right]
$$

and

$$
W B(W A)^{d} W A^{W-G D} W=\left[\begin{array}{ll}
W_{1} B_{1}\left(W_{1} A_{1}\right)^{-1} A_{1}^{-1} & 0 \\
W_{2} B_{4}\left(W_{1} A_{1}\right)^{-1} A_{1}^{-1} & 0
\end{array}\right] .
$$

Now, $W A^{W-G D} W(A W)^{d} B W=W B(W A)^{d} W A^{W-G D} W$ gives $B_{3} W_{2}=0$ and $W_{2} B_{4}=0$. From

$$
\begin{gathered}
W A W=\left[\begin{array}{cc}
W_{1} A_{1} W_{1} & 0 \\
0 & W_{2} A_{2} W_{2}
\end{array}\right], \\
W A W A^{W-G D} W B W=\left[\begin{array}{cc}
W_{1} B_{1} W_{1} & 0 \\
0 & W_{2} A_{2} W_{2} C_{2} W_{2} B_{2} W_{2}
\end{array}\right]
\end{gathered}
$$

and $W A W A^{W-G D} W B W=W A W$, we obtain $B_{1}=A_{1}$ and $W_{2} A_{2} W_{2} C_{2} W_{2} B_{2} W_{2}=$ $W_{2} A_{2} W_{2}$. By

$$
W B W A^{W-G D} W A W=\left[\begin{array}{cc}
W_{1} A_{1} W_{1} & 0 \\
0 & W_{2} B_{2} W_{2} C_{2} W_{2} A_{2} W_{2}
\end{array}\right]
$$

and $W A W=W B W A^{W-G D} W A W$, we have that $W_{2} B_{2} W_{2} C_{2} W_{2} A_{2} W_{2}=W_{2} A_{2} W_{2}$. Set $C_{2}^{\prime}=C_{2} W_{2} A_{2} W_{2} C_{2}$. Then $C_{2}^{\prime} \in\left(W_{2} A_{2} W_{2}\right)\{1\}, W_{2} A_{2} W_{2} C_{2}^{\prime}=W_{2} B_{2} W_{2} C_{2}^{\prime}$ and $C_{2}^{\prime} W_{2} A_{2} W_{2}=$ $C_{2}^{\prime} W_{2} B_{2} W_{2}$. So, $W_{2} A_{2} W_{2} \leq^{-} W_{2} B_{2} W_{2}$ and, by Theorem 3.4, $A \leq^{G D, W} B$.
(i) \Rightarrow (vii): By Theorem 3.4, there exist $C \in A\{W-G D\}$ such that $W A W C=W B W C$ and $C W A W=C W B W$. For $P=W A W C$ and $Q=C W A W$, we obtain $R(P)=$ $R(W A W), N(Q)=N(W A W)$ and $W A^{d, W} P W=W Q A^{d, W} W$ as in the proof of Theorem 2.2 (part (i) \Rightarrow (ii)). We also have

$$
W A W=W A W(C W A W)=W A W C W B W=P W B W
$$

and in the same way $W A W=W B W Q$.
(vii) \Rightarrow (i): Suppose that there exist idempotents $P \in \mathbf{B}(X)$ and $Q \in \mathbf{B}(Y)$ such that $R(P)=R(W A W), N(Q)=N(W A W), W A^{d, W} P W=W Q A^{d, W} W$ and $P W B W=$ $W A W=W B W Q$. Set $C=Q(W A W)^{-} P$, for $(W A W)^{-} \in(W A W)\{1\}$. Using Theorem 2.2, we deduce that $C \in A\{W-G D\}$. Now, by $W A W=W A W Q=P W A W$, we get
$W B W C=(W B W Q)(W A W)^{-} P=W A W(W A W)^{-} P=W A W Q(W A W)^{-} P=W A W C$ and analogously $C W B W=C W A W$. So, $A \leq^{G D, W} B$.

By [4, Example 3.2], we observe that none of relations $\leq^{d, W}$ and $\leq^{G D, W}$ implies other one. In the next result, we prove that $A \leq^{d, W} B$ and $W A W \leq^{-} W B W$ give $A \leq^{G D, W} B$.

Theorem 3.7. Let $W \in \mathbf{B}(Y, X) \backslash\{0\}, B \in \mathbf{B}(X, Y)$ and let $A \in \mathbf{B}(X, Y)$ be $W g$-Drazin invertible such that $W A W$ is relatively regular. If $A \leq^{d, W} B$ and $W A W \leq^{-} W B W$, then $A \leq{ }^{G D, W} B$.

Proof. The proof is analogous to that given in [4, Lemma 3.2].
The result given in [4, Theorem 3.5] is also valid for operators on Banach spaces.
Theorem 3.8. Let $W \in \mathbf{B}(Y, X) \backslash\{0\}$ and let $A, B \in \mathbf{B}(X, Y)$ be $W g$-Drazin invertible such that $W A W$ is relatively regular. If $A \leq{ }^{G D, W} B$, then $W A^{d, W} W$ is relatively regular and $W A^{d, W} W \leq^{-} W B^{d, W} W$.
Proof. Let A, W and B be represented as in Theorem 3.4(iii). Since (3.3) holds, then

$$
W B^{d, W} W=W(B W)^{d}=\left[\begin{array}{cc}
A_{1}^{-1} & 0 \\
0 & W_{2}\left(B_{2} W_{2}\right)^{d}
\end{array}\right]
$$

We observe that $W A^{d, W} W=\left[\begin{array}{cc}A_{1}^{-1} & 0 \\ 0 & 0\end{array}\right]$ is relatively regular. Set $U=\left[\begin{array}{cc}A_{1} & 0 \\ 0 & 0\end{array}\right]$. Now, we have that $U \in\left(W A^{d, W} W\right)\{1\}$,

$$
W A^{d, W} W U=\left[\begin{array}{ll}
I & 0 \\
0 & 0
\end{array}\right]=W B^{d, W} W U
$$

and

$$
U W A^{d, W} W=\left[\begin{array}{ll}
I & 0 \\
0 & 0
\end{array}\right]=U W B^{d, W} W
$$

that is $W A^{d, W} W \leq^{-} W B^{d, W} W$.
Recall that if $A, B \in \mathbf{B}(X, Y)$ are relatively regular, then $A \leq^{-} B$ if and only if $B-A \leq^{-} B$. As in [4, Proposition 3.1], the following result holds.
Theorem 3.9. Let $W \in \mathbf{B}(Y, X) \backslash\{0\}$ and let $A, B \in \mathbf{B}(X, Y)$ be $W g$-Drazin invertible such that $W A W$ and $W B W$ are relatively regular. If $B-A$ is $W g$-Drazin invertible, $A \leq{ }^{G D, W} B$ and A, W and B are represented as in Theorem 3.4(iii), then the following conditions are equivalent
(i) $B-A \leq{ }^{G D, W} B$;
(ii) $B_{2}-A_{2} \leq{ }^{G D, W} B_{2}$.

Proof. We see that $W A W, W B W, W_{2} A_{2} W_{2}$ and $W_{2} B_{2} W_{2}$ are relatively regular. Using Theorem 3.4 and Theorem 3.6, we deduce that $W A W \leq^{-} W B W$ and $W_{2} A_{2} W_{2} \leq^{-}$ $W_{2} B_{2} W_{2}$ which is equivalent to $W(B-A) W \leq^{-} W B W$ and $W_{2}\left(B_{2}-A_{2}\right) W_{2} \leq^{-} W_{2} B_{2} W_{2}$. Because $B-A$ is $W g$-Drazin invertible, then $(B-A) W$ and $W(B-A)$ are generalized Drazin invertible,

$$
((B-A) W)^{d}=\left[\begin{array}{cc}
0 & 0 \\
B_{4} W_{1} & \left(B_{2}-A_{2}\right) W_{2}
\end{array}\right]^{d}=\left[\begin{array}{cc}
0 & 0 \\
0 & \left(\left(B_{2}-A_{2}\right) W_{2}\right)^{d}
\end{array}\right]
$$

and

$$
(W(B-A))^{d}=\left[\begin{array}{cc}
0 & W_{1} B_{3} \\
0 & W_{2}\left(B_{2}-A_{2}\right)
\end{array}\right]^{d}=\left[\begin{array}{cc}
0 & 0 \\
0 & \left(W_{2}\left(B_{2}-A_{2}\right)\right)^{d}
\end{array}\right]
$$

From

$$
W((B-A) W)^{d} B W=\left[\begin{array}{cc}
0 & 0 \\
0 & W_{2}\left(\left(B_{2}-A_{2}\right) W_{2}\right)^{d} B_{2} W_{2}
\end{array}\right]
$$

and

$$
W B(W(B-A))^{d} W=\left[\begin{array}{cc}
0 & 0 \\
0 & W_{2} B_{2}\left(W_{2}\left(B_{2}-A_{2}\right)\right)^{d} W_{2}
\end{array}\right],
$$

we deduce that $W((B-A) W)^{d} B W=W B(W(B-A))^{d} W$ is equivalent to $W_{2}\left(\left(B_{2}-A_{2}\right) W_{2}\right)^{d} B_{2} W_{2}=W_{2} B_{2}\left(W_{2}\left(B_{2}-A_{2}\right)\right)^{d} W_{2}$. Hence, by Theorem 3.6, (i) and (ii) are equivalent.

4. G-Drazin inverses

If $A \in \mathbf{B}(X)$ and $W=I \in \mathbf{B}(X)$ in results of Section 2 and Section 3, we obtain definitions and characterizations of the G-Drazin inverse and the G-Drazin partial order for operators on Banach space. Thus, we extend recent results from [4, 19] and present some new results.

Definition 4.3. Let $A \in \mathbf{B}(X)$ be generalized Drazin invertible such that A is relatively regular. An operator $C \in \mathbf{B}(X)$ is a G-Drazin inverse of A if the following equalities hold:

$$
A C A=A \quad \text { and } \quad A^{d} A C=C A^{d} A
$$

Denote by $A\{G D\}$ the set of all G-Drazin inverses of A.
Corollary 4.3. Let $A \in \mathbf{B}(X)$ be generalized Drazin invertible such that A is relatively regular. For $C \in \mathbf{B}(X)$, the following statements are equivalent:
(i) $C \in A\{G D\}$;
(ii) $A C A=A$ and $A^{d} A^{2} C=A A^{d}=C A^{d} A^{2}$;
(iii) $A C A=A$ and $A^{d} A C=A^{d}=C A^{d} A$;
(iv) $A C A=A$ and $A^{d} C=C A^{d}$;
(v) there exist a topological direct sum $X=X_{1} \oplus X_{2}$ such that

$$
A=\left[\begin{array}{cc}
A_{1} & 0 \\
0 & A_{2}
\end{array}\right], \quad C=\left[\begin{array}{cc}
A_{1}^{-1} & 0 \\
0 & C_{2}
\end{array}\right],
$$

where A_{1} is invertible, A_{2} is quasinilpotent, A_{2} is relatively regular and $C_{2} \in A_{2}\{1\}$.
Proof. We need only to prove that (ii) \Leftrightarrow (iv). Because the group inverse is double commutative and $\left(A^{d} A^{2}\right)^{\#}=A^{d}$, we conclude that $A^{d} A^{2} C=C A^{d} A^{2}$ is equivalent to $A^{d} C=$ $C A^{d}$. We observe that $A^{d} C=C A^{d}$ and $A C A=A$ give $A^{d} A^{2} C=A^{2} C A^{d}=A^{2} C A\left(A^{d}\right)^{2}=$ $A^{2}\left(A^{d}\right)^{2}=A A^{d}$ and also $A A^{d}=C A^{d} A^{2}$.

Corollary 4.4. Let $A \in \mathbf{B}(X)$ be generalized Drazin invertible such that A is relatively regular. If $C \in A\{G D\}$, then $(I-C A) A$ and $A(I-A C)$ are quasinilpotent.

Corollary 4.5. Let $A \in \mathbf{B}(X)$ be generalized Drazin invertible such that A is relatively regular. The following statements are equivalent:
(i) $A\{G D\} \neq \emptyset$;
(ii) there exist idempotents $P \in \mathbf{B}(X)$ and $Q \in \mathbf{B}(X)$ such that

$$
R(P)=R(A), \quad N(Q)=N(A) \quad \text { and } \quad A^{d} P=Q A^{d} .
$$

In addition, for arbitrary $A^{-} \in A\{1\}, Q A^{-} P \in A\{G D\}$, that is,

$$
Q \cdot A\{1\} \cdot P \subseteq A\{G D\}
$$

Corollary 4.6. Let $A \in \mathbf{B}(X)$ be generalized Drazin invertible such that A is relatively regular. Then

$$
A\{G D\} \cdot A \cdot A\{G D\} \subseteq A\{G D\}
$$

The definition of the G-Drazin relation is stated now in the Banach space setting.
Definition 4.4. Let $B \in \mathbf{B}(X)$ and let $A \in \mathbf{B}(X)$ be generalized Drazin invertible such that A is relatively regular. Then we say that A is below to B under the G-Drazin relation (denoted by $A \leq{ }^{G D} B$) if there exist $C_{1}, C_{2} \in A\{G D\}$ such that

$$
A C_{1}=B C_{1} \quad \text { and } \quad C_{2} A=C_{2} B
$$

Corollary 4.7. Let $B \in \mathbf{B}(X)$ and let $A \in \mathbf{B}(X)$ be generalized Drazin invertible such that A is relatively regular. Then the following statements are equivalent:
(i) $A \leq{ }^{G D} B$;
(ii) there exist $C \in A\{G D\}$ such that

$$
A C=B C \quad \text { and } \quad C A=C B ;
$$

(iii) there exist topological direct sum $X=X_{1} \oplus X_{2}$ such that

$$
A=\left[\begin{array}{cc}
A_{1} & 0 \\
0 & A_{2}
\end{array}\right], \quad B=\left[\begin{array}{cc}
A_{1} & 0 \\
0 & B_{2}
\end{array}\right]
$$

where A_{1} is invertible, A_{2} is quasinilpotent, A_{2} is relatively regular and $A_{2} \leq^{-} B_{2}$.
In addition, if B is generalized Drazin invertible such that B is relatively regular, then $D \in B\{G D\}$ if and only if

$$
D=\left[\begin{array}{cc}
A_{1}^{-1} & 0 \\
0 & D_{2}
\end{array}\right]
$$

where $D_{2} \in B_{2}\{G D\}$.
It is interesting to note that the G-Drazin relation is a partial order.
Corollary 4.8. The G-Drazin relation is a partial order on the set $\left\{A \in \mathbf{B}(X)^{d}\right.$: A is relatively regular\}.

Proof. It is enough to prove that the G-Drazin relation is antisymmetric. Assume that $A, B \in \mathbf{B}(X)^{d}$ such that A and B are relatively regular, $A \leq^{G D} B$ and $B \leq^{G D} A$. There exists $D \in B\{G D\}$ such that $B D=A D$ and $D B=D A$. Notice that A, B and D can be represented as in Corollary 4.7 and so $A_{2} \leq^{-} B_{2}$. The equalities $B D=A D$ and $D B=D A$ give $B_{2} D_{2}=A_{2} D_{2}$ and $D_{2} B_{2}=D_{2} A_{2}$, that is $B_{2} \leq^{-} A_{2}$. Since \leq^{-}is antisymmetric, then $A_{2}=B_{2}$. Thus, $A=B$.

Corollary 4.9. Let $B \in \mathbf{B}(X)$ and let $A \in \mathbf{B}(X)$ be generalized Drazin invertible such that A is relatively regular. Then the following statements are equivalent:
(i) $A \leq{ }^{G D} B$;
(ii) $A \leq{ }^{-} B, A^{d} B=A^{d} A$ and $B A^{d}=A A^{d}$;
(iii) $A \leq^{-} B, N\left(A^{d}\right) \subseteq N\left(A^{d} B\right)$ and $R\left(B A^{d}\right) \subseteq R\left(A^{d}\right)$;
(iv) $A \leq^{-} B$ and $A^{d} B=B A^{d}$;
(v) $A \leq^{-} B$ and $A \leq^{d} B$;
(vi) (a) There exists $A^{G D} \in A\{G D\}$ such that $A A^{G D} B=A=B A^{G D} A$.
(b) For every $C \in A\{G D\}, C A^{d} B=B A^{d} C$.
(vii) There exist idempotents $P, Q \in \mathbf{B}(X)$ such that $R(P)=R(A), N(Q)=N(A), A^{d} P=$ $Q A^{d}$ and $P B=A=B Q$.

Corollary 4.10. Let $A, B \in \mathbf{B}(X, Y)$ be generalized Drazin invertible such that A is relatively regular. If $A \leq{ }^{G D} B$, then A^{d} is relatively regular and $A^{d} \leq^{-} B^{d}$.

Corollary 4.11. Let $A, B \in \mathbf{B}(X)$ be generalized Drazin invertible such that A and B are relatively regular. If $B-A$ is generalized Drazin invertible, $A \leq{ }^{G D} B$ and A, B are represented as in Corollary 4.7(iii), then the following conditions are equivalent
(i) $B-A \leq{ }^{G D} B$;
(ii) $B_{2}-A_{2} \leq{ }^{G D} B_{2}$.

Acknowledgments. The author is supported by the Ministry of Education, Science and Technological Development, Republic of Serbia, grant number 174007.

References

[1] Burgos, M., Márquez-García, A. C. and Morales-Campoy, A., Maps preserving the diamond partial order, Appl. Math. Comput., 296 (2017), 137-147
[2] Castro González, N. and Koliha, J. J., New additive results for the g-Drazin inverse, Proc. Roy. Soc. Edinburgh Sect. A, 134 (2004), 1085-1097
[3] Cline, R. E. and Greville, T. N. E., A Drazin inverse for rectangular matrices, Linear Algebra Appl., 29 (1980), 53-62
[4] Coll, C., Lattanzi, M. and Thome, N., Weighted G-Drazin inverses and a new pre-order on rectangular matrices, Appl. Math. Comput., 317 (2018), 12-24
[5] Dajić, A. and Koliha, J. J., The weighted g-Drazin inverse for operators, J. Australian Math. Soc., 82 (2007), 163-181
[6] Hernández, A., Lattanzi, M. and Thome, N., On some new pre-orders defined by weighted Drazin inverses, Appl. Math. Comput., 282 (2016), 108-116
[7] Hernández, A., Lattanzi, M. and Thome, N., Weighted binary relations involving the Drazin inverse, Appl. Math. Comput., 253 (2015), 215-223
[8] Koliha, J. J., A generalized Drazin inverse, Glasgow Math. J., 38 (1996), 367-381
[9] Marovt, J., On star, sharp, core and minus partial orders in Rickart rings, Banach J. Math. Anal., 10 (2016), No. 3, 495-508
[10] Mitra, S. K., Bhimasankaram, P. and Malik, S. B., Matrix partial orders, shorted operators and applications, World Scientific Publishing Company, 2010
[11] Mosić, D., Extensions of Jacobson's lemma for Drazin inverses, Aequat. Math., 91 (2017), No. 3, 419-428
[12] Mosić, D., Reverse order laws on the conditions of the commutativity up to a factor, Revista de La Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 111 (2017), 685-695
[13] Mosić, D., Weighted binary relations for operators on Banach spaces, Aequat. Math., 90 (2016), No. 4, 787-798
[14] Mosić, D. and Djordjević, D. S., Some additive results for the Wg-Drazin inverse of Banach space operators, Carpathian J. Math., 32 (2016), No. 2, 215-223
[15] Mosić, D. and Djordjević, D. S., Weighted pre-orders involving the generalized Drazin inverse, Appl. Math. Comput., 270 (2015), 496-504
[16] Rakočević, V. and Wei, Y., A weighted Drazin inverse and applications, Linear Algebra Appl., 350 (2002), 25-39
[17] Robles, J., Martnez-Serrano, M. F. and Dopazo, E., On the generalized Drazin inverse in Banach algebras in terms of the generalized Schur complement, Appl. Math. Comput., 284 (2016), 162-168
[18] Srivastava, S., Gupta, D. K., Stanimirović, P. S., Singh, S. and Roy, F., A hyperpower iterative method for computing the generalized Drazin inverse of Banach algebra element, S $\bar{a} \mathrm{dhan} \bar{a}, 42$ (2017), No. 5, 625-630
[19] Wang, H. and Liu, v, Partial orders based on core-nilpotent decomposition, Linear Algebra Appl., 488 (2016), 235-248
[20] Wang, X. Z., Ma, H. and Stanimirović, P. S., Recurrent neural network for computing the W-weighted Drazin inverse, Appl. Math. Comput., 300 (2017), 1-20
[21] Zhang, X. and Sheng, X., Two methods for computing the Drazin inverse through elementary row operations, Filomat, 30 (2016), No. 14, 3759-3770

University of Niš
Faculty of Sciences and Mathematics
P.O. Box 224, 18000 Niš, SERbiA

E-mail address: dijana@pmf.ni.ac.rs

[^0]: Received: 01.08.2018. In revised form: 10.01.2019. Accepted: 17.01.2019
 2010 Mathematics Subject Classification. 47A05, 47A62, 47A99, 15A09.
 Key words and phrases. weighted G-Drazin inverse, Wg-Drazin inverse, G-Drazin partial order, minus partial order.

