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Sequential characterizations of robust optimal solutions in
uncertain convex programs via perturbation approach

NITHIRAT SISARAT1 , RABIAN WANGKEEREE1 and GUE MYUNG LEE2

ABSTRACT. By using robust optimization approach, necessary and sufficient sequential optimality conditi-
ons without any constraint qualifications for the general convex optimization problem in the face of data uncer-
tainty are given in terms of the ε-subdifferential. A sequential condition involving only the subdifferentials is
also derived using a version of the Brøndsted-Rockafellar theorem. Consequently, sequential Lagrange multi-
plier condition for robust optimal solution of convex optimization problem with cone constraints in the face of
data uncertainty is given. It is worth pointing out that there is no compactness assumption of uncertainty set
and upper semicontinuity of functions involved in our results.

1. INTRODUCTION

Convex programs that are affected by data uncertainty have attracted attention of many
researchers in the past years [2, 3, 4, 5, 6, 7, 10, 14, 15, 16, 18, 19, 21, 23, 24] and references
therein. Robust optimization (see, e.g. [4, 5]) is one of the basic methodologies to treat
an optimization problem against uncertain parameters in the problem by examining an
optimal solution which simultaneously satisfies all possible realizations of the parameters
within their prescribed uncertainty sets. Such the optimal solution is known as a robust
optimal solution. Following this approach, one can get a robust optimal solution of con-
vex optimization problems in the face of data uncertainty by solving the single convex
optimization problem. As an illustration, consider the following uncertain convex opti-
mization problem with cone constraints

(UP) inf
x∈X
{f(x, u) : x ∈ C, g(x, v) ∈ −K},

where C is a closed convex subset of a reflexive Banach space X , K is a closed convex
cone of a Banach space Y , U and V are convex subsets of a Banach space Z, u and v are
the uncertain parameters of the problem that we do not know the exact values, but we
know that u (resp. v) belongs to some uncertainty set U (resp. V), f(·, u) : X → R∪{+∞},
u ∈ U , is a proper lower semicontinuous convex function and g(·, v) : X → Y , v ∈ V , is
continuous and K-convex. Then the robust counterpart of the (UP) is given by

(RP) inf
x∈X

{
sup
u∈U

f(x, u) : x ∈ C, g(x, v) ∈ −K, ∀v ∈ V
}
.

On the other hand, sequential forms of the Lagrange multiplier condition characteri-
zing optimality without any constraint qualifications for convex programs in the absence
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of data uncertainty have been intensively studied [1, 13, 17, 22, 25] and the references the-
rein because the constraint qualifications do not always hold and these conditions are a
meaningful contribution for supporting the employment of different stopping criteria for
practical optimization algorithms. Further study has been done for the general convex
optimization problem in [8, 9] which provided some sequential Lagrange multiplier con-
ditions in the most general setting, extending the corresponding results in the literature.
In what follows, the primary aim of this paper is to investigate sequential optimality con-
ditions without any constraint qualifications for the general convex optimization problem
in the face of data uncertainty:

(UPφ) inf
x∈X

φu(x, 0),

where X is a reflexive Banach space, Y is a Banach space, φu : X × Y → R ∪ {+∞}, the
so-called perturbation function, (see, e.g. [26]) is a proper lower semicontinuous convex
function and u is the uncertain parameter which belongs to the uncertainty set U . A robust
optimal solution of (UPφ) is obtained by solving its robust counterpart (RPφ) of (UPφ):

(RPφ) inf
x∈X

sup
u∈U

φu(x, 0).

It is remarkable that a sequential characterization for robust optimal solution of (UPφ)
is done by applying [9, Theorem 3.2 (or Theorem 3.3 also)] if the function u 7→ φu(x, y) is
upper semicontinuous for any (x, y) ∈ X × Y and the uncertainty set U is compact (see
Remark 3.2) which, however, commonly describes in terms of a bounded set.

Motivated and inspired by the mentioned above, in this paper, we aim to establish se-
quential optimality conditions for robust optimal solutions of (UPφ) that do not require
the fulfillment of any constraint qualifications, upper semicontinuity of u 7→ φu(x, y) for
any (x, y) ∈ X×Y and compactness of the uncertainty set U . As a consequence, we obtain
sequential Lagrange multiplier condition for robust solution of convex optimization pro-
blem with cone constraints in the face of data uncertainty.

The layout of the paper is as follows. In the next section, we collect some definiti-
ons, notations and preliminary results that will be used later in the paper. Sect. 3 es-
tablishes the sequential characterizations of robust optimal solutions in terms of the ε-
subdifferentials as well as subdifferentials. Then, in Sect. 4, the results established in Sect.
3 are applied in order to provide some sequential Lagrange multiplier conditions for ro-
bust solution of convex optimization problem with cone constraints in the face of data
uncertainty.

2. PRELIMINARIES

We begin this section by fixing certain notation and preliminaries of convex analysis
that will be used throughout the paper. Let (X, ‖ · ‖) be a reflexive Banach space, (Y, ‖ · ‖)
be a Banach space, with (X∗, ‖ · ‖∗), (Y ∗, ‖ · ‖∗), respectively, their topological dual spaces.

Let {x∗n : n ∈ N} be a sequence in X∗. We write x∗n
ω∗

−−→ 0 (x∗n
‖·‖∗−−−→ 0) for the case when

x∗n converges to 0 in the weak∗ (strong) topology. For convention, we write x∗n → 0 (n →
+∞) which understand that the property holds no matter which of the two topologies
(weak∗ or strong) is used. The following property will be frequently used in the paper:
if x∗n → 0 and xn → a (n → +∞), then 〈x∗n, xn〉 → 0 (n → +∞), where {xn} ⊆ X ,
∀n ∈ N, a ∈ X , 〈·, ·〉 denotes the corresponding linear action between the dual pairs
and xn → a (n → +∞) means ‖xn − a‖ → 0 (n → +∞), that is the convergence in
the topology induced by the norm on X . We equip the space X × Y with the norm
‖(x, y)‖ =

√
‖x‖2 + ‖y‖2, for (x, y) ∈ X × Y . Similarly we define the norm on X∗ × Y ∗.

For a set C in X the closure (resp. convex hull) of C is denoted by cl(C) (resp. co(C)). The



Sequential Characterization of robust optimal solutions... 255

indicator function of C, δC : X → R ∪ {+∞}, is defined as δC(x) = 0 if x ∈ C; otherwise,
δC(x) = +∞.

Next we give some notions regarding functions. For an extended real-valued function
f : X → R ∪ {+∞}, the effective domain and the epigraph are respectively defined by
domf := {x ∈ X : f(x) < +∞} and epif := {(x, r) ∈ X × R : f(x) ≤ r}. We say that
f is proper if domf 6= ∅. Moreover, if epif is closed, we say f is a lower semicontinuous
function. By cl(f) (resp. co(f)) we denote the lower semicontinuous hull (resp. convex
hull) of f , namely the function of which epigraph is the closure (resp. convex hull) of
epi(f) in X × R, that is epi(cl(f)) = cl(epi(f)) (resp. epi(co(f)) = co(epi(f))). A function
f : X → R∪{+∞} is said to be convex if for all t ∈ [0, 1], f((1−t)x+ty) ≤ (1−t)f(x)+tf(y)
for all x, y ∈ X . The function f is said to be concave whenever −f is convex. As usual,
for any convex function f on X , its conjugate function f∗ : X∗ → R ∪ {±∞} is defined
by f∗(x∗) = supx∈X{〈x∗, x〉 − f(x)} for all x∗ ∈ X∗. We have the so called Young-Fenchel
inequality f∗(x∗) + f(x) ≥ 〈x∗, x〉, ∀x ∈ X, ∀x∗ ∈ X∗.

For x ∈ domf and ε ≥ 0 we define the ε-subdifferential of f at x by ∂εf(x) = {x∗ ∈
X∗ : f(y)− f(x) ≥ 〈x∗, y − x〉 − ε, ∀y ∈ X}. When x /∈ domf we define that ∂εf(x) = ∅.
If ε = 0, the set ∂f(x) := ∂0f(x) is then the classical subdifferential of f at x. The follo-
wing characterizations of the subdifferential and ε-sudifferential of a proper function f ,
by means of conjugate functions will be useful in the paper (see, e.g. [26]): x∗ ∈ ∂f(x)⇔
f(x) + f∗(x∗) = 〈x∗, x〉 and x∗ ∈ ∂εf(x)⇔ f(x) + f∗(x∗) ≤ 〈x∗, x〉+ ε.

In the case of f : X → R∪{+∞} is a proper lower semicontinuous and convex function,
and a ∈ dom f the epigraph of f∗ can be represented as follows (see, e.g. [12, Proposition
2.1.])

(2.1) epi f∗ =
⋃
ε≥0

{(x∗, 〈x∗, a〉+ ε− f(a)) : x∗ ∈ ∂εf(a)}.

The ε-normal cone of a closed convex set C at x ∈ X is defined by Nε
C(x) := ∂εδC(x) =

{x∗ ∈ X∗ : 〈x∗, y − x〉 ≤ ε, ∀y ∈ C} when x ∈ C, and Nε
C(x) := ∅ when x /∈ C. If ε = 0,

N0
C(x) := NC(x) is the classical normal cone in convex analysis.
Let K ⊆ Y be a nonempty closed convex cone. The dual cone of K is defined by

K∗ := {k∗ ∈ Y ∗ : 〈k∗, k〉 ≥ 0, ∀k ∈ K}. For a vector valued function g : X → Y , we say
that g is K-convex if g((1− t)x+ ty)− (1− t)g(x)− tg(y) ∈ −K, ∀t ∈ [0, 1], ∀x, y ∈ X .

Now, let us recall the following results which will be useful in the sequel.

Lemma 2.1. [13] Let I be an arbitrary index set and let fi, i ∈ I , be proper lower semicontinuous
convex functions on X . Suppose that there exists x0 ∈ X such that supi∈I fi(x0) < +∞.
Then epi(supi∈I fi)∗ = clw∗

(
co
⋃
i∈I epif∗i

)
, where supi∈I fi : X → R ∪ {+∞} is defined by

(supi∈I fi)(x) = supi∈I fi(x) for all x ∈ X .

Lemma 2.2. [20, Theorem 2.1] Let h : X × Y → R ∪ {+∞} be a proper function. Define
the marginal function η : X → R ∪ {±∞} by η(x) = infy∈Y h(x, y). Define PrX×R(epih) =
{(x, r), ∃y ∈ Y, (x, y, r) ∈ epih}. Then, we have PrX×R(epih) ⊆ epiη ⊆ clw∗ (PrX×R(epih)) .

Lemma 2.3. [19, Proposition A.1] Let X , Y , Z be Banach spaces and let U be a convex subset
of Z. Let φu : X × Y → R ∪ {+∞} be a proper lower semicontinuous and convex function for
any u ∈ U , and u 7→ φu(x, y) be a concave function for any (x, y) ∈ X × Y . Then,

⋃
u∈U epi φ∗u

and PrX∗×R
(⋃

u∈U epi φ∗u
)

are convex.

We closed this section by recalling a version of the Brøndsted-Rockafellar theorem
which was established in [11].

Theorem 2.1. [25, 11, Brøndsted-Rockafellar Theorem] Let X be a Banach space, f : X →
R ∪ {±∞} be a proper convex and lower semicontinuous function and a ∈ domf . Then for every
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ε > 0 and for every x∗ ∈ ∂εf(a) there exist xε ∈ domf and x∗ε ∈ ∂f(xε) such that

‖xε − a‖ ≤
√
ε, ‖x∗ε − x∗‖∗ ≤

√
ε and |f(xε)− 〈x∗ε, xε − a〉 − f(a)| ≤ 2ε.

3. SEQUENTIAL OPTIMALITY CONDITIONS OF ROBUST OPTIMAL SOLUTIONS

The aim of this section is to derive sequential characterizations for robust optimal so-
lution of the problem (UPφ) in terms of the ε-subdifferentials and the subdifferentials of
the functions involved. In what follows, we consider the marginal function η : X∗ →
R ∪ {±∞} of the conjugate function (supu∈U φu)

∗ defined by

η(x∗) := inf
y∗∈Y ∗

(
sup
u∈U

φu

)∗
(x∗, y∗).

It is worth mentioning here, as (supu∈U φu)
∗ is a lower semicontinuous convex function

[26, Theorem 2.3.1(i)], that the marginal function η is convex [26, Theorem 2.1.3(v)].
We begin by deriving the following technical result, which plays a key role in establis-

hing sequential characterizations for robust optimal solution of the problem (UPφ) later
in the paper.

Lemma 3.4. Let U be a subset of a Banach space Z. For any u ∈ U , let φu : X×Y → R∪{+∞}
be a proper lower semicontinuous and convex function. Suppose that infx∈X supu∈U φu(x, 0) <
+∞. Then, for each a ∈ dom(supu∈U φu(·, 0)), a is a robust optimal solution of (UPφ) if and
only if (0,−η∗(a)) ∈ clw∗(epi(η)).

Proof. We see that supu∈U φu is a lower semicontinuous convex function onX×Y because
φu is a lower semicontinuous convex function for each u ∈ U . Note that in view of the
weak robust duality [19, Theorem 3.1.], we may assume that infx∈X supu∈U φu(x, 0) >
−∞. Consequently, as infx∈X supu∈U φu(x, 0) < +∞, infx∈X supu∈U φu(x, 0) ∈ R. Note

also that
(
supu∈U φu

)∗∗
is a proper function on X × Y (see, e.g. [26, Theorem 2.3.4]),

which in turn implies that supu∈U φu is proper as well. So, supu∈U φu is a proper lower

semicontinuous convex function on X × Y , which results in supu∈U φu =
(
supu∈U φu

)∗∗
.

Moreover, it then follows from the definition of η that

η∗(x) = sup
x∗∈X∗

{〈x∗, x〉 − η(x∗)}(3.2)

= sup
x∗∈X∗

{
〈x∗, x〉 − inf

y∗∈Y ∗

(
sup
u∈U

φu

)∗
(x∗, y∗)

}
= sup

(x∗,y∗)∈X∗×Y ∗
{〈(x∗, y∗), (x, 0)〉 −

(
sup
u∈U

φu

)∗
(x∗, y∗)}

=

(
sup
u∈U

φu

)∗∗
(x, 0) = sup

u∈U
φu(x, 0)

for all x ∈ X . By taking into account the definition of conjugate functions together with
(3.2), one can see that a ∈ dom(supu∈U φu(·, 0)) is a robust optimal solution of (UPφ) if
and only if

(0,− sup
u∈U

φu(a, 0)) ∈ epi
(
sup
u∈U

φu(·, 0)
)∗

= epi(η∗)∗ = epi(clω∗co η) = clw∗(epi(η)),

where clω∗η stands for the lower semicontinuous hull of η (the closure of its epigraph is
taken in weak∗ topology). So, we obtain the desired result.

�
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With the aid of Lemma 3.4, we now establish sequential characterizations of robust
optimal solution for (UPφ) in terms of ε-subdifferentials.

Theorem 3.2. Let U be a convex subset of a Banach space Z, φu : X × Y → R ∪ {+∞} be a
proper lower semicontinuous and convex function for any u ∈ U . Suppose that u 7→ φu(x, y) is
a concave function for any (x, y) ∈ X × Y and infx∈X supu∈U φu(x, 0) < +∞. Then, for each
a ∈ dom(supu∈U φu(·, 0)), the following assertions are equivalent:

(i) a is a robust optimal solution of (UPφ);
(ii) there exist {un} ⊆ U , εn ≥ 0 and (x∗n, y

∗
n) ∈ ∂εnφun

(a, 0) such that

x∗n
‖·‖∗−−−→ 0, εn → 0 and φun

(a, 0)→ sup
u∈U

φu(a, 0) (n→ +∞);

(iii) there exist {un} ⊆ U , εn ≥ 0 and (x∗n, y
∗
n) ∈ ∂εnφun(a, 0) such that

x∗n
ω∗

−−→ 0, εn → 0 and φun
(a, 0)→ sup

u∈U
φu(a, 0) (n→ +∞).

Proof. [(i)⇒(ii)]. Suppose that (i) holds. According to Lemma 3.4, we have that η∗(x) =
supu∈U φu(x), ∀x ∈ X and (0,−η∗(a)) ∈ clw∗(epi(η)). It then follows from Lemma 2.2 and
Lemma 2.3 that

(0,−η∗(a)) ∈ clw∗

(
PrX∗×R

(
epi (sup

u∈U
φu)
∗
))

(3.3)

= clw∗

(
PrX∗×R

(
clw∗co

⋃
u∈U

epi φ∗u

))

= clw∗

(
PrX∗×R

(
clw∗

⋃
u∈U

epi φ∗u

))

⊆ clw∗

(
PrX∗×R

(⋃
u∈U

epi φ∗u

))
.

In addition, since the set PrX∗×R(
⋃
u∈U epi φ∗u) is a convex set and X is a reflexive Banach

space, we assert that clw∗
(
PrX∗×R(

⋃
u∈U epi φ∗u)

)
= cl‖·‖∗

(
PrX∗×R(

⋃
u∈U epi φ∗u)

)
. This

together with (3.3) and Lemma 2.1 in turn gives us that there exist x∗n ∈ X∗, y∗n ∈ Y ∗, rn ∈
R and un ∈ U such that (x∗n, y∗n, rn) ∈ epiφ∗un

, x∗n
‖·‖∗−−−→ 0 and rn → −η∗(a) (n→ +∞). As

(a, 0) ∈ dom(supu∈U φu), we also have (a, 0) ∈ dom(φu) for all u ∈ U . For each u ∈ U , by
virtue of (2.1), we obtain that

(3.4) epi φ∗u =
⋃
ε≥0

{(x∗, y∗, 〈x∗, a〉+ ε− φ(a, 0)) : (x∗, y∗) ∈ ∂εφu(a, 0)}.

In view of (3.4) and the fact that (x∗n, y∗n, rn) ∈ epiφ∗un
for each positive integer n, there

exists εn ≥ 0 such that (x∗n, y∗n) ∈ ∂εnφun
(a, 0), rn = 〈x∗n, a〉 + εn − φun

(a, 0), x∗n
‖·‖∗−−−→ 0

and rn → −η∗(a) (n → +∞). So, for each n ∈ N, 0 ≤ εn = φun
(a, 0) − 〈x∗n, a〉 + rn ≤

−〈x∗n, a〉+supu∈U φu(a, 0)+rn. This give us, passing to the limit as n→ +∞, εn → 0. Mo-
reover, for each n ∈ N, it follows from this inequality 0 ≤ |φun(a, 0)− supu∈U φu(a, 0)| =
|〈x∗n, a〉 − rn + εn − supu∈U φu(a, 0)| ≤ |〈x∗n, a〉| + | − rn − supu∈U φu(a, 0)| + εn, we also
have φun

(a, 0)→ supu∈U φu(a, 0) (n→ +∞). Therefore, the implication (i)⇒(ii) holds.

Clearly, (ii) implies (iii) because of x∗n
‖·‖∗−−−→ 0 (n→ +∞) implies x∗n

ω∗

−−→ 0 (n→ +∞).
[(iii)⇒(i)]. Suppose that there exist {un} ⊆ U , εn ≥ 0 and (x∗n, y

∗
n) ∈ ∂εnφun(a, 0) such

that x∗n
ω∗

−−→ 0, φun
(a, 0) → supu∈U φu(a, 0) and εn → 0 (n → +∞). For each n ∈ N, by
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taking into account the definitions of the ε-subdifferential, we have φun
(x, y)−φun

(a, 0) ≥
〈x∗n, x−a〉+ 〈y∗n, y〉−εn, ∀(x, y) ∈ X×Y, inasmuch as (x∗n, y∗n) ∈ ∂εnφun

(a, 0), and further
implies that supu∈U φu(x, 0)−φun(a, 0) ≥ φun(x, 0)−φun(a, 0) ≥ 〈x∗n, x−a〉−εn, ∀x ∈ X.
Passing to the limit as n→ +∞, we get that supu∈U φu(x, 0)−supu∈U φu(a, 0) ≥ 0, ∀x ∈ X,
which actually means that a is a robust optimal solution of (UPφ). So, (i) holds, which
finishes the proof of the theorem. �

With the help of the Brøndsted-Rockafellar theorem (Theorem 2.1), we see now how
the sequential characterization of robust optimal solution for (UPφ) can be obtained in
terms of the classical convex subdifferentials.

Theorem 3.3. Let U be a convex subset of a Banach space Z, φu : X × Y → R ∪ {+∞} be a
proper lower semicontinuous and convex function for any u ∈ U . Suppose that u 7→ φu(x, y) be
a concave function for any (x, y) ∈ X × Y and infx∈X supu∈U φu(x, 0) < +∞. Then, for each
a ∈ dom(supu∈U φu(·, 0)), the following assertions are equivalent:

(i) a is a robust optimal solution of (UPφ);
(ii) there exist {un} ⊆ U , (xn, yn) ∈ dom φun

and (x∗n, y
∗
n) ∈ ∂φun

(xn, yn) such that{
x∗n

‖·‖∗−−−→ 0, xn → a, yn → 0 (n→ +∞) and
φun(xn, yn)− 〈y∗n, yn〉 − supu∈U φu(a, 0)→ 0 (n→ +∞);

(iii) there exist {un} ⊆ U , (xn, yn) ∈ dom φun
and (x∗n, y

∗
n) ∈ ∂φun

(xn, yn) such that{
x∗n

ω∗

−−→ 0, xn → a, yn → 0 (n→ +∞) and
φun(xn, yn)− 〈y∗n, yn〉 − supu∈U φu(a, 0)→ 0 (n→ +∞).

Proof. As (ii)⇒(iii) is always true, we prove just the implications (i)⇒(ii) and (iii)⇒(i).
[(i)⇒(ii)]. Suppose that (i) holds. Invoking Theorem 3.2 we find {un} ⊆ U , εn ≥ 0 and

(x∗n, y
∗
n) ∈ ∂εnφun

(a, 0) such that x∗n
‖·‖∗−−−→ 0, εn → 0 and φun

(a, 0)→ supu∈U φu(a, 0) (n→
+∞). Applying Brøndsted-Rockafellar theorem allows us that for each positive integer
n, there exist (xn, yn) ∈ dom φun and (x∗n, y

∗
n) ∈ ∂φun

(xn, yn) such that ‖(xn, yn) −
(a, 0)‖ ≤ √εn, ‖(x∗n, y∗n)−(x∗n, y∗n)‖∗ ≤

√
εn and |φun

(xn, yn)−〈(x∗n, y∗n), (xn, yn)−(a, 0)〉−
φun

(a, 0)| ≤ 2εn, from which we obtain x∗n − x∗n
‖·‖∗−−−→ 0, xn → a, yn → 0 (n → +∞)

and φun
(xn, yn) − 〈x∗n, xn − a〉 − 〈y∗n, yn〉 − φun

(a, 0) → 0 (n → +∞). We also have

x∗n = (x∗n−x∗n)+x∗n
‖·‖∗−−−→ 0 (n→ +∞) and hence 〈x∗n, xn−a〉 → 0 (n→ +∞). Then, we ar-

rive at the assertion that φun(xn, yn)−〈y∗n, yn〉−supu∈U φu(a, 0) = [φun(xn, yn)−〈x∗n, xn−
a〉 − 〈y∗n, yn〉 − φun

(a, 0)] + 〈x∗n, xn − a〉 + [φun
(a, 0)− supu∈U φu(a, 0)] −→ 0 (n → +∞).

With the notations x∗n := x∗n and y∗n := y∗n, the desired result follows.
[(iii)⇒(i)]. Assume that there exist {un} ⊆ U , (xn, yn) ∈ dom φun

and (x∗n, y
∗
n) ∈

∂φun
(xn, yn) such that x∗n

ω∗

−−→ 0, xn → a, yn → 0 (n→ +∞) and φun
(xn, yn)− 〈y∗n, yn〉 −

supu∈U φu(a, 0) → 0 (n → +∞). For each n ∈ N, we have φun
(x, y) ≥ φun

(xn, yn) +
〈(x∗n, y∗n), (x − xn, y − yn)〉, ∀(x, y) ∈ X × Y due to (x∗n, y

∗
n) ∈ ∂φun

(xn, yn). In particular,
it holds supu∈U φu(x, 0) − supu∈U φu(a, 0) ≥ φun(x, 0) − supu∈U φu(a, 0) ≥ φun(xn, yn) −
〈y∗n, yn〉 − supu∈U φu(a, 0) + 〈x∗n, x − xn〉 ∀x ∈ X. Passing to the limit as n → +∞, we get
supu∈U φu(x, 0)− supu∈U φu(a, 0) ≥ 0, ∀x ∈ X , so a is a minimizer of supu∈U φu(·, 0) on X ,
and the conclusion follows. �

Remark 3.1. In the special case when U is a singleton and φu ≡ φ, the condition that
u 7→ φu(x, y) is a concave function for any (x, y) ∈ X × Y is automatically fulfilled, and
so, Theorem 3.2 and Theorem 3.3 have been investigated in [9, Theorem 3.2 and Theorem
3.3].
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Remark 3.2. Let us look now at the case where the function u 7→ φu(x, y) is upper semi-
continuous for any (x, y) ∈ X×Y and U is a compact set. We see now how the implication
(i)⇒(iii) in Theorem 3.3 will follow by applying [9, Theorem 3.3] under the same hypot-
heses as in Theorem 3.3. To see this, by taking

φ(x, y) := sup
u∈U

φu(x, y)

for all (x, y) ∈ X × Y , we first show that the set ∪u∈Uepiφ∗u is w∗-closed. Indeed, let
(x∗n, y

∗
n, rn) ∈ ∪u∈Uepiφ∗u be a sequence such that (x∗n, y

∗
n, rn) −→ ω∗(x∗, y∗, r)

(n → +∞) for some (x∗, y∗, r) ∈ X∗ × Y ∗ × R. Then, there exists un ∈ U such that
(x∗n, y

∗
n, rn) ∈ epiφ∗un

. As U is compact, by passing to a subsequence if necessary, we
may assume that un → u (n → +∞) for some u ∈ U . As for each (x, y) ∈ X × Y ,
〈(x∗n, y∗n), (x, y)〉 − φun

(x, y) ≤ rn, passing to the upper limit, we have for each (x, y) ∈
X × Y, 〈(x∗, y∗), (x, y)〉 − φu(x, y) ≤ r which means that φ∗u(x∗, y∗) ≤ r. So, (x∗, y∗, r) ∈
∪u∈Uepiφ∗u, thereby leading to the assertion that the set ∪u∈Uepiφ∗u is w∗-closed.

Now, we apply [9, Theorem 3.3] to assert that a ∈ dom(supu∈U φu(·, 0)) is a minimizer
of supu∈U φu(·, 0) on X if and only if there exist sequences (xn, yn) ∈ dom(φ), (x∗n, y∗n) ∈
∂φ(xn, yn) such that x∗n → 0, xn → a, yn → 0 and φ(xn, yn)− 〈y∗n, yn〉 − φ(a, 0) → 0 (n →
+∞). To prove the condition (iii) in Theorem 3.3, it remains to show that (x∗n, y

∗
n) ∈

∂εnφun
(xn, yn) and φ(xn, yn) = φun

(xn, yn) for each n ∈ N. Now, taking (2.1) into account,
we see that for each n ∈ N the assertion (x∗n, y

∗
n) ∈ ∂φ(xn, yn) guarantees that

(3.5) ((x∗n, y
∗
n), 〈(x∗n, y∗n), (xn, yn)〉 − φ(xn, yn)) ∈ epiφ∗ = clw∗co(∪u∈Uepiφ∗u).

Keeping in mind the fact that the set ∪u∈Uepiφ∗u in this setting is w∗-closed and convex,
the relation (3.5) gives us that there exists un ∈ U such that

((x∗n, y
∗
n), 〈(x∗n, y∗n), (xn, yn)〉 − φ(xn, yn)) ∈ epiφ∗un

,

which further implies that there exist εn ≥ 0 and (x∗n, y
∗
n) ∈ ∂εnφun

(xn, yn) such that

((x∗n, y
∗
n), 〈(x∗n, y∗n), (xn, yn)〉−φ(xn, yn)) = ((x∗n, y

∗
n), 〈(x∗n, y∗n), (xn, yn)〉+εn−φun

(xn, yn)).

We conclude that x∗n = x∗n, y∗n = y∗n and −φ(xn, yn) = εn − φun(xn, yn). The later reduces
to the following one εn ≤ 0 due to the definition of φ, and so, εn = 0. Consequently,
φ(xn, yn) = φun

(xn, yn), thereby establishing the desired result.

4. THE PROBLEM WITH GEOMETRIC AND CONE CONSTRAINTS UNDER DATA
UNCERTAINTY

In this section, we consider the convex optimization problem with cone constraints in
the face of data uncertainty both in the objective and constraints (UP) that given as in
Section 1. We suppose in addition that dom(supu∈U f(·, u)) ∩ A 6= ∅ where A := {x ∈ C :
g(x, v) ∈ −K, ∀v ∈ V}. From now on, we are going to derive a sequential form of the
Lagrange multiplier condition for a robust optimal solution of (UP) by applying Theorem
3.3 to the following perturbation function φ(u,v) : X×X×Y → R∪{+∞}, (u, v) ∈ U ×V ,

φ(u,v)(x, p, q) =

{
f(x, u), if x+ p ∈ C and g(x, v)− q ∈ −K.
+∞, otherwise.

We notice that for each (u, v) ∈ U × V , φ(u,v) is a proper lower semicontinuous convex
function, (u, v) 7→ φ(u,v)(x, p, q) is a concave function for any (x, p, q) ∈ X × X × Y ,
and infx∈X sup(u,v)∈U×V φ(u,v)(x, 0, 0) < +∞. Moreover, the conjugate of φ(u,v) is φ∗(u,v) :
X∗ ×X∗ × Y ∗ → R ∪ {+∞},

φ∗(u,v)(x
∗, p∗, q∗) =

{
δ∗C(p

∗) + (f(·, u) + (−q∗g)(·, v))∗(x∗ − p∗), if q∗ ∈ −K∗,
+∞, otherwise,
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as a direct calculation shows (see, e.g. [8, p. 1019]), where, for simplicity, (q∗g)(·, v) :=
〈q∗, g(·, v)〉 for all q∗ ∈ Y ∗ and v ∈ V .

Theorem 4.4. For each a ∈ dom(supu∈U f(·, u))∩A, a is a robust optimal solution of the problem
(UP) if and only if

∃(un, vn) ∈ U × V, ∃(xn, ωn, tn) ∈ domf(·, un)× C × (−K),
∃(u∗n, v∗n, ω∗n, λn) ∈ X∗ ×X∗ ×X∗ ×K∗, u∗n ∈ ∂f(·, un)(xn),
v∗n ∈ ∂((λng)(·, vn))(xn), ω∗n ∈ NC(ωn), 〈λn, tn〉 = 0, ∀n ∈ N,
u∗n + v∗n + ω∗n → 0, ωn → a, xn → a, tn − g(xn, vn)→ 0 (n→ +∞) and
f(xn, un)− supu∈U f(a, u) + (λng)(xn, vn)− 〈ω∗n, ωn − xn〉 → 0 (n→ +∞).

Proof. In view of Theorem 3.3, a ∈ dom(supu∈U f(·, u)) ∩ A is a robust optimal solu-
tion of (UP) if and only if there exist (un, vn) ∈ U × V , (xn, pn, qn) ∈ domφ(un,vn) and
(x∗n, p

∗
n, q
∗
n) ∈ ∂φ(un,vn)(xn, pn, qn) such that x∗n → 0, xn → a, (pn, qn)→ (0, 0) (n→ +∞),

φ(un,vn)(xn, pn, qn) − 〈(p∗n, q∗n), (pn, qn)〉 − sup(u,v)∈U×V φ(u,v)(a, 0, 0) → 0 (n → +∞). It
follows from this relation (xn, pn, qn) ∈ domφ(un,vn), we get that xn ∈ domf(·, un),
xn + pn ∈ C and g(xn, vn)− qn ∈ −K. In this way, we have (x∗n, p

∗
n, q
∗
n) ∈ ∂φun(xn, pn, qn)

if and only if φ(un,vn)(xn, pn, qn) + φ∗(un,vn)
(x∗n, p

∗
n, q
∗
n) = 〈x∗n, xn〉 + 〈p∗n, pn〉 + 〈q∗n, qn〉 ⇔

f(xn, un)+δ
∗
C(p
∗
n)+(f(·, un)+(−q∗ng)(·, vn))∗(x∗n−p∗n) = 〈x∗n, xn〉+〈p∗n, pn〉+〈q∗n, qn〉,which

is equivalent to (f(·, un)+ (−q∗ng)(·, vn))∗(x∗n− p∗n)+ (f(·, un)+ (−q∗ng)(·, vn))(xn)−〈x∗n−
p∗n, xn〉+ 〈−q∗n, qn− g(xn, vn)〉+ δ∗C(p∗n)−〈p∗n, xn+pn〉 = 0, ∀n ∈ N. As qn− g(xn, vn) ∈ K
and −q∗n ∈ K∗, we have 〈−q∗n, qn − g(xn, vn)〉 ≥ 0, ∀n ∈ N. Also the Young-Fenchel’s
inequality yields (f(·, un) + (−q∗ng)(·, vn))∗(x∗n − p∗n) + (f(·, un) + (−q∗ng)(·, vn))(xn) −
〈x∗n − p∗n, xn〉 ≥ 0 and δ∗C(p

∗
n) − 〈p∗n, xn + pn〉 ≥ 0. Therefore, we assert that (x∗n, p∗n, q∗n) ∈

∂φ(un,vn)(xn, pn, qn) ⇔ x∗n − p∗n ∈ ∂(f(·, un) + (−q∗ng)(·, vn))(xn), p∗n ∈ ∂δC(xn + pn) =
NC(xn + pn) and 〈−q∗n, qn − g(xn, vn)〉 = 0, ∀n ∈ N.

On the one hand, φ(un,vn)(xn, pn, qn)−〈(p∗n, q∗n), (pn, qn)〉−sup(u,v)∈U×V φ(u,v)(a, 0, 0)→
0 (n→ +∞) is equivalent to the assertion f(xn, un)−〈p∗n, pn〉+〈−q∗n, qn〉−supu∈U f(a, u)→
0 (n → +∞). As a consequence, we obtain that a ∈ dom(supu∈U f(·, u)) ∩ A is a robust
optimal solution of (UP) if and only if

(4.6)



∃(un, vn) ∈ U × V, (xn, pn, qn) ∈ domf(·, un)×X × Y,
xn + pn ∈ C, g(xn, vn)− qn ∈ −K,
∃(x∗n, p∗n, q∗n) ∈ X∗ ×X∗ ×−K∗ such that
x∗n − p∗n ∈ ∂(f(·, un) + (−q∗ng)(·, vn))(xn), p∗n ∈ NC(xn + pn),
〈−q∗n, qn − g(xn, vn)〉 = 0, ∀n ∈ N,
x∗n → 0, xn → a, pn → 0, qn → 0 (n→ +∞),
f(xn, un)− supu∈U f(a, u) + 〈−q∗n, qn〉 − 〈p∗n, pn〉 → 0 (n→ +∞).

With the following notations: tn := g(xn, vn)−qn, ωn := pn+xn, λn := −q∗n, u∗n := x∗n−p∗n
and ω∗n := p∗n, ∀n ∈ N, the condition (4.6) can be equivalently written as follows

∃(un, vn) ∈ U × V, ∃(xn, ωn, tn) ∈ domf(·, un)× C × (−K),
∃(u∗n, ω∗n, λn) ∈ X∗ ×X∗ ×K∗,
u∗n ∈ ∂(f(·, un) + (λng)(·, vn))(xn), ω∗n ∈ NC(ωn), 〈λn, tn〉 = 0, ∀n ∈ N,
u∗n + ω∗n → 0, ωn → a, xn → a, tn − g(xn, vn)→ 0 (n→ +∞) and
f(xn, un)− supu∈U f(a, u) + (λng)(xn, vn)− 〈ω∗n, ωn − xn〉 → 0 (n→ +∞).

In addition, for each n ∈ N, by the continuity of g(·, vn), the subdifferential sum formula
(see, e.g. [26, Theorem 2.8.7]) ensures that ∂(f(·, un) + (λng)(·, vn))(xn) = ∂f(·, un)(xn) +
∂((λng)(·, vn))(xn). This together with the fact that u∗n ∈ ∂(f(·, un) + (λng)(·, vn))(xn) in
turn gives us the existence of other two sequences u∗n, v∗n ∈ X such that u∗n = u∗n+v

∗
n, u

∗
n ∈

∂f(·, un)(xn), and v∗n ∈ ∂((λng)(·, vn))(xn), thereby leading to the desired result. �
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We close this paper with a simple example which illustrates Theorem 4.4 where the
involved uncertainty sets are not compact and the standard robust type Lagrange multi-
pliers fail to hold.

Example 4.1. Let X := R, Y := R2, Z := R, K := R2
+, C := R, U := [1, 2), V :=

(0, 1], f(·, u) : R → R ∪ {+∞}, for each u ∈ U , be defined by f(x, u) = −u
√
x + δR+

(x),
∀x ∈ R, and g(·, v) : R → R2, for each v ∈ V , be defined by g(x, v) := (−1 − vx, vx)T ,
∀x ∈ R. Then, for each u ∈ U , f(·, u) is a proper, convex and lower semicontinuous
function, g(·, v) is K-convex and continuous function for each v ∈ V , and g(x, ·) is a K-
concave function for any x ∈ R. Moreover, supu∈U f(x, u) = −

√
x + δR+(x) for all x ∈ R,

and so dom(supu∈U f(·, u)) ∩ A = [0,+∞) ∩ [−1, 0] = {0} 6= ∅. The element a := 0
is the (unique) minimizer of the problem (RP). Since ∂(supu∈U f(·, u))(0) = ∅, we can
not find v ∈ V and λ ∈ K∗ such that 0 ∈ ∂(supu∈U f(·, u))(0) + δC(0) + ∂((λg)(·, v))(0)
and (λg)(0, v) = 0. Nevertheless, as we show in the following, the sequential optimality
conditions in Theorem 4.4 are satisfied. To do this, it is enough to take un := 1, vn := 1,
xn := 1

n , ωn := 0, tn := ( 1n − 1, 0)T , u∗n := −
√
n
2 , v∗n :=

√
n
2 , ω∗n := 0 and λn := (0,

√
n
2 )T

for all n ∈ N. Thus, for all n ∈ N, −
√
n
2 ∈ ∂f(·, un)(

1
n ),

√
n
2 ∈ ∂((λng)(·, vn))(

1
n ), 0 ∈ NR(0)

and 〈λn, tn〉 = 0. Further, u∗n + v∗n + ω∗n = 0, xn → 0, tn − g(xn, vn) = ( 2n ,
1
n )
T → (0, 0)T ,

and f(xn, un)− supu∈U f(0, u) + (λng)(xn, vn)− 〈ω∗n, ωn − xn〉 = − 1
2
√
n
→ 0 (n→ +∞).
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