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Weighted G-Drazin inverse for operators on Banach spaces

DIJANA MOSIĆ

ABSTRACT. We define an extension of weighted G-Drazin inverses of rectangular matrices to operators bet-
ween two Banach spaces. Some properties of weighted G-Drazin inverses are generalized and some new ones
are proved. Using weighted G-Drazin inverses, we introduce and characterize a new weighted pre-order on the
set of all bounded linear operators between two Banach spaces. As an application, we present and study the
G-Drazin inverse and the G-Drazin partial order for operators on Banach space.

1. INTRODUCTION

Let X and Y be arbitrary Banach spaces. We use B(X,Y ) to denote the set of all boun-
ded linear operators from X to Y. Set B(X) = B(X,X). For A ∈ B(X,Y ), the notations
N(A) and R(A) stand for the null space and the range of A, respectively.

An operator A ∈ B(X,Y ) is relatively regular if there exists some B ∈ B(Y,X) such
that ABA = A. The operator B is called an inner inverse of A and it is not unique. By
A{1} we denote the set of all inner inverses of A. Recall that A ∈ B(X,Y ) is relatively
regular if and only if N(A) and R(A) are closed and complemented subspaces of X and
Y , respectively. In the case that X and Y are Hilbert spaces, A is relatively regular if and
only if R(A) is closed.

Let W ∈ B(Y,X) be a fixed nonzero operator. An operator A ∈ B(X,Y ) is Wg–Drazin
invertible if there exists a unique B ∈ B(X,Y ) such that

AWB = BWA, BWAWB = B and A−AWBWA is quasinilpotent.

The Wg–Drazin inverseB ofAwill be denoted byAd,W [5]. In the case thatA−AWBWA
is nilpotent in the above definition, Ad,W = AD,W is the W-weighted Drazin inverse of
A [3, 16]. When X = Y and W = I , then Ad = Ad,W is the generalized Drazin inverse
(or the Koliha-Drazin inverse) of A [8] and AD = AD,W is the Drazin inverse of A. The
symbol B(X)d denotes the set of all generalized Drazin invertible operators of B(X). The
group inverse is a particular case of Drazin inverse for which the condition A − ABA is
nilpotent is replaced with A = ABA. By A# will be denoted the group inverse of A.

For A ∈ B(X,Y ) and W ∈ B(Y,X), the following conditions are equivalent [5]:

(1) A is Wg-Drazin invertible and Ad,W = B ∈ B(X,Y ),
(2) AW ∈ B(Y )d with (AW )d = BW ,
(3) WA ∈ B(X)d with (WA)d =WB.

Then, the Wg-Drazin inverse Ad,W of A satisfies

Ad,W = ((AW )d)2A = A((WA)d)2.
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Lemma 1.1. [5] Let A ∈ B(X,Y ) and W ∈ B(Y,X)\{0}. Then A is Wg-Drazin invertible if
and only if there exist topological direct sums X = X1 ⊕X2, Y = Y1 ⊕ Y2 such that

(1.1) A =

[
A1 0
0 A2

]
, W =

[
W1 0
0 W2

]
,

where Ai ∈ B(Xi, Yi), Wi ∈ B(Yi, Xi), for i = 1, 2, with A1, W1 invertible, and W2A2 and
A2W2 quasinilpotent in B(X2) and B(Y2), respectively. The Wg-Drazin inverse of A is given by

(1.2) Ad,W =

[
(W1A1W1)

−1 0
0 0

]
with (W1A1W1)

−1 ∈ B(X1, Y1) and the (2,2) matrix block satisfies that 0 ∈ B(X2, Y2).

For recent results related to the (generalized) Drazin and (generalized) weighted Dra-
zin inverse see [11, 12, 14, 17, 18, 20, 21].

Various kinds of pre-orders (i.e. reflexive and transitive binary relations) and partial
orders were defined using various generalized inverses [1, 9, 10].

LetA,B ∈ B(X,Y ) be relatively regular. ThenA is said to be belowB under the minus
partial order (denoted by A ≤− B) if there exists an inner generalized inverse A− of A
such that AA− = BA− and A−A = A−B.

For A,B ∈ B(X) such that A is group invertible, we say that A is below B under the
sharp partial order (A ≤# B) if A#A = A#B and AA# = BA#.

Let A,B ∈ B(X)d. The operator A is below to B under the generalized Drazin pre-
order (A ≤d B) if A2Ad ≤# B2Bd. Recall that A ≤d B if and only if AdA = AdB and
AAd = BAd [15].

Let A,B ∈ B(X,Y ) and W ∈ B(Y,X)\{0}. If A is Wg-Drazin invertible, then we say
that A ≤d,W B if AW ≤d BW and WA ≤d WB, where ≤d is considered on B(Y ) and
B(X), respectively. The relation≤d,W is a pre-order on the set of all Wg–Drazin invertible
operators of B(X,Y ) [15]. For more related results see [6, 7, 13].

The G-Drazin inverse of a square matrix was defined in [19]. Coll, Lattanzi, and Thome
[4] extended the notion of G-Drazin inverses to rectangular matrices considering a weight
matrix. Let Cm×n denote the set of m × n complex matrices. If W ∈ Cn×m\{0}, the
W -weighted G-Drazin inverse of A ∈ Cm×n is a matrix C satisfying the following three
equations WAWCWAW = WAW , (AW )k+1CW = (AW )k, WC(WA)k+1 = (WA)k,
where k = max{ind(AW ), ind(WA)} and ind(D) is the index of D. If m = n and W = I ,
then C is a G-Drazin inverse of A. A new pre-order, which generalizes the G-Drazin
partial order studied in [19] to the rectangular case, was also characterized in [4].

We introduce the definition of weighted G-Drazin inverses of an operator between two
Banach spaces and prove that our definition and the above definition of weighted G-
Drazin inverses for a rectangular matrix are equivalent in complex matrix case. Several
new characterizations of weighted G-Drazin inverses are given and some known results
are extended. Also, we define and investigate a new pre-order on the corresponding
subset of all operators between two Banach spaces. As consequences of our results, we
present definitions of the G-Drazin inverse and the G-Drazin partial order for operators
on Banach spaces and give their new characterizations. Thus, the recent results from
[4, 19] are extended to more general settings.

2. WEIGHTED G-DRAZIN INVERSES

In the beginning of this section, we define the weighted G-Drazin inverse of an ope-
rator between two Banach spaces as an extension of the weighted G-Drazin inverse for a
rectangular matrix.
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Definition 2.1. Let W ∈ B(Y,X)\{0} and let A ∈ B(X,Y ) be Wg-Drazin invertible such
that WAW is relatively regular. An operator C ∈ B(X,Y ) is a W -weighted G-Drazin
inverse of A if the following equalities hold:

WAWCWAW =WAW and WAd,WWAWCW =WCWAd,WWAW.

We use A{W − GD} to denote the set of all W -weighted G-Drazin inverses of A. Ob-
viously, A{W −GD} ⊆ (WAW ){1}. If AW (or equivalently WA) is quasinilpotent, then
(WAW ){1} ⊆ A{W −GD} and so A{W −GD} = (WAW ){1}.

Now, we present necessary and sufficient conditions for an operator to be aW -weighted
G-Drazin inverse of a given operator.

Theorem 2.1. Let W ∈ B(Y,X)\{0} and let A ∈ B(X,Y ) be Wg-Drazin invertible such that
WAW is relatively regular. For C ∈ B(X,Y ), the following statements are equivalent:

(i) C ∈ A{W −GD};
(ii) WAWCWAW =WAW and W (AW )dAWCW =WCW (AW )dAW ;

(iii) WAWCWAW =WAW and (WA)dWAWCW =WCW (AW )dAW ;
(iv) WAWCWAW = WAW and (WA)d(WA)2WCW = WAW (AW )d =

WCW (AW )d(AW )2;
(v) WAWCWAW =WAW and (WA)dWAWCW =W (AW )d =WCW (AW )dAW ;

(vi) there exist topological direct sums X = X1 ⊕X2 and Y = Y1 ⊕ Y2 such that

A =

[
A1 0
0 A2

]
, W =

[
W1 0
0 W2

]
, C =

[
(W1A1W1)

−1 C12

C21 C2

]
,

where A1 and W1 are invertible, W2A2 and A2W2 are quasinilpotent, C12W2 = 0,
W2C21 = 0, W2A2W2 is relatively regular and C2 ∈ (W2A2W2){1}.

Proof. (i)⇔ (ii)-(iii): These equivalences follow by properties of the Wg-Drazin inverse.
(iii)⇒ (iv): Notice that

(WA)d(WA)2WCW =WA((WA)dWAWCW ) = (WAWCWAW )(AW )d =WAW (AW )d

and similarly WAW (AW )d =WCW (AW )d(AW )2.
(iv) ⇒ (v): Multiplying (WA)d(WA)2WCW = WAW (AW )d by (WA)d from the left

side, we get (WA)dWAWCW = W (AW )dAW (AW )d = W (AW )d. In an analogy way,
we prove that W (AW )d =WCBW (AW )dAW .

(v)⇒ (iii): This is clear.
(ii)⇔ (vi): By Lemma 1.1, there exist topological direct sums X = X1 ⊕ X2 and Y =

Y1 ⊕ Y2 such that

A =

[
A1 0
0 A2

]
, W =

[
W1 0
0 W2

]
,

where A1, W1 invertible, and W2A2 and A2W2 quasinilpotent in B(X2) and B(Y2), re-
spectively. Suppose that

C =

[
C1 C12

C21 C2

]
.

Since WAW =

[
W1A1W1 0

0 W2A2W2

]
and

WAWCWAW =

[
W1A1W1C1W1A1W1 W1A1W1C12W2A2W2

W2A2W2C21W1A1W1 W2A2W2C2W2A2W2

]
,

then WAWCWAW = WAW if and only if C1 = (W1A1W1)
−1, C12W2A2W2 = 0,

W2A2W2C21 = 0 and W2A2W2C2W2A2W2 = W2A2W2. By (AW )d =

[
(A1W1)

−1 0
0 0

]
,
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we get

W (AW )dAWCW =

[
W1C1W1 W1C12W2

0 0

]
and

WCW (AW )dAW =

[
W1C1W1 0
W2C21W1 0

]
.

We deduce that W (AW )dAWCW = WCW (AW )dAW is equivalent to C12W2 = 0 and
W2C21 = 0. Therefore, this equivalence holds. �

In the case that A is Wg-Drazin invertible such that WAW is relatively regular, by
Theorem 2.1(vi), notice that the W -weighted G-Drazin inverse of A exists and it is not
unique.

We show that the Definition 2.1 and [4, Definition 2.1] are equivalent in the complex
matrix case. Applying Theorem 2.1, we obtain new characterizations for the weighted
G-Drazin inverse in the finite dimensional case.

Corollary 2.1. Let W ∈ Cn×m\{0} and A ∈ Cm×n. For C ∈ Cm×n, the following statements
are equivalent:

(i) C ∈ A{W −GD};
(ii) WAWCWAW =WAW and W (AW )DAWCW =WCW (AW )DAW ;

(iii) WAWCWAW =WAW and (WA)DWAWCW =WCW (AW )DAW ;
(iv) WAWCWAW = WAW and (WA)D(WA)2WCW = WAW (AW )D =

WCW (AW )D(AW )2;
(v) WAWCWAW =WAW and (WA)DWAWCW =W (AW )D =WCW (AW )DAW .

Proof. (i) ⇔ (ii): By [4, Theorem 2.2], C ∈ A{W − GD} if and only if WAWCWAW =
WAW and W (AW )kCW = WCW (AW )k, for k = max{ind(AW ), ind(WA)}. Using pro-
perties of the Drazin inverse and WAWCWAW = WAW , we easily check that
W (AW )kCW =WCW (AW )k is equivalent to W (AW )DAWCW =WCW (AW )DAW .

(i)⇔ (iii)-(v): It follows by Theorem 2.1. �

Lemma 2.2. Let W ∈ B(Y,X)\{0} and let A ∈ B(X,Y ) be Wg-Drazin invertible such that
WAW is relatively regular. If C ∈ A{W − GD}, then (I − CWAW )WAW and WAW (I −
WAWC) are quasinilpotent.

Proof. Using WAWCWAW =WAW , we have that

σ((I − CWAW )WAW ) = σ(WAW (I − CWAW )) = σ(0) = {0},

i.e. (I − CWAW )WAW is quasinilpotent. In a same manner, we obtain that WAW (I −
WAWC) is quasinilpotent. �

Using corresponding idempotents, we give one more characterization for theW-weighted
G-Drazin inverse, which is new in the finite dimensional case too.

Theorem 2.2. Let W ∈ B(Y,X)\{0} and let A ∈ B(X,Y ) be Wg-Drazin invertible such that
WAW is relatively regular. The following statements are equivalent:

(i) A{W −GD} 6= ∅;
(ii) there exist idempotents P ∈ B(X) and Q ∈ B(Y ) such that

R(P ) = R(WAW ), N(Q) = N(WAW ) and WAd,WPW =WQAd,WW.

In addition, for arbitrary (WAW )− ∈ (WAW ){1}, Q(WAW )−P ∈ A{W −GD}, that is,

Q · (WAW ){1} · P ⊆ A{W −GD}.
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Proof. (i)⇒ (ii): LetC ∈ A{W−GD}. Denote by P =WAWC andQ = CWAW . Because
C ∈ (WAW ){1}, then P = P 2, Q = Q2, R(P ) = R(WAW ) and N(Q) = N(WAW ). Also,
we get

WAd,WPW =WAd,WWAWCW =WCWAd,WWAW =WQAd,WW.

(ii)⇒ (i): Suppose that (WAW )− ∈ (WAW ){1} and C = Q(WAW )−P . The assump-
tion R(P ) = R(WAW ) gives P = WAW (WAW )−P and WAW = PWAW . Since
N(Q) = N(WAW ), then R(I − Q) = N(WAW ) and N(Q) = N((WAW )−WAW ) =
R(I − (WAW )−WAW ) which imply WAW = WAWQ and Q = Q(WAW )−WAW .
Hence,

WAWCWAW = (WAWQ)(WAW )−(PWAW ) =WAW (WAW )−WAW =WAW

and, by WAd,WPW =WQAd,WW ,

WAd,WWAWCW = WAd,W (WAWQ)(WAW )−PW =WAd,W (WAW (WAW )−P )W

= WAd,WPW =WQAd,WW =WQ(WAW )−WAWAd,WW

= WQ(WAW )−PWAWAd,WW =WCWAWAd,WW,

i.e. C ∈ A{W −GD}. �

Also, we prove the following result.

Theorem 2.3. Let W ∈ B(Y,X)\{0} and let A ∈ B(X,Y ) be Wg-Drazin invertible such that
WAW is relatively regular. Then

A{W −GD} ·WAW ·A{W −GD} ⊆ A{W −GD}.

Proof. Assume that C,C ′ ∈ A{W − GD} and Z = CWAWC ′. We observe that
Z ∈ A{W −GD}, by

WAWZWAW = (WAWCWAW )C ′WAW =WAWC ′WAW =WAW

and

WAd,WWAWZW = (WAd,WWAWCW )AWC ′W =WCWA(WAd,WWAWC ′W )

= WCWAWC ′WAWAd,WW =WZWAWAd,WW.

�

3. WEIGHTED G-DRAZIN PRE-ORDER

Firstly, we introduce a new binary relation on B(X,Y ) generalizing the definition of
the weighted G-Drazin relation presented in [4] for complex rectangular matrices to the
class of bounded linear operators between Banach spaces.

Definition 3.2. Let W ∈ B(Y,X)\{0}, B ∈ B(X,Y ) and let A ∈ B(X,Y ) be Wg-Drazin
invertible such thatWAW is relatively regular. Then we say thatA is below toB under the
W-weighted G-Drazin relation (denoted byA≤GD,W B) if there exist C1, C2∈ A{W−GD}
such that

WAWC1 =WBWC1 and C2WAW = C2WBW.

We characterize the relation ≤GD,W in the following theorem, extending some results
from [4].

Theorem 3.4. Let W ∈ B(Y,X)\{0}, B ∈ B(X,Y ) and let A ∈ B(X,Y ) be Wg-Drazin
invertible such that WAW is relatively regular. Then the following statements are equivalent:

(i) A ≤GD,W B;
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(ii) there exist C ∈ A{W −GD} such that

WAWC =WBWC and CWAW = CWBW ;

(iii) there exist topological direct sums X = X1 ⊕X2 and Y = Y1 ⊕ Y2 such that

A =

[
A1 0
0 A2

]
, W =

[
W1 0
0 W2

]
, B =

[
A1 B3

B4 B2

]
,

where A1 and W1 are invertible, W2A2 and A2W2 are quasinilpotent, B3W2 = 0,
W2B4 = 0, W2A2W2 is relatively regular and W2A2W2 ≤− W2B2W2.

In addition, if B is Wg-Drazin invertible such that WBW is relatively regular, then
D ∈ B{W −GD} if and only if

D =

[
(W1A1W1)

−1 D12

D21 D2

]
,

where D12W2 = 0, W2D21 = 0 and D2 ∈ B2{W2 −GD}.

Proof. (i)⇒ (ii): The proof is analogous to that given in [4, Theorem 3.1].
(ii)⇒ (iii): Assume that there exist C ∈ A{W −GD} such that WAWC =WBWC and

CWAW = CWBW . By Theorem 2.1(vi), there exist topological direct sums X = X1⊕X2

and Y = Y1 ⊕ Y2 such that

A =

[
A1 0
0 A2

]
, W =

[
W1 0
0 W2

]
, C =

[
(W1A1W1)

−1 C12

C21 C2

]
,

whereA1 andW1 are invertible,W2A2 andA2W2 are quasinilpotent,C12W2 = 0,W2C21 =
0, W2A2W2 is relatively regular and C2 ∈ (W2A2W2){1}. Let

B =

[
B1 B3

B4 B2

]
.

The equalities WAWC =WBWC,

WAWC =

[
I W1A1W1C12

0 W2A2W2C2

]
and

WBWC =

[
W1B1(W1A1)

−1 W1B1W1C12 +W1B3W2C2

W2B4(W1A1)
−1 W2B4W1C12 +W2B2W2C2

]
imply B1 = A1, W2B4 = 0 and W2A2W2C2 =W2B2W2C2. From CWAW = CWBW ,

CWAW =

[
I 0

C21W1A1W1 C2W2A2W2

]
and

CWBW =

[
I (A1W1)

−1B3W2

C21W1A1W1 C21W1B3W2 + C2W2B2W2

]
,

we get B3W2 = 0 and C2W2A2W2 = C2W2B2W2. So, W2A2W2 ≤− W2B2W2.
(iii) ⇒ (i): By the hypothesis W2A2W2 ≤− W2B2W2, there exists C2 ∈ (W2A2W2){1}

such that W2A2W2C2 =W2B2W2C2 and C2W2A2W2 = C2W2B2W2. Suppose that

C =

[
(W1A1W1)

−1 0
0 C2

]
.

Applying Theorem 2.1(vi), we deduce that C ∈ A{W − GD}. Notice that WAWC =
WBWC and CWAW = CWBW which imply A ≤GD,W B.
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Assume that D ∈ B{W −GD} and

D =

[
D1 D12

D21 D2

]
.

Then WBW =WBWDWBW is equivalent to[
W1A1W1 0

0 W2B2W2

]
=

[
W1A1W1D1W1A1W1 W1A1W1D12W2B2W2

W2B2W2D21W1A1W1 W2B2W2D2W2B2W2

]
which yields D1 = (W1A1W1)

−1, D12W2B2W2 = 0, W2B2W2D21 = 0 and W2B2W2 =
W2B2W2D2W2B2W2. Using [2, Theorem 2.3], we obtain

(3.3) BW =

[
A1W1 0
B4W1 B2W2

]
and (BW )d =

[
(A1W1)

−1 0
S (B2W2)

d

]
,

where S = B4W1(A1W1)
−2 by (B2W2)

dB4 = [(B2W2)
d]2B2W2B4 = 0. Now, we have that

W2S = 0,

W (BW )dBWDW =

[
A−11 W1D12W2

0 W2(B2W2)
dB2W2D2W2

]
and

WDW (BW )dBW =

[
A−11 0

W2D21W1 W2D2W2(B2W2)
dB2W2

]
.

The equality W (BW )dBWDW = WDW (BW )dBW gives D12W2 = 0, W2D21 = 0 and
W2(B2W2)

dB2W2D2W2 =W2D2W2(B2W2)
dB2W2. Hence, D2 ∈ B2{W2 −GD}.

If

D =

[
(W1A1W1)

−1 D12

D21 D2

]
,

where D12W2 = 0, W2D21 = 0 and D2 ∈ B2{W2−GD}, by elementary computations, we
verify that D ∈ B{W −GD}. �

Remark thatA ≤GD,W B impliesWAW ≤− WBW , becauseA{W−GD} ⊆ (WAW ){1}.

Corollary 3.2. Let W ∈ B(Y,X)\{0} and let A,B ∈ B(X,Y ) be Wg-Drazin invertible such
that WAW and WBW are relatively regular. If A ≤GD,W B, then

B{W −GD} ⊆ A{W −GD}.

Proof. The proof is analogous to that given in [4, Corollary 3.2]. �

Before we prove that the W -weighted G-Drazin relation is a pre-order, recall that the
W -weighted G-Drazin relation is not antisymmetric (see [4, Example 3.1]).

Theorem 3.5. Let W ∈ B(Y,X)\{0}. The W -weighted G-Drazin relation is a pre-order on the
set {A ∈ B(X,Y ) : A is Wg −Drazin invertible such that WAW is relatively regular}.

Proof. The proof is analogous to that given in [4, Theorem 3.3]. �

We give equivalent conditions for A ≤GD,W B to be satisfied, generalizing those in
[4, Theorem 3.4] and adding the new condition (vii).

Theorem 3.6. Let W ∈ B(Y,X)\{0}, B ∈ B(X,Y ) and let A ∈ B(X,Y ) be Wg-Drazin
invertible such that WAW is relatively regular. Then the following statements are equivalent:

(i) A ≤GD,W B;
(ii) WAW ≤− WBW , (AW )dBW = (AW )dAW and WB(WA)d =WA(WA)d;

(iii) WAW ≤− WBW , N((AW )d) ⊆ N((AW )dBW ) and R(WB(WA)d) ⊆ R((WA)d);
(iv) WAW ≤− WBW and W (AW )dBW =WB(WA)dW ;
(v) WAW ≤− WBW and WAd,WWBW =WBWAd,WW ;
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(vi) (a) There exists AW−GD ∈ A{W −GD} such that WAWAW−GDWBW =WAW =
WBWAW−GDWAW .

(b) For every C ∈ A{W −GD}, WCW (AW )dBW =WB(WA)dWCW .
(vii) There exist idempotents P ∈ B(X) and Q ∈ B(Y ) such that R(P ) = R(WAW ),

N(Q) = N(WAW ),WAd,WPW =WQAd,WW andPWBW =WAW =WBWQ.

Proof. (i)⇒ (ii): Applying Theorem 3.4, there exist topological direct sums X = X1 ⊕X2

and Y = Y1 ⊕ Y2 such that

A =

[
A1 0
0 A2

]
, W =

[
W1 0
0 W2

]
, B =

[
A1 B3

B4 B2

]
,

where A1 and W1 are invertible, W2A2 and A2W2 are quasinilpotent, B3W2 = 0, W2B4 =
0, W2A2W2 is relatively regular and W2A2W2 ≤− W2B2W2. Thus, there exists
C2 ∈ (W2A2W2){1} such that W2A2W2C2 = W2B2W2C2 and C2W2A2W2 = C2W2B2W2.
Set

C =

[
(W1A1W1)

−1 0
0 C2

]
.

Then WAWCWAW = WAW , WAWC = WBWC and CWAW = CWBW yield
WAW ≤− WBW . Furthermore, we obtain

(AW )dBW =

[
(A1W1)

−1 0
0 0

] [
A1W1 0
B4W1 B2W2

]
=

[
I 0
0 0

]
= (AW )dAW

and similarly WB(WA)d =WA(WA)d.
(ii)⇒ (iii): This implication is clear.
(iii)⇒ (i): Let A and W be represented as in (1.1). If

B =

[
B1 B3

B4 B2

]
,

then

(AW )dBW =

[
(A1W1)

−1B1W1 (A1W1)
−1B3W2

0 0

]
and (AW )dAW =

[
I 0
0 0

]
.

Because N((AW )dAW ) = N((AW )d) ⊆ N((AW )dBW ), we have that B3W2 = 0. Also
R(WB(WA)d) ⊆ R((WA)d),

WB(WA)d =

[
W1B1(W1A1)

−1 0
W2B4(W1A1)

−1 0

]
and (WA)dAW =

[
I 0
0 0

]
imply W2B4 = 0.

The assumption WAW ≤− WBW implies that there exists C ∈ (WAW ){1} such that
WAWC =WBWC and CWAW = CWBW . Let

C =

[
C1 C3

C4 C2

]
.

FromWAWCWAW =WAW , we getC1 = (W1A1W1)
−1,C3W2A2W2 = 0,W2A2W2C4 =

0 and W2A2W2C2W2A2W2 = W2A2W2. By WAWC = WBWC, we have that B1 = A1

andW2A2WC2 =W2B2W2C2. Also,CWAW = CWBW givesC2W2A2W2 = C2W2B2W2.
Hence, W2A2W2 ≤− W2B2W2 and, by Theorem 3.4, A ≤GD,W B.

(ii)⇒ (iv): Consequently, by (AW )dA = A(WA)d.
(iv)⇒ (ii): Suppose that A and W are given as in (1.1) and

B =

[
B1 B3

B4 B2

]
.
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Since[
A−11 B1W1 A−11 B3W2

0 0

]
=W (AW )dBW =WB(WA)dW =

[
W1B1A

−1
1 0

W2B4A
−1
1 0

]
,

then B3W2 = 0 and W2B4 = 0. Using the condition WAW ≤− WBW , the rest follows as
in part (iii)⇒ (i).

(iv)⇔ (v): This equivalence is obvious.
(ii) ⇒ (vi): Assume that A, W , B and C are represented as in the part (i) ⇒ (ii). By

Theorem 2.1, we deduce that C ∈ A{W −GD}. Also, we can verify thatWAWCWBW =
WAW =WBWCWAW . Thus, the part (a) is satisfied.

To prove that part (b) holds, we suppose that C ′ ∈ A{W − GD}. Applying Theorem
2.1, we have that

C ′ =

[
(W1A1W1)

−1 C ′12
C ′21 C ′2

]
,

where C ′12W2 = 0, W2C
′
21 = 0, W2A2W2 is relatively regular and C ′2 ∈ (W2A2W2){1}.

Then

WC ′W (AW )dBW =

[
A−11 0
0 0

]
=WB(WA)dWC ′W.

(vi) ⇒ (ii): If AW−GD ∈ A{W − GD} such that WAWAW−GDWBW = WAW =
WBWAW−GDWAW , by Theorem 2.1, there exist topological direct sums X = X1 ⊕ X2

and Y = Y1 ⊕ Y2 such that

A =

[
A1 0
0 A2

]
, W =

[
W1 0
0 W2

]
, AW−GD =

[
(W1A1W1)

−1 C12

C21 C2

]
,

whereA1 andW1 are invertible,W2A2 andA2W2 are quasinilpotent,C12W2 = 0,W2C21 =
0, W2A2W2 is relatively regular and C2 ∈ (W2A2W2){1}. For

B =

[
B1 B3

B4 B2

]
,

we get

WAW−GDW (AW )dBW =

[
A−11 (A1W1)

−1B1W1 A−11 (A1W1)
−1B3W2

0 0

]
and

WB(WA)dWAW−GDW =

[
W1B1(W1A1)

−1A−11 0
W2B4(W1A1)

−1A−11 0

]
.

Now,WAW−GDW (AW )dBW =WB(WA)dWAW−GDW givesB3W2 = 0 andW2B4 = 0.
From

WAW =

[
W1A1W1 0

0 W2A2W2

]
,

WAWAW−GDWBW =

[
W1B1W1 0

0 W2A2W2C2W2B2W2

]
and WAWAW−GDWBW = WAW , we obtain B1 = A1 and W2A2W2C2W2B2W2 =
W2A2W2. By

WBWAW−GDWAW =

[
W1A1W1 0

0 W2B2W2C2W2A2W2

]
and WAW = WBWAW−GDWAW , we have that W2B2W2C2W2A2W2 = W2A2W2. Set
C ′2=C2W2A2W2C2. ThenC ′2∈(W2A2W2){1},W2A2W2C

′
2=W2B2W2C

′
2 andC ′2W2A2W2=

C ′2W2B2W2. So, W2A2W2 ≤− W2B2W2 and, by Theorem 3.4, A ≤GD,W B.
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(i)⇒ (vii): By Theorem 3.4, there exist C ∈ A{W −GD} such that WAWC =WBWC
and CWAW = CWBW . For P = WAWC and Q = CWAW , we obtain R(P ) =
R(WAW ), N(Q) = N(WAW ) and WAd,WPW = WQAd,WW as in the proof of Theo-
rem 2.2 (part (i)⇒ (ii)). We also have

WAW =WAW (CWAW ) =WAWCWBW = PWBW

and in the same way WAW =WBWQ.
(vii) ⇒ (i): Suppose that there exist idempotents P ∈ B(X) and Q ∈ B(Y ) such that

R(P ) = R(WAW ), N(Q) = N(WAW ), WAd,WPW = WQAd,WW and PWBW =
WAW = WBWQ. Set C = Q(WAW )−P , for (WAW )− ∈ (WAW ){1}. Using Theo-
rem 2.2, we deduce that C ∈ A{W − GD}. Now, by WAW = WAWQ = PWAW , we
get

WBWC = (WBWQ)(WAW )−P =WAW (WAW )−P =WAWQ(WAW )−P =WAWC

and analogously CWBW = CWAW . So, A ≤GD,W B. �

By [4, Example 3.2], we observe that none of relations ≤d,W and ≤GD,W implies other
one. In the next result, we prove that A ≤d,W B and WAW ≤− WBW give A ≤GD,W B.

Theorem 3.7. Let W ∈ B(Y,X)\{0}, B ∈ B(X,Y ) and let A ∈ B(X,Y ) be Wg-Drazin
invertible such that WAW is relatively regular. If A ≤d,W B and WAW ≤− WBW , then
A ≤GD,W B.

Proof. The proof is analogous to that given in [4, Lemma 3.2]. �

The result given in [4, Theorem 3.5] is also valid for operators on Banach spaces.

Theorem 3.8. Let W ∈ B(Y,X)\{0} and let A,B ∈ B(X,Y ) be Wg-Drazin invertible such
that WAW is relatively regular. If A ≤GD,W B, then WAd,WW is relatively regular and
WAd,WW ≤− WBd,WW .

Proof. Let A, W and B be represented as in Theorem 3.4(iii). Since (3.3) holds, then

WBd,WW =W (BW )d =

[
A−11 0
0 W2(B2W2)

d

]
.

We observe that WAd,WW =

[
A−11 0
0 0

]
is relatively regular. Set U =

[
A1 0
0 0

]
. Now,

we have that U ∈ (WAd,WW ){1},

WAd,WWU =

[
I 0
0 0

]
=WBd,WWU

and

UWAd,WW =

[
I 0
0 0

]
= UWBd,WW,

that is WAd,WW ≤− WBd,WW . �

Recall that ifA,B∈B(X,Y ) are relatively regular, thenA≤−B if and only ifB−A≤−B.
As in [4, Proposition 3.1], the following result holds.

Theorem 3.9. Let W ∈ B(Y,X)\{0} and let A,B ∈ B(X,Y ) be Wg-Drazin invertible such
thatWAW andWBW are relatively regular. IfB−A isWg-Drazin invertible,A ≤GD,W B and
A, W and B are represented as in Theorem 3.4(iii), then the following conditions are equivalent

(i) B −A ≤GD,W B;
(ii) B2 −A2 ≤GD,W B2.
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Proof. We see that WAW , WBW , W2A2W2 and W2B2W2 are relatively regular. Using
Theorem 3.4 and Theorem 3.6, we deduce that WAW ≤− WBW and W2A2W2 ≤−
W2B2W2 which is equivalent toW (B−A)W ≤− WBW andW2(B2−A2)W2 ≤− W2B2W2.
Because B − A is Wg-Drazin invertible, then (B − A)W and W (B − A) are generalized
Drazin invertible,

((B −A)W )d =

[
0 0

B4W1 (B2 −A2)W2

]d
=

[
0 0
0 ((B2 −A2)W2)

d

]
and

(W (B −A))d =

[
0 W1B3

0 W2(B2 −A2)

]d
=

[
0 0
0 (W2(B2 −A2))

d

]
.

From

W ((B −A)W )dBW =

[
0 0
0 W2((B2 −A2)W2)

dB2W2

]
and

WB(W (B −A))dW =

[
0 0
0 W2B2(W2(B2 −A2))

dW2

]
,

we deduce that W ((B − A)W )dBW = WB(W (B − A))dW is equivalent to
W2((B2 − A2)W2)

dB2W2 = W2B2(W2(B2 − A2))
dW2. Hence, by Theorem 3.6, (i) and

(ii) are equivalent. �

4. G-DRAZIN INVERSES

If A ∈ B(X) and W = I ∈ B(X) in results of Section 2 and Section 3, we obtain
definitions and characterizations of the G-Drazin inverse and the G-Drazin partial order
for operators on Banach space. Thus, we extend recent results from [4, 19] and present
some new results.

Definition 4.3. Let A ∈ B(X) be generalized Drazin invertible such that A is relatively
regular. An operator C ∈ B(X) is a G-Drazin inverse of A if the following equalities hold:

ACA = A and AdAC = CAdA.

Denote by A{GD} the set of all G-Drazin inverses of A.

Corollary 4.3. Let A ∈ B(X) be generalized Drazin invertible such that A is relatively regular.
For C ∈ B(X), the following statements are equivalent:

(i) C ∈ A{GD};
(ii) ACA = A and AdA2C = AAd = CAdA2;

(iii) ACA = A and AdAC = Ad = CAdA;
(iv) ACA = A and AdC = CAd;
(v) there exist a topological direct sum X = X1 ⊕X2 such that

A =

[
A1 0
0 A2

]
, C =

[
A−11 0
0 C2

]
,

where A1 is invertible, A2 is quasinilpotent, A2 is relatively regular and C2 ∈ A2{1}.

Proof. We need only to prove that (ii) ⇔ (iv). Because the group inverse is double com-
mutative and (AdA2)# = Ad, we conclude that AdA2C = CAdA2 is equivalent to AdC =
CAd. We observe thatAdC = CAd andACA = A giveAdA2C = A2CAd = A2CA(Ad)2 =
A2(Ad)2 = AAd and also AAd = CAdA2. �

Corollary 4.4. Let A ∈ B(X) be generalized Drazin invertible such that A is relatively regular.
If C ∈ A{GD}, then (I − CA)A and A(I −AC) are quasinilpotent.
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Corollary 4.5. Let A ∈ B(X) be generalized Drazin invertible such that A is relatively regular.
The following statements are equivalent:

(i) A{GD} 6= ∅;
(ii) there exist idempotents P ∈ B(X) and Q ∈ B(X) such that

R(P ) = R(A), N(Q) = N(A) and AdP = QAd.

In addition, for arbitrary A− ∈ A{1}, QA−P ∈ A{GD}, that is,

Q ·A{1} · P ⊆ A{GD}.

Corollary 4.6. Let A ∈ B(X) be generalized Drazin invertible such that A is relatively regular.
Then

A{GD} ·A ·A{GD} ⊆ A{GD}.

The definition of the G-Drazin relation is stated now in the Banach space setting.

Definition 4.4. Let B ∈ B(X) and let A ∈ B(X) be generalized Drazin invertible such
that A is relatively regular. Then we say that A is below to B under the G-Drazin relation
(denoted by A ≤GD B) if there exist C1, C2 ∈ A{GD} such that

AC1 = BC1 and C2A = C2B.

Corollary 4.7. Let B ∈ B(X) and let A ∈ B(X) be generalized Drazin invertible such that A is
relatively regular. Then the following statements are equivalent:

(i) A ≤GD B;
(ii) there exist C ∈ A{GD} such that

AC = BC and CA = CB;

(iii) there exist topological direct sum X = X1 ⊕X2 such that

A =

[
A1 0
0 A2

]
, B =

[
A1 0
0 B2

]
,

where A1 is invertible, A2 is quasinilpotent, A2 is relatively regular and A2 ≤− B2.
In addition, if B is generalized Drazin invertible such that B is relatively regular, then
D ∈ B{GD} if and only if

D =

[
A−11 0
0 D2

]
,

where D2 ∈ B2{GD}.

It is interesting to note that the G-Drazin relation is a partial order.

Corollary 4.8. The G-Drazin relation is a partial order on the set {A ∈ B(X)d : A is
relatively regular}.

Proof. It is enough to prove that the G-Drazin relation is antisymmetric. Assume that
A,B ∈ B(X)d such that A and B are relatively regular, A ≤GD B and B ≤GD A. There
exists D ∈ B{GD} such that BD = AD and DB = DA. Notice that A, B and D can be
represented as in Corollary 4.7 and soA2 ≤− B2. The equalitiesBD = AD andDB = DA
give B2D2 = A2D2 and D2B2 = D2A2, that is B2 ≤− A2. Since≤− is antisymmetric, then
A2 = B2. Thus, A = B. �

Corollary 4.9. Let B ∈ B(X) and let A ∈ B(X) be generalized Drazin invertible such that A is
relatively regular. Then the following statements are equivalent:

(i) A ≤GD B;
(ii) A ≤− B, AdB = AdA and BAd = AAd;
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(iii) A ≤− B, N(Ad) ⊆ N(AdB) and R(BAd) ⊆ R(Ad);
(iv) A ≤− B and AdB = BAd;
(v) A ≤− B and A ≤d B;

(vi) (a) There exists AGD ∈ A{GD} such that AAGDB = A = BAGDA.
(b) For every C ∈ A{GD}, CAdB = BAdC.

(vii) There exist idempotents P,Q ∈ B(X) such that R(P ) = R(A), N(Q) = N(A), AdP =
QAd and PB = A = BQ.

Corollary 4.10. Let A,B ∈ B(X,Y ) be generalized Drazin invertible such that A is relatively
regular. If A ≤GD B, then Ad is relatively regular and Ad ≤− Bd.

Corollary 4.11. Let A,B ∈ B(X) be generalized Drazin invertible such that A and B are relati-
vely regular. If B −A is generalized Drazin invertible, A ≤GD B and A, B are represented as in
Corollary 4.7(iii), then the following conditions are equivalent

(i) B −A ≤GD B;
(ii) B2 −A2 ≤GD B2.
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