Dedicated to Prof. Iuan Nieto on the occasion of his 60th anniversary

Weighted G-Drazin inverse for operators on Banach spaces

DIJANA MOSIĆ

ABSTRACT. We define an extension of weighted G-Drazin inverses of rectangular matrices to operators between two Banach spaces. Some properties of weighted G-Drazin inverses are generalized and some new ones are proved. Using weighted G-Drazin inverses, we introduce and characterize a new weighted pre-order on the set of all bounded linear operators between two Banach spaces. As an application, we present and study the G-Drazin inverse and the G-Drazin partial order for operators on Banach space.

1. INTRODUCTION

Let X and Y be arbitrary Banach spaces. We use B(X, Y) to denote the set of all bounded linear operators from X to Y. Set $\mathbf{B}(X) = \mathbf{B}(X, X)$. For $A \in \mathbf{B}(X, Y)$, the notations N(A) and R(A) stand for the null space and the range of A, respectively.

An operator $A \in \mathbf{B}(X,Y)$ is relatively regular if there exists some $B \in \mathbf{B}(Y,X)$ such that ABA = A. The operator B is called an inner inverse of A and it is not unique. By $A\{1\}$ we denote the set of all inner inverses of A. Recall that $A \in \mathbf{B}(X,Y)$ is relatively regular if and only if N(A) and R(A) are closed and complemented subspaces of X and Y, respectively. In the case that X and Y are Hilbert spaces, A is relatively regular if and only if R(A) is closed.

Let $W \in \mathbf{B}(Y, X)$ be a fixed nonzero operator. An operator $A \in \mathbf{B}(X, Y)$ is Wg–Drazin invertible if there exists a unique $B \in \mathbf{B}(X, Y)$ such that

AWB = BWA, BWAWB = B and A - AWBWA is quasinilpotent.

The W*g*–Drazin inverse *B* of *A* will be denoted by $A^{d,W}$ [5]. In the case that A - AWBWA is nilpotent in the above definition, $A^{d,W} = A^{D,W}$ is the W-weighted Drazin inverse of *A* [3, 16]. When X = Y and W = I, then $A^d = A^{d,W}$ is the generalized Drazin inverse (or the Koliha-Drazin inverse) of A [8] and $A^D = A^{D,W}$ is the Drazin inverse of A. The symbol $\mathbf{B}(X)^d$ denotes the set of all generalized Drazin invertible operators of $\mathbf{B}(X)$. The group inverse is a particular case of Drazin inverse for which the condition A - ABA is nilpotent is replaced with A = ABA. By $A^{\#}$ will be denoted the group inverse of A.

For $A \in \mathbf{B}(X, Y)$ and $W \in \mathbf{B}(Y, X)$, the following conditions are equivalent [5]:

- (1) A is Wq-Drazin invertible and $A^{d,W} = B \in \mathbf{B}(X,Y)$,
- (2) $AW \in \mathbf{B}(Y)^d$ with $(AW)^d = BW$, (3) $WA \in \mathbf{B}(X)^d$ with $(WA)^d = WB$.

Then, the *Wq*-Drazin inverse $A^{d,W}$ of *A* satisfies

$$A^{d,W} = ((AW)^d)^2 A = A((WA)^d)^2.$$

2010 Mathematics Subject Classification. 47A05, 47A62, 47A99, 15A09.

Received: 01.08.2018. In revised form: 10.01.2019. Accepted: 17.01.2019

Key words and phrases. weighted G-Drazin inverse, Wg-Drazin inverse, G-Drazin partial order, minus partial order.

Lemma 1.1. [5] Let $A \in \mathbf{B}(X, Y)$ and $W \in \mathbf{B}(Y, X) \setminus \{0\}$. Then A is Wg-Drazin invertible if and only if there exist topological direct sums $X = X_1 \oplus X_2$, $Y = Y_1 \oplus Y_2$ such that

(1.1)
$$A = \begin{bmatrix} A_1 & 0 \\ 0 & A_2 \end{bmatrix}, \qquad W = \begin{bmatrix} W_1 & 0 \\ 0 & W_2 \end{bmatrix},$$

where $A_i \in \mathbf{B}(X_i, Y_i)$, $W_i \in \mathbf{B}(Y_i, X_i)$, for i = 1, 2, with A_1 , W_1 invertible, and W_2A_2 and A_2W_2 quasinilpotent in $\mathbf{B}(X_2)$ and $\mathbf{B}(Y_2)$, respectively. The Wg-Drazin inverse of A is given by

(1.2)
$$A^{d,W} = \begin{bmatrix} (W_1 A_1 W_1)^{-1} & 0\\ 0 & 0 \end{bmatrix}$$

with $(W_1A_1W_1)^{-1} \in \mathbf{B}(X_1, Y_1)$ and the (2,2) matrix block satisfies that $0 \in \mathbf{B}(X_2, Y_2)$.

For recent results related to the (generalized) Drazin and (generalized) weighted Drazin inverse see [11, 12, 14, 17, 18, 20, 21].

Various kinds of pre-orders (i.e. reflexive and transitive binary relations) and partial orders were defined using various generalized inverses [1, 9, 10].

Let $A, B \in \mathbf{B}(X, Y)$ be relatively regular. Then A is said to be below B under the minus partial order (denoted by $A \leq B$) if there exists an inner generalized inverse A^- of A such that $AA^- = BA^-$ and $A^-A = A^-B$.

For $A, B \in \mathbf{B}(X)$ such that A is group invertible, we say that A is below B under the sharp partial order ($A \leq \# B$) if $A^{\#}A = A^{\#}B$ and $AA^{\#} = BA^{\#}$.

Let $A, B \in \mathbf{B}(X)^d$. The operator A is below to B under the generalized Drazin preorder $(A \leq^d B)$ if $A^2A^d \leq^{\#} B^2B^d$. Recall that $A \leq^d B$ if and only if $A^dA = A^dB$ and $AA^d = BA^d$ [15].

Let $A, B \in \mathbf{B}(X, Y)$ and $W \in \mathbf{B}(Y, X) \setminus \{0\}$. If A is Wg-Drazin invertible, then we say that $A \leq^{d,W} B$ if $AW \leq^{d} BW$ and $WA \leq^{d} WB$, where \leq^{d} is considered on $\mathbf{B}(Y)$ and $\mathbf{B}(X)$, respectively. The relation $\leq^{d,W}$ is a pre-order on the set of all Wg-Drazin invertible operators of $\mathbf{B}(X, Y)$ [15]. For more related results see [6, 7, 13].

The G-Drazin inverse of a square matrix was defined in [19]. Coll, Lattanzi, and Thome [4] extended the notion of G-Drazin inverses to rectangular matrices considering a weight matrix. Let $\mathbb{C}^{m \times n}$ denote the set of $m \times n$ complex matrices. If $W \in \mathbb{C}^{n \times m} \setminus \{0\}$, the *W*-weighted G-Drazin inverse of $A \in \mathbb{C}^{m \times n}$ is a matrix *C* satisfying the following three equations WAWCWAW = WAW, $(AW)^{k+1}CW = (AW)^k$, $WC(WA)^{k+1} = (WA)^k$, where $k = \max\{\operatorname{ind}(AW), \operatorname{ind}(WA)\}$ and $\operatorname{ind}(D)$ is the index of *D*. If m = n and W = I, then *C* is a G-Drazin inverse of *A*. A new pre-order, which generalizes the G-Drazin partial order studied in [19] to the rectangular case, was also characterized in [4].

We introduce the definition of weighted G-Drazin inverses of an operator between two Banach spaces and prove that our definition and the above definition of weighted G-Drazin inverses for a rectangular matrix are equivalent in complex matrix case. Several new characterizations of weighted G-Drazin inverses are given and some known results are extended. Also, we define and investigate a new pre-order on the corresponding subset of all operators between two Banach spaces. As consequences of our results, we present definitions of the G-Drazin inverse and the G-Drazin partial order for operators on Banach spaces and give their new characterizations. Thus, the recent results from [4, 19] are extended to more general settings.

2. WEIGHTED G-DRAZIN INVERSES

In the beginning of this section, we define the weighted G-Drazin inverse of an operator between two Banach spaces as an extension of the weighted G-Drazin inverse for a rectangular matrix. **Definition 2.1.** Let $W \in \mathbf{B}(Y, X) \setminus \{0\}$ and let $A \in \mathbf{B}(X, Y)$ be *Wg*-Drazin invertible such that *WAW* is relatively regular. An operator $C \in \mathbf{B}(X, Y)$ is a *W*-weighted G-Drazin inverse of *A* if the following equalities hold:

$$WAWCWAW = WAW$$
 and $WA^{d,W}WAWCW = WCWA^{d,W}WAW.$

We use $A\{W - GD\}$ to denote the set of all *W*-weighted G-Drazin inverses of *A*. Obviously, $A\{W - GD\} \subseteq (WAW)\{1\}$. If *AW* (or equivalently *WA*) is quasinilpotent, then $(WAW)\{1\} \subseteq A\{W - GD\}$ and so $A\{W - GD\} = (WAW)\{1\}$.

Now, we present necessary and sufficient conditions for an operator to be a *W*-weighted G-Drazin inverse of a given operator.

Theorem 2.1. Let $W \in \mathbf{B}(Y, X) \setminus \{0\}$ and let $A \in \mathbf{B}(X, Y)$ be Wg-Drazin invertible such that WAW is relatively regular. For $C \in \mathbf{B}(X, Y)$, the following statements are equivalent:

- (i) $C \in A\{W GD\};$
- (ii) WAWCWAW = WAW and $W(AW)^dAWCW = WCW(AW)^dAW$;
- (iii) WAWCWAW = WAW and $(WA)^d WAWCW = WCW(AW)^d AW;$
- (iv) WAWCWAW = WAW and $(WA)^d(WA)^2WCW = WAW(AW)^d = WCW(AW)^d(AW)^2$;
- (v) WAWCWAW = WAW and $(WA)^dWAWCW = W(AW)^d = WCW(AW)^dAW$;
- (vi) there exist topological direct sums $X = X_1 \oplus X_2$ and $Y = Y_1 \oplus Y_2$ such that

$$A = \begin{bmatrix} A_1 & 0 \\ 0 & A_2 \end{bmatrix}, \qquad W = \begin{bmatrix} W_1 & 0 \\ 0 & W_2 \end{bmatrix}, \qquad C = \begin{bmatrix} (W_1 A_1 W_1)^{-1} & C_{12} \\ C_{21} & C_2 \end{bmatrix}$$

where A_1 and W_1 are invertible, W_2A_2 and A_2W_2 are quasinilpotent, $C_{12}W_2 = 0$, $W_2C_{21} = 0$, $W_2A_2W_2$ is relatively regular and $C_2 \in (W_2A_2W_2)\{1\}$.

Proof. (i) \Leftrightarrow (ii)-(iii): These equivalences follow by properties of the *Wg*-Drazin inverse. (iii) \Rightarrow (iv): Notice that

 $(WA)^d (WA)^2 WCW = WA((WA)^d WAWCW) = (WAWCWAW)(AW)^d = WAW(AW)^d$ and similarly $WAW(AW)^d = WCW(AW)^d (AW)^2$.

(iv) \Rightarrow (v): Multiplying $(WA)^d (WA)^2 WCW = WAW(AW)^d$ by $(WA)^d$ from the left side, we get $(WA)^d WAWCW = W(AW)^d AW(AW)^d = W(AW)^d$. In an analogy way, we prove that $W(AW)^d = WCBW(AW)^d AW$.

 $(v) \Rightarrow$ (iii): This is clear.

(ii) \Leftrightarrow (vi): By Lemma 1.1, there exist topological direct sums $X = X_1 \oplus X_2$ and $Y = Y_1 \oplus Y_2$ such that

$$A = \begin{bmatrix} A_1 & 0 \\ 0 & A_2 \end{bmatrix}, \qquad W = \begin{bmatrix} W_1 & 0 \\ 0 & W_2 \end{bmatrix},$$

where A_1 , W_1 invertible, and W_2A_2 and A_2W_2 quasinilpotent in $\mathbf{B}(X_2)$ and $\mathbf{B}(Y_2)$, respectively. Suppose that

$$C = \begin{bmatrix} C_1 & C_{12} \\ C_{21} & C_2 \end{bmatrix}.$$

Since $WAW = \begin{bmatrix} W_1A_1W_1 & 0 \\ 0 & W_2A_2W_2 \end{bmatrix}$ and
 $WAWCWAW = \begin{bmatrix} W_1A_1W_1C_1W_1A_1W_1 & W_1A_1W_1C_{12}W_2A_2W_2 \\ W_2A_2W_2C_{21}W_1A_1W_1 & W_2A_2W_2C_2W_2A_2W_2 \end{bmatrix},$
then $WAWCWAW = WAW$ if and only if $C_1 = (W_1A_1W_1)^{-1}$, $C_{12}W_2A_2W_2A_2W_2 = 0$,
 $W_2A_2W_2C_{21} = 0$ and $W_2A_2W_2C_2W_2A_2W_2 = W_2A_2W_2$. By $(AW)^d = \begin{bmatrix} (A_1W_1)^{-1} & 0 \\ 0 & 0 \end{bmatrix},$

we get

$$W(AW)^d AWCW = \left[\begin{array}{ccc} W_1 C_1 W_1 & W_1 C_{12} W_2 \\ 0 & 0 \end{array} \right]$$

and

$$WCW(AW)^d AW = \begin{bmatrix} W_1 C_1 W_1 & 0 \\ W_2 C_{21} W_1 & 0 \end{bmatrix}.$$

We deduce that $W(AW)^d AWCW = WCW(AW)^d AW$ is equivalent to $C_{12}W_2 = 0$ and $W_2C_{21} = 0$. Therefore, this equivalence holds. \square

In the case that A is Wg-Drazin invertible such that WAW is relatively regular, by Theorem 2.1(vi), notice that the W-weighted G-Drazin inverse of A exists and it is not unique.

We show that the Definition 2.1 and [4, Definition 2.1] are equivalent in the complex matrix case. Applying Theorem 2.1, we obtain new characterizations for the weighted G-Drazin inverse in the finite dimensional case.

Corollary 2.1. Let $W \in \mathbb{C}^{n \times m} \setminus \{0\}$ and $A \in \mathbb{C}^{m \times n}$. For $C \in \mathbb{C}^{m \times n}$, the following statements are equivalent:

- (i) $C \in A\{W GD\}$;
- (ii) WAWCWAW = WAW and $W(AW)^{D}AWCW = WCW(AW)^{D}AW$:
- (iii) WAWCWAW = WAW and $(WA)^DWAWCW = WCW(AW)^DAW$;
- (iv) WAWCWAW = WAW and $(WA)^{D}(WA)^{2}WCW = WAW(AW)^{D}$ $WCW(AW)^D(AW)^2$;
- (v) WAWCWAW = WAW and $(WA)^DWAWCW = W(AW)^D = WCW(AW)^DAW$.

Proof. (i) \Leftrightarrow (ii): By [4, Theorem 2.2], $C \in A\{W - GD\}$ if and only if WAWCWAW =WAW and $W(AW)^k CW = WCW(AW)^k$, for $k = \max\{ind(AW), ind(WA)\}$. Using properties of the Drazin inverse and WAWCWAW = WAW, we easily check that $W(AW)^{k}CW = WCW(AW)^{k}$ is equivalent to $W(AW)^{D}AWCW = WCW(AW)^{D}AW$. \square

(i) \Leftrightarrow (iii)-(v): It follows by Theorem 2.1.

Lemma 2.2. Let $W \in \mathbf{B}(Y, X) \setminus \{0\}$ and let $A \in \mathbf{B}(X, Y)$ be Wg-Drazin invertible such that WAW is relatively regular. If $C \in A\{W - GD\}$, then (I - CWAW)WAW and WAW(I - CWAW)WAW*WAWC*) are quasinilpotent.

Proof. Using WAWCWAW = WAW, we have that

$$\sigma((I - CWAW)WAW) = \sigma(WAW(I - CWAW)) = \sigma(0) = \{0\},\$$

i.e. (I - CWAW)WAW is quasinilpotent. In a same manner, we obtain that WAW(I - WAW)WAWWAWC) is quasinilpotent. \square

Using corresponding idempotents, we give one more characterization for the W-weighted G-Drazin inverse, which is new in the finite dimensional case too.

Theorem 2.2. Let $W \in \mathbf{B}(Y, X) \setminus \{0\}$ and let $A \in \mathbf{B}(X, Y)$ be Wg-Drazin invertible such that *WAW* is relatively regular. The following statements are equivalent:

- (i) $A\{W GD\} \neq \emptyset$;
- (ii) there exist idempotents $P \in \mathbf{B}(X)$ and $Q \in \mathbf{B}(Y)$ such that

$$R(P) = R(WAW), \quad N(Q) = N(WAW) \quad and \quad WA^{d,W}PW = WQA^{d,W}W.$$

In addition, for arbitrary $(WAW)^- \in (WAW)$ {1}, $Q(WAW)^- P \in A\{W - GD\}$, that is, $Q \cdot (WAW)\{1\} \cdot P \subseteq A\{W - GD\}.$

Proof. (i) \Rightarrow (ii): Let $C \in A\{W-GD\}$. Denote by P = WAWC and Q = CWAW. Because $C \in (WAW)\{1\}$, then $P = P^2$, $Q = Q^2$, R(P) = R(WAW) and N(Q) = N(WAW). Also, we get

$$WA^{d,W}PW = WA^{d,W}WAWCW = WCWA^{d,W}WAW = WQA^{d,W}W.$$

(ii) \Rightarrow (i): Suppose that $(WAW)^- \in (WAW)\{1\}$ and $C = Q(WAW)^-P$. The assumption R(P) = R(WAW) gives $P = WAW(WAW)^-P$ and WAW = PWAW. Since N(Q) = N(WAW), then R(I - Q) = N(WAW) and $N(Q) = N((WAW)^-WAW) = R(I - (WAW)^-WAW)$ which imply WAW = WAWQ and $Q = Q(WAW)^-WAW$. Hence,

$$WAWCWAW = (WAWQ)(WAW)^{-}(PWAW) = WAW(WAW)^{-}WAW = WAW$$

and, by $WA^{d,W}PW = WQA^{d,W}W$,
$$WA^{d,W}WAWCW = WA^{d,W}(WAWQ)(WAW)^{-}PW = WA^{d,W}(WAW(WAW)^{-}P)W$$

$$= WA^{d,W}PW = WQA^{d,W}W = WQ(WAW)^{-}WAWA^{d,W}W$$

$$= WQ(WAW)^{-}PWAWA^{d,W}W = WCWAWA^{d,W}W$$
,

i.e. $C \in A\{W - GD\}$.

Also, we prove the following result.

Theorem 2.3. Let $W \in \mathbf{B}(Y, X) \setminus \{0\}$ and let $A \in \mathbf{B}(X, Y)$ be Wg-Drazin invertible such that *WAW* is relatively regular. Then

$$A\{W - GD\} \cdot WAW \cdot A\{W - GD\} \subseteq A\{W - GD\}.$$

Proof. Assume that $C, C' \in A\{W - GD\}$ and Z = CWAWC'. We observe that $Z \in A\{W - GD\}$, by

$$WAWZWAW = (WAWCWAW)C'WAW = WAWC'WAW = WAW$$

and

$$WA^{d,W}WAWZW = (WA^{d,W}WAWCW)AWC'W = WCWA(WA^{d,W}WAWC'W)$$
$$= WCWAWC'WAWA^{d,W}W = WZWAWA^{d,W}W.$$

3. WEIGHTED G-DRAZIN PRE-ORDER

Firstly, we introduce a new binary relation on $\mathbf{B}(X, Y)$ generalizing the definition of the weighted G-Drazin relation presented in [4] for complex rectangular matrices to the class of bounded linear operators between Banach spaces.

Definition 3.2. Let $W \in \mathbf{B}(Y, X) \setminus \{0\}$, $B \in \mathbf{B}(X, Y)$ and let $A \in \mathbf{B}(X, Y)$ be *Wg*-Drazin invertible such that *WAW* is relatively regular. Then we say that *A* is below to *B* under the *W*-weighted GDrazin relation (denoted by $A \leq^{GD, W} B$) if there exist $C_1, C_2 \in A\{W-GD\}$ such that

 $WAWC_1 = WBWC_1$ and $C_2WAW = C_2WBW$.

We characterize the relation $\leq^{GD,W}$ in the following theorem, extending some results from [4].

Theorem 3.4. Let $W \in \mathbf{B}(Y, X) \setminus \{0\}$, $B \in \mathbf{B}(X, Y)$ and let $A \in \mathbf{B}(X, Y)$ be Wg-Drazin invertible such that WAW is relatively regular. Then the following statements are equivalent:

(i)
$$A \leq^{GD,W} B$$
;

(ii) there exist $C \in A\{W - GD\}$ such that

$$WAWC = WBWC$$
 and $CWAW = CWBW;$

(iii) there exist topological direct sums $X = X_1 \oplus X_2$ and $Y = Y_1 \oplus Y_2$ such that

$$A = \begin{bmatrix} A_1 & 0 \\ 0 & A_2 \end{bmatrix}, \qquad W = \begin{bmatrix} W_1 & 0 \\ 0 & W_2 \end{bmatrix}, \qquad B = \begin{bmatrix} A_1 & B_3 \\ B_4 & B_2 \end{bmatrix}$$

where A_1 and W_1 are invertible, W_2A_2 and A_2W_2 are quasinilpotent, $B_3W_2 = 0$, $W_2B_4 = 0$, $W_2A_2W_2$ is relatively regular and $W_2A_2W_2 \leq W_2B_2W_2$.

In addition, if B is Wg-Drazin invertible such that WBW is relatively regular, then $D \in B\{W - GD\}$ if and only if

$$D = \begin{bmatrix} (W_1 A_1 W_1)^{-1} & D_{12} \\ D_{21} & D_2 \end{bmatrix},$$

where $D_{12}W_2 = 0$, $W_2D_{21} = 0$ and $D_2 \in B_2\{W_2 - GD\}$.

Proof. (i) \Rightarrow (ii): The proof is analogous to that given in [4, Theorem 3.1].

(ii) \Rightarrow (iii): Assume that there exist $C \in A\{W - GD\}$ such that WAWC = WBWC and CWAW = CWBW. By Theorem 2.1(vi), there exist topological direct sums $X = X_1 \oplus X_2$ and $Y = Y_1 \oplus Y_2$ such that

$$A = \begin{bmatrix} A_1 & 0 \\ 0 & A_2 \end{bmatrix}, \qquad W = \begin{bmatrix} W_1 & 0 \\ 0 & W_2 \end{bmatrix}, \qquad C = \begin{bmatrix} (W_1 A_1 W_1)^{-1} & C_{12} \\ C_{21} & C_2 \end{bmatrix},$$

where A_1 and W_1 are invertible, W_2A_2 and A_2W_2 are quasinilpotent, $C_{12}W_2 = 0$, $W_2C_{21} = 0$, $W_2A_2W_2$ is relatively regular and $C_2 \in (W_2A_2W_2)\{1\}$. Let

$$B = \left[\begin{array}{cc} B_1 & B_3 \\ B_4 & B_2 \end{array} \right].$$

The equalities WAWC = WBWC,

$$WAWC = \left[\begin{array}{cc} I & W_1 A_1 W_1 C_{12} \\ 0 & W_2 A_2 W_2 C_2 \end{array} \right]$$

and

$$WBWC = \begin{bmatrix} W_1 B_1 (W_1 A_1)^{-1} & W_1 B_1 W_1 C_{12} + W_1 B_3 W_2 C_2 \\ W_2 B_4 (W_1 A_1)^{-1} & W_2 B_4 W_1 C_{12} + W_2 B_2 W_2 C_2 \end{bmatrix}$$

imply $B_1 = A_1$, $W_2B_4 = 0$ and $W_2A_2W_2C_2 = W_2B_2W_2C_2$. From CWAW = CWBW,

$$CWAW = \begin{bmatrix} I & 0 \\ C_{21}W_1A_1W_1 & C_2W_2A_2W_2 \end{bmatrix}$$

and

$$CWBW = \begin{bmatrix} I & (A_1W_1)^{-1}B_3W_2 \\ C_{21}W_1A_1W_1 & C_{21}W_1B_3W_2 + C_2W_2B_2W_2 \end{bmatrix}$$

we get $B_3W_2 = 0$ and $C_2W_2A_2W_2 = C_2W_2B_2W_2$. So, $W_2A_2W_2 \leq W_2B_2W_2$.

(iii) \Rightarrow (i): By the hypothesis $W_2A_2W_2 \leq W_2B_2W_2$, there exists $C_2 \in (W_2A_2W_2)\{1\}$ such that $W_2A_2W_2C_2 = W_2B_2W_2C_2$ and $C_2W_2A_2W_2 = C_2W_2B_2W_2$. Suppose that

$$C = \left[\begin{array}{cc} (W_1 A_1 W_1)^{-1} & 0\\ 0 & C_2 \end{array} \right].$$

Applying Theorem 2.1(vi), we deduce that $C \in A\{W - GD\}$. Notice that WAWC = WBWC and CWAW = CWBW which imply $A \leq^{GD,W} B$.

Assume that $D \in B\{W - GD\}$ and

$$D = \left[\begin{array}{cc} D_1 & D_{12} \\ D_{21} & D_2 \end{array} \right]$$

Then WBW = WBWDWBW is equivalent to

$$\begin{bmatrix} W_1 A_1 W_1 & 0\\ 0 & W_2 B_2 W_2 \end{bmatrix} = \begin{bmatrix} W_1 A_1 W_1 D_1 W_1 A_1 W_1 & W_1 A_1 W_1 D_{12} W_2 B_2 W_2 \\ W_2 B_2 W_2 D_{21} W_1 A_1 W_1 & W_2 B_2 W_2 D_2 W_2 B_2 W_2 \end{bmatrix}$$

which yields $D_1 = (W_1A_1W_1)^{-1}$, $D_{12}W_2B_2W_2 = 0$, $W_2B_2W_2D_{21} = 0$ and $W_2B_2W_2 = W_2B_2W_2D_2W_2B_2W_2$. Using [2, Theorem 2.3], we obtain

(3.3)
$$BW = \begin{bmatrix} A_1W_1 & 0 \\ B_4W_1 & B_2W_2 \end{bmatrix}$$
 and $(BW)^d = \begin{bmatrix} (A_1W_1)^{-1} & 0 \\ S & (B_2W_2)^d \end{bmatrix}$

where $S = B_4 W_1 (A_1 W_1)^{-2}$ by $(B_2 W_2)^d B_4 = [(B_2 W_2)^d]^2 B_2 W_2 B_4 = 0$. Now, we have that $W_2 S = 0$,

$$W(BW)^{d}BWDW = \begin{bmatrix} A_{1}^{-1} & W_{1}D_{12}W_{2} \\ 0 & W_{2}(B_{2}W_{2})^{d}B_{2}W_{2}D_{2}W_{2} \end{bmatrix}$$

and

$$WDW(BW)^{d}BW = \left[\begin{array}{cc} A_{1}^{-1} & 0\\ W_{2}D_{21}W_{1} & W_{2}D_{2}W_{2}(B_{2}W_{2})^{d}B_{2}W_{2} \end{array}\right].$$

The equality $W(BW)^d BWDW = WDW(BW)^d BW$ gives $D_{12}W_2 = 0$, $W_2D_{21} = 0$ and $W_2(B_2W_2)^d B_2W_2D_2W_2 = W_2D_2W_2(B_2W_2)^d B_2W_2$. Hence, $D_2 \in B_2\{W_2 - GD\}$.

If

$$D = \begin{bmatrix} (W_1 A_1 W_1)^{-1} & D_{12} \\ D_{21} & D_2 \end{bmatrix}$$

where $D_{12}W_2 = 0$, $W_2D_{21} = 0$ and $D_2 \in B_2\{W_2 - GD\}$, by elementary computations, we verify that $D \in B\{W - GD\}$.

Remark that $A \leq^{GD,W} B$ implies $WAW \leq^{-} WBW$, because $A\{W-GD\} \subseteq (WAW)\{1\}$.

Corollary 3.2. Let $W \in \mathbf{B}(Y, X) \setminus \{0\}$ and let $A, B \in \mathbf{B}(X, Y)$ be Wg-Drazin invertible such that WAW and WBW are relatively regular. If $A \leq^{GD,W} B$, then

$$B\{W - GD\} \subseteq A\{W - GD\}.$$

Proof. The proof is analogous to that given in [4, Corollary 3.2].

Before we prove that the *W*-weighted G-Drazin relation is a pre-order, recall that the *W*-weighted G-Drazin relation is not antisymmetric (see [4, Example 3.1]).

Theorem 3.5. Let $W \in \mathbf{B}(Y, X) \setminus \{0\}$. The W-weighted G-Drazin relation is a pre-order on the set $\{A \in \mathbf{B}(X, Y) : A \text{ is } Wg - Drazin invertible such that WAW is relatively regular}\}$.

Proof. The proof is analogous to that given in [4, Theorem 3.3].

We give equivalent conditions for $A \leq^{GD,W} B$ to be satisfied, generalizing those in [4, Theorem 3.4] and adding the new condition (vii).

Theorem 3.6. Let $W \in \mathbf{B}(Y, X) \setminus \{0\}$, $B \in \mathbf{B}(X, Y)$ and let $A \in \mathbf{B}(X, Y)$ be Wg-Drazin invertible such that WAW is relatively regular. Then the following statements are equivalent:

- (i) $A \leq^{GD,W} B$;
- (ii) $WAW \leq WBW$, $(AW)^d BW = (AW)^d AW$ and $WB(WA)^d = WA(WA)^d$;
- (iii) $WAW \leq WBW$, $N((AW)^d) \subseteq N((AW)^dBW)$ and $R(WB(WA)^d) \subseteq R((WA)^d)$;
- (iv) $WAW \leq WBW$ and $W(AW)^d BW = WB(WA)^d W$;
- (v) $WAW \leq^{-} WBW$ and $WA^{d,W}WBW = WBWA^{d,W}W$;

 \square

(vi) (a) There exists $A^{W-GD} \in A\{W-GD\}$ such that $WAWA^{W-GD}WBW = WAW = WBWA^{W-GD}WAW$.

(b) For every $C \in A\{W - GD\}$, $WCW(AW)^d BW = WB(WA)^d WCW$.

(vii) There exist idempotents $P \in \mathbf{B}(X)$ and $Q \in \mathbf{B}(Y)$ such that R(P) = R(WAW), N(Q) = N(WAW), $WA^{d,W}PW = WQA^{d,W}W$ and PWBW = WAW = WBWQ.

Proof. (i) \Rightarrow (ii): Applying Theorem 3.4, there exist topological direct sums $X = X_1 \oplus X_2$ and $Y = Y_1 \oplus Y_2$ such that

$$A = \left[\begin{array}{cc} A_1 & 0 \\ 0 & A_2 \end{array} \right], \qquad W = \left[\begin{array}{cc} W_1 & 0 \\ 0 & W_2 \end{array} \right], \qquad B = \left[\begin{array}{cc} A_1 & B_3 \\ B_4 & B_2 \end{array} \right],$$

where A_1 and W_1 are invertible, W_2A_2 and A_2W_2 are quasinilpotent, $B_3W_2 = 0$, $W_2B_4 = 0$, $W_2A_2W_2$ is relatively regular and $W_2A_2W_2 \leq W_2B_2W_2$. Thus, there exists $C_2 \in (W_2A_2W_2)\{1\}$ such that $W_2A_2W_2C_2 = W_2B_2W_2C_2$ and $C_2W_2A_2W_2 = C_2W_2B_2W_2$. Set

$$C = \left[\begin{array}{cc} (W_1 A_1 W_1)^{-1} & 0\\ 0 & C_2 \end{array} \right].$$

Then WAWCWAW = WAW, WAWC = WBWC and CWAW = CWBW yield $WAW \leq^{-} WBW$. Furthermore, we obtain

$$(AW)^{d}BW = \begin{bmatrix} (A_{1}W_{1})^{-1} & 0\\ 0 & 0 \end{bmatrix} \begin{bmatrix} A_{1}W_{1} & 0\\ B_{4}W_{1} & B_{2}W_{2} \end{bmatrix} = \begin{bmatrix} I & 0\\ 0 & 0 \end{bmatrix} = (AW)^{d}AW$$

and similarly $WB(WA)^d = WA(WA)^d$.

(ii) \Rightarrow (iii): This implication is clear.

(iii) \Rightarrow (i): Let *A* and *W* be represented as in (1.1). If

$$B = \left[\begin{array}{cc} B_1 & B_3 \\ B_4 & B_2 \end{array} \right],$$

then

$$(AW)^{d}BW = \left[\begin{array}{cc} (A_{1}W_{1})^{-1}B_{1}W_{1} & (A_{1}W_{1})^{-1}B_{3}W_{2} \\ 0 & 0 \end{array} \right] \quad \text{and} \quad (AW)^{d}AW = \left[\begin{array}{cc} I & 0 \\ 0 & 0 \end{array} \right].$$

Because $N((AW)^d AW) = N((AW)^d) \subseteq N((AW)^d BW)$, we have that $B_3W_2 = 0$. Also $R(WB(WA)^d) \subseteq R((WA)^d)$,

$$WB(WA)^{d} = \begin{bmatrix} W_{1}B_{1}(W_{1}A_{1})^{-1} & 0\\ W_{2}B_{4}(W_{1}A_{1})^{-1} & 0 \end{bmatrix} \text{ and } (WA)^{d}AW = \begin{bmatrix} I & 0\\ 0 & 0 \end{bmatrix}$$

imply $W_2B_4 = 0$.

The assumption $WAW \leq^{-} WBW$ implies that there exists $C \in (WAW)\{1\}$ such that WAWC = WBWC and CWAW = CWBW. Let

$$C = \left[\begin{array}{cc} C_1 & C_3 \\ C_4 & C_2 \end{array} \right].$$

From WAWCWAW = WAW, we get $C_1 = (W_1A_1W_1)^{-1}$, $C_3W_2A_2W_2 = 0$, $W_2A_2W_2C_4 = 0$ and $W_2A_2W_2C_2W_2A_2W_2 = W_2A_2W_2$. By WAWC = WBWC, we have that $B_1 = A_1$ and $W_2A_2WC_2 = W_2B_2W_2C_2$. Also, CWAW = CWBW gives $C_2W_2A_2W_2 = C_2W_2B_2W_2$. Hence, $W_2A_2W_2 \leq W_2B_2W_2$ and, by Theorem 3.4, $A \leq^{GD,W} B$.

(ii) \Rightarrow (iv): Consequently, by $(AW)^d A = A(WA)^d$.

(iv) \Rightarrow (ii): Suppose that *A* and *W* are given as in (1.1) and

$$B = \left[\begin{array}{cc} B_1 & B_3 \\ B_4 & B_2 \end{array} \right].$$

Since

$$\begin{bmatrix} A_1^{-1}B_1W_1 & A_1^{-1}B_3W_2 \\ 0 & 0 \end{bmatrix} = W(AW)^d BW = WB(WA)^d W = \begin{bmatrix} W_1B_1A_1^{-1} & 0 \\ W_2B_4A_1^{-1} & 0 \end{bmatrix},$$

then $B_3W_2 = 0$ and $W_2B_4 = 0$. Using the condition $WAW \leq WBW$, the rest follows as in part (iii) \Rightarrow (i).

(iv) \Leftrightarrow (v): This equivalence is obvious.

(ii) \Rightarrow (vi): Assume that *A*, *W*, *B* and *C* are represented as in the part (i) \Rightarrow (ii). By Theorem 2.1, we deduce that $C \in A\{W - GD\}$. Also, we can verify that WAWCWBW = WAW = WBWCWAW. Thus, the part (a) is satisfied.

To prove that part (b) holds, we suppose that $C' \in A\{W - GD\}$. Applying Theorem 2.1, we have that

$$C' = \begin{bmatrix} (W_1 A_1 W_1)^{-1} & C'_{12} \\ C'_{21} & C'_{2} \end{bmatrix},$$

where $C'_{12}W_2 = 0$, $W_2C'_{21} = 0$, $W_2A_2W_2$ is relatively regular and $C'_2 \in (W_2A_2W_2)\{1\}$. Then

$$WC'W(AW)^{d}BW = \begin{bmatrix} A_{1}^{-1} & 0\\ 0 & 0 \end{bmatrix} = WB(WA)^{d}WC'W.$$

(vi) \Rightarrow (ii): If $A^{W-GD} \in A\{W - GD\}$ such that $WAWA^{W-GD}WBW = WAW = WBWA^{W-GD}WAW$, by Theorem 2.1, there exist topological direct sums $X = X_1 \oplus X_2$ and $Y = Y_1 \oplus Y_2$ such that

$$A = \begin{bmatrix} A_1 & 0 \\ 0 & A_2 \end{bmatrix}, \qquad W = \begin{bmatrix} W_1 & 0 \\ 0 & W_2 \end{bmatrix}, \qquad A^{W-GD} = \begin{bmatrix} (W_1 A_1 W_1)^{-1} & C_{12} \\ C_{21} & C_2 \end{bmatrix},$$

where A_1 and W_1 are invertible, W_2A_2 and A_2W_2 are quasinilpotent, $C_{12}W_2 = 0$, $W_2C_{21} = 0$, $W_2A_2W_2$ is relatively regular and $C_2 \in (W_2A_2W_2)\{1\}$. For

$$B = \left[\begin{array}{cc} B_1 & B_3 \\ B_4 & B_2 \end{array} \right],$$

we get

$$WA^{W-GD}W(AW)^{d}BW = \left[\begin{array}{cc} A_{1}^{-1}(A_{1}W_{1})^{-1}B_{1}W_{1} & A_{1}^{-1}(A_{1}W_{1})^{-1}B_{3}W_{2} \\ 0 & 0 \end{array} \right]$$

and

$$WB(WA)^{d}WA^{W-GD}W = \left[\begin{array}{cc} W_{1}B_{1}(W_{1}A_{1})^{-1}A_{1}^{-1} & 0\\ W_{2}B_{4}(W_{1}A_{1})^{-1}A_{1}^{-1} & 0 \end{array} \right]$$

Now, $WA^{W-GD}W(AW)^{d}BW = WB(WA)^{d}WA^{W-GD}W$ gives $B_3W_2 = 0$ and $W_2B_4 = 0$. From

$$WAW = \begin{bmatrix} W_1A_1W_1 & 0 \\ 0 & W_2A_2W_2 \end{bmatrix},$$
$$WAWA^{W-GD}WBW = \begin{bmatrix} W_1B_1W_1 & 0 \\ 0 & W_2A_2W_2C_2W_2B_2W_2 \end{bmatrix}$$

and $WAWA^{W-GD}WBW = WAW$, we obtain $B_1 = A_1$ and $W_2A_2W_2C_2W_2B_2W_2 = W_2A_2W_2$. By

$$WBWA^{W-GD}WAW = \begin{bmatrix} W_1A_1W_1 & 0\\ 0 & W_2B_2W_2C_2W_2A_2W_2 \end{bmatrix}$$

and $WAW = WBWA^{W-GD}WAW$, we have that $W_2B_2W_2C_2W_2A_2W_2 = W_2A_2W_2$. Set $C'_2 = C_2W_2A_2W_2C_2$. Then $C'_2 \in (W_2A_2W_2)$ {1}, $W_2A_2W_2C'_2 = W_2B_2W_2C'_2$ and $C'_2W_2A_2W_2 = C'_2W_2B_2W_2$. So, $W_2A_2W_2 \leq W_2B_2W_2$ and, by Theorem 3.4, $A \leq ^{GD,W} B$.

(i) \Rightarrow (vii): By Theorem 3.4, there exist $C \in A\{W - GD\}$ such that WAWC = WBWCand CWAW = CWBW. For P = WAWC and Q = CWAW, we obtain R(P) = R(WAW), N(Q) = N(WAW) and $WA^{d,W}PW = WQA^{d,W}W$ as in the proof of Theorem 2.2 (part (i) \Rightarrow (ii)). We also have

$$WAW = WAW(CWAW) = WAWCWBW = PWBW$$

and in the same way WAW = WBWQ.

(vii) \Rightarrow (i): Suppose that there exist idempotents $P \in \mathbf{B}(X)$ and $Q \in \mathbf{B}(Y)$ such that R(P) = R(WAW), N(Q) = N(WAW), $WA^{d,W}PW = WQA^{d,W}W$ and PWBW = WAW = WBWQ. Set $C = Q(WAW)^{-}P$, for $(WAW)^{-} \in (WAW)\{1\}$. Using Theorem 2.2, we deduce that $C \in A\{W - GD\}$. Now, by WAW = WAWQ = PWAW, we get

$$WBWC = (WBWQ)(WAW)^{-}P = WAW(WAW)^{-}P = WAWQ(WAW)^{-}P = WAWC$$

and analogously $CWBW = CWAW$. So, $A \leq^{GD,W} B$.

By [4, Example 3.2], we observe that none of relations $\leq^{d,W}$ and $\leq^{GD,W}$ implies other one. In the next result, we prove that $A \leq^{d,W} B$ and $WAW \leq^{-} WBW$ give $A \leq^{GD,W} B$.

Theorem 3.7. Let $W \in \mathbf{B}(Y, X) \setminus \{0\}$, $B \in \mathbf{B}(X, Y)$ and let $A \in \mathbf{B}(X, Y)$ be Wg-Drazin invertible such that WAW is relatively regular. If $A \leq^{d,W} B$ and $WAW \leq^{-} WBW$, then $A \leq^{GD,W} B$.

Proof. The proof is analogous to that given in [4, Lemma 3.2].

The result given in [4, Theorem 3.5] is also valid for operators on Banach spaces.

Theorem 3.8. Let $W \in \mathbf{B}(Y, X) \setminus \{0\}$ and let $A, B \in \mathbf{B}(X, Y)$ be Wg-Drazin invertible such that WAW is relatively regular. If $A \leq^{GD,W} B$, then $WA^{d,W}W$ is relatively regular and $WA^{d,W}W \leq^{-} WB^{d,W}W$.

Proof. Let A, W and B be represented as in Theorem 3.4(iii). Since (3.3) holds, then

$$WB^{d,W}W = W(BW)^d = \begin{bmatrix} A_1^{-1} & 0\\ 0 & W_2(B_2W_2)^d \end{bmatrix}.$$

We observe that $WA^{d,W}W = \begin{bmatrix} A_1^{-1} & 0 \\ 0 & 0 \end{bmatrix}$ is relatively regular. Set $U = \begin{bmatrix} A_1 & 0 \\ 0 & 0 \end{bmatrix}$. Now, we have that $U \in (WA^{d,W}W)\{1\}$,

$$WA^{d,W}WU = \begin{bmatrix} I & 0\\ 0 & 0 \end{bmatrix} = WB^{d,W}WU$$

and

$$UWA^{d,W}W = \begin{bmatrix} I & 0\\ 0 & 0 \end{bmatrix} = UWB^{d,W}W,$$

that is $WA^{d,W}W \leq WB^{d,W}W$.

Recall that if $A, B \in \mathbf{B}(X, Y)$ are relatively regular, then $A \leq B$ if and only if $B - A \leq B$. As in [4, Proposition 3.1], the following result holds.

Theorem 3.9. Let $W \in \mathbf{B}(Y, X) \setminus \{0\}$ and let $A, B \in \mathbf{B}(X, Y)$ be Wg-Drazin invertible such that WAW and WBW are relatively regular. If B - A is Wg-Drazin invertible, $A \leq^{GD, W} B$ and A, W and B are represented as in Theorem 3.4(iii), then the following conditions are equivalent

(i) $B - A \leq^{GD,W} B$; (ii) $B_2 - A_2 <^{GD,W} B_2$. *Proof.* We see that WAW, WBW, $W_2A_2W_2$ and $W_2B_2W_2$ are relatively regular. Using Theorem 3.4 and Theorem 3.6, we deduce that $WAW \leq^- WBW$ and $W_2A_2W_2 \leq^- W_2B_2W_2$ which is equivalent to $W(B-A)W \leq^- WBW$ and $W_2(B_2-A_2)W_2 \leq^- W_2B_2W_2$. Because B - A is Wg-Drazin invertible, then (B - A)W and W(B - A) are generalized Drazin invertible,

$$((B-A)W)^{d} = \begin{bmatrix} 0 & 0 \\ B_{4}W_{1} & (B_{2}-A_{2})W_{2} \end{bmatrix}^{d} = \begin{bmatrix} 0 & 0 \\ 0 & ((B_{2}-A_{2})W_{2})^{d} \end{bmatrix}$$

and

$$(W(B-A))^d = \begin{bmatrix} 0 & W_1B_3 \\ 0 & W_2(B_2-A_2) \end{bmatrix}^d = \begin{bmatrix} 0 & 0 \\ 0 & (W_2(B_2-A_2))^d \end{bmatrix}$$

From

$$W((B-A)W)^{d}BW = \begin{bmatrix} 0 & 0\\ 0 & W_{2}((B_{2}-A_{2})W_{2})^{d}B_{2}W_{2} \end{bmatrix}$$

and

$$WB(W(B-A))^{d}W = \begin{bmatrix} 0 & 0 \\ 0 & W_{2}B_{2}(W_{2}(B_{2}-A_{2}))^{d}W_{2} \end{bmatrix}$$

we deduce that $W((B - A)W)^{d}BW = WB(W(B - A))^{d}W$ is equivalent to $W_{2}((B_{2} - A_{2})W_{2})^{d}B_{2}W_{2} = W_{2}B_{2}(W_{2}(B_{2} - A_{2}))^{d}W_{2}$. Hence, by Theorem 3.6, (i) and (ii) are equivalent.

4. G-DRAZIN INVERSES

If $A \in \mathbf{B}(X)$ and $W = I \in \mathbf{B}(X)$ in results of Section 2 and Section 3, we obtain definitions and characterizations of the G-Drazin inverse and the G-Drazin partial order for operators on Banach space. Thus, we extend recent results from [4, 19] and present some new results.

Definition 4.3. Let $A \in \mathbf{B}(X)$ be generalized Drazin invertible such that A is relatively regular. An operator $C \in \mathbf{B}(X)$ is a G-Drazin inverse of A if the following equalities hold:

ACA = A and $A^dAC = CA^dA$.

Denote by $A{GD}$ the set of all G-Drazin inverses of A.

Corollary 4.3. Let $A \in \mathbf{B}(X)$ be generalized Drazin invertible such that A is relatively regular. For $C \in \mathbf{B}(X)$, the following statements are equivalent:

- (i) $C \in A\{GD\}$;
- (ii) ACA = A and $A^d A^2 C = AA^d = CA^d A^2$;
- (iii) ACA = A and $A^dAC = A^d = CA^dA$;
- (iv) ACA = A and $A^dC = CA^d$;
- (v) there exist a topological direct sum $X = X_1 \oplus X_2$ such that

$$A = \begin{bmatrix} A_1 & 0 \\ 0 & A_2 \end{bmatrix}, \qquad C = \begin{bmatrix} A_1^{-1} & 0 \\ 0 & C_2 \end{bmatrix},$$

where A_1 is invertible, A_2 is quasinilpotent, A_2 is relatively regular and $C_2 \in A_2\{1\}$.

Proof. We need only to prove that (ii) \Leftrightarrow (iv). Because the group inverse is double commutative and $(A^d A^2)^{\#} = A^d$, we conclude that $A^d A^2 C = CA^d A^2$ is equivalent to $A^d C = CA^d$. We observe that $A^d C = CA^d$ and ACA = A give $A^d A^2 C = A^2 CA^d = A^2 CA(A^d)^2 = A^2(A^d)^2 = AA^d$ and also $AA^d = CA^d A^2$.

Corollary 4.4. Let $A \in \mathbf{B}(X)$ be generalized Drazin invertible such that A is relatively regular. *If* $C \in A\{GD\}$, then (I - CA)A and A(I - AC) are quasinilpotent.

Corollary 4.5. Let $A \in \mathbf{B}(X)$ be generalized Drazin invertible such that A is relatively regular. *The following statements are equivalent:*

- (i) $A{GD} \neq \emptyset$;
- (ii) there exist idempotents $P \in \mathbf{B}(X)$ and $Q \in \mathbf{B}(X)$ such that

$$R(P) = R(A), \quad N(Q) = N(A) \quad and \quad A^d P = QA^d.$$

In addition, for arbitrary $A^- \in A\{1\}, QA^-P \in A\{GD\}$, that is,

$$Q \cdot A\{1\} \cdot P \subseteq A\{GD\}.$$

Corollary 4.6. Let $A \in \mathbf{B}(X)$ be generalized Drazin invertible such that A is relatively regular. *Then*

$$A\{GD\} \cdot A \cdot A\{GD\} \subseteq A\{GD\}.$$

The definition of the G-Drazin relation is stated now in the Banach space setting.

Definition 4.4. Let $B \in \mathbf{B}(X)$ and let $A \in \mathbf{B}(X)$ be generalized Drazin invertible such that A is relatively regular. Then we say that A is below to B under the G-Drazin relation (denoted by $A \leq^{GD} B$) if there exist $C_1, C_2 \in A\{GD\}$ such that

 $AC_1 = BC_1$ and $C_2A = C_2B$.

Corollary 4.7. Let $B \in \mathbf{B}(X)$ and let $A \in \mathbf{B}(X)$ be generalized Drazin invertible such that A is relatively regular. Then the following statements are equivalent:

- (i) $A \leq^{GD} B$;
- (ii) there exist $C \in A\{GD\}$ such that

$$AC = BC$$
 and $CA = CB;$

(iii) there exist topological direct sum $X = X_1 \oplus X_2$ such that

$$A = \left[\begin{array}{cc} A_1 & 0\\ 0 & A_2 \end{array} \right], \qquad B = \left[\begin{array}{cc} A_1 & 0\\ 0 & B_2 \end{array} \right],$$

where A_1 is invertible, A_2 is quasinilpotent, A_2 is relatively regular and $A_2 \leq B_2$. In addition, if B is generalized Drazin invertible such that B is relatively regular, then $D \in B\{GD\}$ if and only if

$$D = \left[\begin{array}{cc} A_1^{-1} & 0 \\ 0 & D_2 \end{array} \right],$$

where $D_2 \in B_2\{GD\}$.

It is interesting to note that the G-Drazin relation is a partial order.

Corollary 4.8. The G-Drazin relation is a partial order on the set $\{A \in \mathbf{B}(X)^d : A \text{ is } relatively regular\}$.

Proof. It is enough to prove that the G-Drazin relation is antisymmetric. Assume that $A, B \in \mathbf{B}(X)^d$ such that A and B are relatively regular, $A \leq^{GD} B$ and $B \leq^{GD} A$. There exists $D \in B\{GD\}$ such that BD = AD and DB = DA. Notice that A, B and D can be represented as in Corollary 4.7 and so $A_2 \leq^{-} B_2$. The equalities BD = AD and DB = DA give $B_2D_2 = A_2D_2$ and $D_2B_2 = D_2A_2$, that is $B_2 \leq^{-} A_2$. Since \leq^{-} is antisymmetric, then $A_2 = B_2$. Thus, A = B.

Corollary 4.9. Let $B \in \mathbf{B}(X)$ and let $A \in \mathbf{B}(X)$ be generalized Drazin invertible such that A is relatively regular. Then the following statements are equivalent:

(i) $A \leq^{GD} B$; (ii) $A \leq^{-} B$, $A^{d}B = A^{d}A$ and $BA^{d} = AA^{d}$; Weighted G-Drazin inverse for operators on Banach spaces

- (iii) $A \leq B$, $N(A^d) \subseteq N(A^d B)$ and $R(BA^d) \subseteq R(A^d)$;
- (iv) $A \leq B$ and $A^d B = B A^d$;
- (v) $A \leq^{-} B$ and $A \leq^{d} B$;
- (vi) (a) There exists $\overline{A^{GD}} \in A\{GD\}$ such that $AA^{GD}B = A = BA^{GD}A$. (b) For every $C \in A\{GD\}$, $CA^dB = BA^dC$.
- (vii) There exist idempotents $P, Q \in \mathbf{B}(X)$ such that R(P) = R(A), N(Q) = N(A), $A^d P = QA^d$ and PB = A = BQ.

Corollary 4.10. Let $A, B \in \mathbf{B}(X, Y)$ be generalized Drazin invertible such that A is relatively regular. If $A \leq^{GD} B$, then A^d is relatively regular and $A^d \leq^{-} B^d$.

Corollary 4.11. Let $A, B \in \mathbf{B}(X)$ be generalized Drazin invertible such that A and B are relatively regular. If B - A is generalized Drazin invertible, $A \leq^{GD} B$ and A, B are represented as in Corollary 4.7(iii), then the following conditions are equivalent

- (i) $B A \leq^{GD} B$;
- (ii) $B_2 A_2 <^{GD} B_2$.

Acknowledgments. The author is supported by the Ministry of Education, Science and Technological Development, Republic of Serbia, grant number 174007.

REFERENCES

- Burgos, M., Márquez-García, A. C. and Morales-Campoy, A., Maps preserving the diamond partial order, Appl. Math. Comput., 296 (2017), 137–147
- [2] Castro González, N. and Koliha, J. J., New additive results for the g-Drazin inverse, Proc. Roy. Soc. Edinburgh Sect. A, 134 (2004), 1085–1097
- [3] Cline, R. E. and Greville, T. N. E., A Drazin inverse for rectangular matrices, Linear Algebra Appl., 29 (1980), 53–62
- [4] Coll, C., Lattanzi, M. and Thome, N., Weighted G-Drazin inverses and a new pre-order on rectangular matrices, Appl. Math. Comput., 317 (2018), 12–24
- [5] Dajić, A. and Koliha, J. J., *The weighted g–Drazin inverse for operators*, J. Australian Math. Soc., **82** (2007), 163–181
- [6] Hernández, A., Lattanzi, M. and Thome, N., On some new pre-orders defined by weighted Drazin inverses, Appl. Math. Comput., 282 (2016), 108–116
- [7] Hernández, A., Lattanzi, M. and Thome, N., Weighted binary relations involving the Drazin inverse, Appl. Math. Comput., 253 (2015), 215–223
- [8] Koliha, J. J., A generalized Drazin inverse, Glasgow Math. J., 38 (1996), 367-381
- [9] Marovt, J., On star, sharp, core and minus partial orders in Rickart rings, Banach J. Math. Anal., 10 (2016), No. 3, 495–508
- [10] Mitra, S. K., Bhimasankaram, P. and Malik, S. B., Matrix partial orders, shorted operators and applications, World Scientific Publishing Company, 2010
- [11] Mosić, D., Extensions of Jacobson's lemma for Drazin inverses, Aequat. Math., 91 (2017), No. 3, 419-428
- [12] Mosić, D., Reverse order laws on the conditions of the commutativity up to a factor, Revista de La Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 111 (2017), 685–695
- [13] Mosić, D., Weighted binary relations for operators on Banach spaces, Aequat. Math., 90 (2016), No. 4, 787–798
- [14] Mosić, D. and Djordjević, D. S., Some additive results for the Wg-Drazin inverse of Banach space operators, Carpathian J. Math., 32 (2016), No. 2, 215–223
- [15] Mosić, D. and Djordjević, D. S., Weighted pre-orders involving the generalized Drazin inverse, Appl. Math. Comput., 270 (2015), 496-504
- [16] Rakočević, V. and Wei, Y., A weighted Drazin inverse and applications, Linear Algebra Appl., 350 (2002), 25–39
- [17] Robles, J., Martnez-Serrano, M. F. and Dopazo, E., On the generalized Drazin inverse in Banach algebras in terms of the generalized Schur complement, Appl. Math. Comput., 284 (2016), 162–168
- [18] Srivastava, S., Gupta, D. K., Stanimirović, P. S., Singh, S. and Roy, F., A hyperpower iterative method for computing the generalized Drazin inverse of Banach algebra element, Sādhanā, 42 (2017), No. 5, 625–630
- [19] Wang, H. and Liu, v, Partial orders based on core-nilpotent decomposition, Linear Algebra Appl., 488 (2016), 235–248
- [20] Wang, X. Z., Ma, H. and Stanimirović, P. S., Recurrent neural network for computing the W-weighted Drazin inverse, Appl. Math. Comput., 300 (2017), 1–20

[21] Zhang, X. and Sheng, X., Two methods for computing the Drazin inverse through elementary row operations, Filomat, **30** (2016), No. 14, 3759–3770

UNIVERSITY OF NIŠ FACULTY OF SCIENCES AND MATHEMATICS P.O. BOX 224, 18000 NIŠ, SERBIA *E-mail address*: dijana@pmf.ni.ac.rs