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Efficient solution and value function for non-convex
variational problems
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ABSTRACT. In this paper, we want to investigate a wide range of non-convex variational problems and obtain
some sufficient and necessary conditions for existence of a feasible solution for these problems. Hence, we define
optimal value function corresponding to these problems and obtain a relationship between subdifferential of the
optimal value function and the set of Lagrange multipliers.

1. INTRODUCTION

Non-convex variational problems have played a crucial role in mathematical econom-
ics. One of the most important subjects in economic observations is to analyze the rela-
tionship between traders and productions. In this paper, our purpose is to find the total
cost of a material that is purchased by a trader. The outline of this paper is as follows: In
this Section, we define the non-convex variational problem and some preliminary defini-
tions and results which will used in the sequel. In Section 2, we obtain some sufficient and
necessary conditions for be a feasible solution for the non-convex variational problem.
In Section 3, we define optimal value function corresponding to the non-convex vari-
ational problem and obtain a relationship between subdifferential of the optimal value
function and the set of Lagrange multipliers.
LetX, Y and Z be Banach spaces, K andW be closed, convex and pointed cones in Y and
Z, respectively. Cone K induces a partial ordering on Y, defined so that x ≤K y if and
only if y − x ∈ K. We denote the positive polar cone of K by K++ as

K++ = {y∗ ∈ Y ∗ : 〈y∗, y〉 > 0 ∀y ∈ K}.

Definition 1.1 (Definition A.10 [8]). Let J be an interval in X, then a function f : J −→ Y
is Bochner integrable if there exists a sequence of simple functions fn : J −→ Y such that
the following two conditions are satisfied

lim
n−→∞

fn(t) = f(t), almost everywhere,

and

lim
n−→∞

∫
J

‖fn(t)− f(t)‖ = 0.

Definition 1.2 (Definition 2.4. [11]). Function f : X −→ Y is called K-convex, if for all
x1, x2 ∈ X and all λ ∈ [0, 1]

λf(x) + (1− λ)f(y) ∈ f(λx+ (1− λ)y) +K.
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It is called K-concave, if −f is K-convex.

Suppose Γ : [0, 1] −→ 2X is a set-valued mapping such that for all t ∈ [0, 1], Γ(t) is a
nonempty and closed set and

Z = {γ ∈ L1([0, 1], X) : γ(t) ∈ Γ(t) a.e. t ∈ [0, 1]}.

Suppose that f0 : [0, 1] × X −→ Y and g0 : [0, 1] × X −→ Z are Bochner integrable
functions. Let us define the maps f : L1([0, 1], X) −→ Y and g : L1([0, 1], X) −→ Z as

f(γ) =

∫ 1

0

f0(t, γ(t))dt,

g(γ) =

∫ 1

0

g0(t, γ(t))dt,

where g0 is W -convex in the second argument. We consider the following optimization
problem

min
γ∈K(a)

f(γ) (OP (a))

where for all a ∈ Z, we define K(a) = {γ ∈ Z : g(γ) ∈ −W + a}, clearly if g0 is a W -
convex function in the second argument and by the convexity of W , we get the convexity
of K(a). We denote the solution set of Problem (OP (a)) by S(a). The Problem (OP (a))
is a generalization of the Problem (1.1) in [2], the Problem (P ) in [1], the Problem (P) in
[12] and the Problem (P ) in [14] . Hence, the amount of the material j to be purchased by
the trader t is denoted by γj(t). Therefore, the Problem (OP (a)) means the total cost of set
K(a) that consists of materials γ. The existence result due to Bazan et al. [2] requires
(i) the lower semi-continuity of f0(t, .);
(ii) continuity for a.e. t ∈ [0, 1] of g0(t, .);
(iii) measurablity of g0(t, .);
(iv) f0 is a Borel function;
(v) f0(., γ(.)) and g0(., γ(.)) are member of L1([0, 1],Rn).
Our goal is to obtain a solution for Problem (OP (a)) in Banach spaces where the functions
f0(., γ(.)) and g0(., γ(.)) are Bochner integrable. For undefined notions we refer to [7].

Definition 1.3. A Set-valued operator T : X −→ 2Y is called:
(a) closed if Gr(T ) = {(x, y) ∈ X × Y : y ∈ T (x), x ∈ X} is a closed subset of X × Y.
(b) intersectionally closed on A ⊆ X , if;⋂

x∈A
cl
(
T (x)

)
= cl

( ⋂
x∈A

T (x)
)
.

(c) topological pseudomonotone, if for all a, b ∈ Y ,

cl
( ⋂
u∈[a,b]

T (u)
)
∩ [a, b] =

⋂
u∈[a,b]

T (u) ∩ [a, b],

where [a, b] = {y ∈ Y : a ≤K y ≤K b}.
(d) KKM map, if

convH ⊆
⋃
x∈H

T (x), for each H ∈ 〈X〉,

where we denote by 〈X〉 the family of all nonempty finite subsets of the set X .
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Definition 1.4 (Definition 3.6.1 in [6]). Let X be a Banach space and A be a nonempty
subset of X. The Normal cone of A, N(A, a) : X −→ 2X

∗
is defined as

N(A, a) =

 {v ∈ X∗ : 〈v, x− a〉 ≤ 0 ∀x ∈ A} if a ∈ A,

∅ o.w,

Theorem 1.1 (Theorem 2 in [9]). Let K be a nonempty and convex subset of a Hausdorff topo-
logical vector space X and T : K −→ 2K . Suppose that the following conditions hold:
(A1) T is a KKM map;
(A2) for each H ∈ 〈K〉, the set-valued map T ∩ convH is intersectionally closed on convH ;
(A3) T is topological pseudomonotone;
(A4) there exist a nonempty subset B of K and a nonempty compact subset D of K such that
conv(H∪B) is compact for anyH ∈ 〈K〉, and for each y ∈ K\D, there exists x ∈ conv(B∪{y})
such that y 6∈ T (x).
Then,

⋂
x∈K T (x) 6= ∅.

2. EXISTENCE OF SOLUTION FOR PROBLEM (OP (a))

In this section, we consider sufficient conditions for the existence of a solution of Pro-
blem (OP (a)). In the following, we obtain an existence result of Problem (OP (a)) by using
a fixed point theorem.

Theorem 2.2. Suppose the set-valued map T : K(a) ∩ (L1([0, 1], X)) −→ 2K(a)∩(L1([0,1],X))

defined as
T (γ) = {α ∈ L1([0, 1], X) ∩K(a) : f(γ)− f(α) ∈ K}.

Also consider the following conditions hold:
(a) K ⊆ Y is a pointed cone (not necessary convex) such that Y = K ∪ −K;
(b) f0 is a lower semi continuous map and K-convex in the second argument;
(c) g0 is a lower semi continuous map and W -convex in the second argument;
(d) there exist a nonempty subset B of (K(a) ∩ L1([0, 1], X)) and a nonempty compact subset
D of (K(a) ∩ L1([0, 1], X)) such that conv(H ∪ B) is compact for any H ∈ 〈K〉, and for each
α ∈ K \D there exists γ ∈ conv(B ∪ {α}) such that α 6∈ T (γ).
Then Problem (OP (a)) has a solution.

Proof. We will show that T is a KKM map. Suppose on the contrary that T is not a KKM
map, then there exists H = {γ1, γ2, ..., γn} ⊆ (K(a) ∩ L1([0, 1], X)), ti ≥ 0, i = 1, 2, ..., n
with

∑n
i=1 ti = 1 such that γ =

∑n
i=1 tiγi 6∈

⋃n
i=1 T (γi). Thus for each i = 1, 2, ..., n, we

have γ 6∈ T (γi), therefore f(γi) − f(γ) 6∈ K. Since Y = K ∪ −K, then f(γ) − f(γi) ∈ K.
For all y0∗ ∈ K++ and for all i

(2.1)
∫ 1

0

y0
∗(f0(t, γ(t))− f0(t, γi(t)))dt = y0

∗(

∫ 1

0

f0(t, γ(t))dt−
∫ 1

0

f0(t, γi(t))dt) > 0.

Therefore

(2.2) y0
∗(f0(t, γ(t))− f0(t, γi(t))) > 0 a.e. t ∈ [0, 1].

Since for all i ∈ {1, 2, ..., n}, ti ≥ 0, then for almost everywhere t ∈ [0, 1] we have

(2.3) y0
∗(f0(t, γ(t))− Σni=1tif0(t, γi(t))) = Σni=1ti(y0

∗(f0(t, γ(t))− f0(t, γi(t)))) ≥ 0,

on the other hand, f0 is K-convex in the second argument,

(2.4) Σni=1tif0(t, γi(t))− f0(t, γ(t)) = Σni=1tif0(t, γi(t))− f0(t,Σni=1tiγi(t)) ∈ K,
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then y0∗(Σni=1tif0(t, γi(t))− f0(t, γ(t))) > 0 so,

(2.5) y0
∗(f0(t, γ(t))− Σni=1tif0(t, γi(t))) < 0,

which contradicts (2.3), thus T is a KKM map and therefore,

f0(t, γi(t))− f0(t, γ(t)) ∈ K, a.e. t ∈ [0, 1].

Now we show that for each H ∈ 〈A〉, the set-valued map T ∩ conv(H) is intersectionally
closed on conv(H); i.e.,

(2.6)
⋂

γ∈convH
cl(T (γ) ∩ convH) = cl(

⋂
γ∈convH

(T (γ) ∩ convH)).

The inclusion ⊃ in (2.6), is always true. Conversely; let α ∈
⋂
γ∈convH cl(T (γ) ∩ convH),

then for all γ ∈ convH, we have α ∈ cl(T (γ) ∩ convH) and there exists a sequence (αn) ⊆
T (γ) ∩ convH such that αn −→ α. Since αn ∈ T (γ) and f0 is lower semi continuous, then
α ∈ T (γ). So for all γ ∈ convH, we have α ∈ T (γ) ∩ convH and

α ∈
⋂

γ∈convH
(T (γ) ∩ convH) ⊆ cl(

⋂
γ∈convH

(T (γ) ∩ convH)).

Here we show that T is topological pseudomonotone. For fixed a, b ∈ X, obviously:⋂
γ∈[a,b]

(T (γ) ∩ [a, b]) = (
⋂

γ∈[a,b]

T (γ)) ∩ [a, b] ⊆ cl(
⋂

γ∈[a,b]

T (γ)) ∩ [a, b].

Conversely, let α ∈ cl(
⋂
γ∈[a,b] T (γ)) ∩ [a, b], then there exists a sequence

(αn) ⊆ (
⋂
γ∈[a,b] T (γ)) ∩ [a, b] such that αn −→ α. Since αn ∈ T (γ) and f0 is lower semi

continuous in the second argument, then for all γ ∈ [a, b] we have α ∈ T (γ). So for all
γ ∈ [a, b], we have α ∈ T (γ) ∩ [a, b] and therefore,

α ∈
⋂

γ∈[a,b]

(T (γ) ∩ [a, b]).

By Theorem 1.1 we have
⋂
γ∈A T (γ) 6= ∅, let γ0 be in this intersection, then γ0 is a solution

of Problem (OP (a)). �

Let γ0 ∈ L1([0, 1], X). As a reminder, if there exists a neighbourhood U of γ0 such that

f(γ)− f(γ0) ∈ K ∀γ ∈ U ∩K(a),

then γ0 is a local efficient solution of Problem (OP (a)). Hence every solution of Problem
(OP (a)) is said to be a global efficient solution.
Bazan et al. [2] showed that if f0 and g0 are measurable, lower semi-continuous and
continuous, respectively and W is a closed convex cone, then 0 ∈ int[g(C0) + W ] and
each local efficient solution for (OP (a)) is a global efficient solution. Here, we shall obtain
by different assumptions that each local efficient solution of (OP (a)) is a global efficient
solution.

Theorem 2.3. Let f0 be a lower semi continuous and K-convex function in the second argument
and g0 beW -convex function in the second argument. Then each local efficient solution of (OP (a))
is a global efficient solution.

Proof. Let γ0 ∈ L1([0, 1], X) ∩ K(a) be a local efficient solution, then there exists a neig-
hbourhood U of γ0 such that

f(γ)− f(γ0) ∈ K ∀γ ∈ U ∩K(a),
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therefore, ∫ 1

0

f0(t, γ(t))dt−
∫ 1

0

f0(t, γ0(t))dt ∈ K ∀γ ∈ U ∩K(a).

So for all y∗ ∈ K+

y∗(

∫ 1

0

(f0(t, γ(t))− f0(t, γ0(t)))dt) =

∫ 1

0

y∗(f0(t, γ(t))− f0(t, γ0(t)))dt ≥ 0 ∀γ ∈ U ∩K(a).

Therefore, y∗(f0(t, γ(t))− f0(t, γ0(t))) ≥ 0 almost everywhere t ∈ [0, 1] and

(2.7) f0(t, γ(t))− f0(t, γ0(t)) ∈ K a.e. t ∈ [0, 1] ∀γ ∈ U ∩K(a).

Let α ∈ L1([0, 1], X) ∩ K(a) be given. By W -convexity of g0 for all r ∈]0, 1[, we have
γ0+r(α−γ0) ∈ K(a).On the other hand, there exists r0 ∈ (0, 1) such that for all r ∈ [0, r0],
we have γ0 + r(α− γ0) ∈ U ∩K(a) and from (2.7), we obtain

(2.8) f0(t, (γ0 + r(α− γ0))(t))− f0(t, γ0(t)) ∈ K a.e. t ∈ [0, 1].

On the other hand, f0 is K-convex in the second argument, then

−f0(t, (γ0 + r(α− γ0))(t)) + (1− r)f0(t, γ0(t)) + rf0(t, α(t)) ∈ K,

and
−rf0(t, (γ0 + r(α− γ0))(t)) + (r − 1)f0(t, (γ0 + r(α− γ0))(t))

+(1− r)f0(t, γ0(t)) + rf0(t, α(t)) ∈ K,

therefore
r(f0(t, α(t))− f0(t, (γ0 + r(α− γ0))(t)))

+(r − 1)(f0(t, (γ0 + r(α− γ0))(t))− f0(t, γ0(t))) ∈ K.

From (2.8) and the above relation, we have

(2.9) f0(t, α(t))− f0(t, (γ0 + r(α− γ0))(t)) ∈ K a.e. t ∈ [0, 1] .

by summing (2.8) and (2.9), we obtain

f0(t, α(t))− f0(t, γ0(t)) ∈ K a.e. t ∈ [0, 1],

and for all y∗ ∈ K+, we obtain y∗(f0(t, α(t))− f0(t, γ0(t))) ≥ 0, therefore∫ 1

0
y∗(f0(t, α(t))− f0(t, γ0(t)))dt =

y∗(

∫ 1

0

f0(t, α(t))− f0(t, γ0(t))dt) = y∗(f(α)− f(γ0)) ≥ 0.

So f(α)− f(γ0) ∈ K for almost everywhere t ∈ [0, 1]. �

Here, we consider sufficient conditions for the existence of a feasible solution of Pro-
blem (OP (a)).

Definition 2.5. Let η : X ×X −→ X.

• [15] A subset Ω of X is said to be invex with respect to η if for any x, y ∈ Ω and
λ ∈ [0, 1], y + λη(x, y) ∈ Ω.

• [10] Let Ω ⊂ X be an invex set with respect to η and F : Ω −→ 2Y . F is said to be
K-preinvex with respect to η on Ω if for any x1, x2 ∈ Ω and λ ∈ [0, 1], one has

λF (x1) + (1− λ)F (x2) ⊂ F (x2 + λη(x1, x2)) +K.
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Definition 2.6. [5] Given a subsetA of a Banach space Y which is ordered by a closed and
convex cone K ⊂ Y, we say that ā ∈ A is a super minimal point of A (ā ∈ SE(A;K)) if
there is a number M > 0 such that

cl[cone(A− ā)] ∩ (BY −K) ⊂MBY ,

where BY denotes the closed unit ball of Y. Let (x̄, ȳ) ∈ grF with x̄ ∈ Ω, then (x̄, ȳ) is a
local super minimmizer of problem

minimize F (x), subject to x ∈ Ω,

if there is a neighbourhood U of x̄ such that ȳ ∈ SE(F (Ω ∩ U);K).
Obviously every local super efficient solution of the above problem is a local efficient
solution.

Theorem 2.4. [13] Let Ω be a closed and invex set, K be a closed convex pointed ordering cone in
Y and F : Ω −→ 2Y be a K-preinvex map with respect to η which is continuous with respect to
the second argument. Suppose that (x̄, ȳ) ∈ GrF and there is a y∗ ∈ intK+ such that

0 ∈ ∂F (x̄, ȳ)(y∗) +N(x̄; Ω).

Then (x̄, ȳ) is a local super minimizer of Problem

minimize F (x), subject to x ∈ Ω.

Theorem 2.5. Let K be a closed convex pointed ordering cone in Y and f : L1([0, 1],Rn) −→ Y
be a W -convex map. Suppose that there is a y∗ ∈ intK+ such that

0 ∈ ∂f(γ̄)(y∗) +N(γ̄;L1([0, 1],Rn)).

Then γ̄ is a local super minimizer of Problem (OP (a)).

Proof. Obviously L1([0, 1],Rn) is a closed and convex set and therefore it is invex with
respect to η which η(x, y) = x−y. Now an appeal to Theorem 2.4 completes the proof. �

3. EXISTENCE OF SOLUTION FOR (OP (0)) AND OPTIMAL VALUE FUNCTION

For Problem (OP (a)) and fixed y0
∗ ∈ K+, the optimal value function ψ : Z −→ R is

defined as:

ψ(a) =

 inf{y0∗(f(γ)) : g(γ) ∈ −W + a} K(a) 6= ∅,

+∞ o.w,

Obviously, if there exists γ0 ∈ K(a) such that ψ(a) = y0
∗(f(γ0)), then γ0 ∈ S(a) and

the converse holds as well. In the following results, we focus on the set of Lagrange
multipliers f(γ) + 〈λ, g(γ)〉, where λ ∈ Z∗ and γ ∈ L1([0, 1], X). We shall show a relation
between subdifferential of the optimal value function for Problem (OP (0)) and the set of
Lagrange multipliers which refines the Corollary 3.7 in [2]. Motivated by an idea in [5],
we consider the following result.

Theorem 3.6. −λ ∈ ∂ψ(0) if and only if
(i) λ ∈W+;
(ii) for all γ ∈ K(a),

ψ(0) ≤ y0∗(f(γ)) + 〈λ, g(γ)〉.

Proof. Let −λ ∈ ∂ψ(0) = {a∗ ∈ Z∗ : 〈a∗, a〉 ≤ ψ(a) − ψ(0) ∀a ∈ Z}. Since ψ(a) =
inf{y0∗(f(γ)) : g(γ) ∈ −W + a} and ψ(0) = inf{y0∗(f(γ)) : g(γ) ∈ −W} for all a ∈ W,
we have

{y0∗(f(γ)) : g(γ) ∈ −W} ⊆ {y0∗(f(γ)) : g(γ) ∈ −W + a}.
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Therefore, ψ(a) ≤ ψ(0). Since −λ ∈ ∂ψ(0), then

〈−λ, a− 0〉 ≤ ψ(a)− ψ(0) ≤ 0.

Therefore we get for all a ∈ W, 〈λ, a〉 ≥ 0 and λ ∈ W+ which completes the proof of part
(i).
For part (ii), suppose that −λ ∈ ∂ψ(0) and 〈−λ, g(γ)〉 ≤ ψ(g(γ))− ψ(0), therefore,

ψ(0) ≤ ψ(g(γ)) + 〈λ, g(γ)〉 ≤ y0∗(f(γ)) + 〈λ, g(γ)〉.

Conversely, let λ ∈ W+ and γ ∈ K(a), then g(γ) ∈ −W + a and 〈λ, g(γ)− a〉 ≤ 0. On the
other hand, from our assumption (ii), we have

ψ(0) ≤ y0
∗(f(γ)) + 〈λ, g(γ)〉

= y0
∗(f(γ)) + 〈λ, g(γ)− a〉+ 〈λ, a〉

≤ y0
∗(f(γ)) + 〈λ, a〉.

By taking the infimum on the left hand side over K(a), we obtain

ψ(0) ≤ y0∗(f(γ)) + 〈λ, a〉,

and
ψ(0) ≤ ψ(a) + 〈λ, a〉.

Thus, −〈λ, a〉 ≤ ψ(a)− ψ(0) and −λ ∈ ∂ψ(0). �

In the following theorem, we obtain a relationship between solutions of Problem (OP (0))
and the set of Lagrange multipliers.

Theorem 3.7. Let (x̄, λ) ∈ X × Z∗ then −λ ∈ ∂ψ(0) and x̄ ∈ S(0), if and only if
(i) λ ∈W+;
(ii) x̄ is a solution of the following problem (I)

min
γ∈K(a)

(y0
∗(f(γ)) + 〈λ, g(γ)〉) (I).

(iii) 〈λ, g(x̄)〉 = 0.

Proof. Let −λ ∈ ∂ψ(0) and x̄ ∈ S(0), then by applying Theorem 3.6, we know λ ∈ W+.
From definition of the subdifferential of ψ and by our assumptions, we have

y0
∗(f(x̄)) = inf

γ∈K(0)
y0
∗(f(γ))

= inf{y0∗(f(γ)) : g(γ) ∈ −W} = ψ(o).

On the other hand,

(3.10) 0 ≤ 〈−λ, g(γ)〉 ≤ ψ(g(γ))− ψ(0).

Since x̄ ∈ K(0), then g(x̄)−g(x̄) = 0 ∈ −W and g(x̄) ∈ g(x̄)−W, so ψ(g(x̄)) ≤ y0∗(f(x̄)) =
ψ(0). From 3.10, 〈λ, g(x̄)〉 = 0 and from Theorem 3.6, for all γ ∈ K(a)

y0
∗(f(x̄)) + 〈λ, g(x̄)〉 = y0

∗(f(x̄))

= ψ(o)

≤ y0
∗(f(γ)) + 〈λ, g(γ)〉.

Conversely, let λ ∈ W+ and x̄ be a solution of Problem (I). If γ ∈ K(0), then g(γ) ∈ −W,
and since λ ∈W+, we have 〈λ, g(γ)〉 ≤ 0. Therefore, by assumption (ii) we have

y0
∗(f(γ)) ≥ y0

∗(f(γ)) + 〈λ, g(γ)〉
≥ y0

∗(f(x̄)) + 〈λ, g(x̄)〉.
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So y0∗(f(γ)) ≥ y0∗(f(x̄)) + 〈λ, g(x̄)〉, and by using our assumption 〈λ, g(x̄)〉 = 0 and

y0
∗(f(γ)) ≥ y0∗(f(x̄)).

Taking the infimum on the right hand side over K(0), we obtain

ψ(0) = inf
γ∈K(0)

y0
∗(f(γ)) = y0

∗(f(x̄)).

Thus x̄ ∈ S(0). Now we show that −λ ∈ ∂ψ(0). If γ ∈ K(a), and by having λ ∈ W+ and
g(γ) ∈ −W + a, we get 〈λ, g(γ)〉 ≤ 〈λ, a〉. On the other hand, for all γ ∈ K(0), we have
g(γ) ∈ −W and by using assumption (ii), we deduce that

ψ(0) ≤ y0∗(f(x̄)) = y0
∗(f(x̄)) + 〈λ, g(x̄)〉

≤ y0
∗(f(γ)) + 〈λ, g(γ)〉

≤ y0
∗(f(γ)) + 〈λ, a〉.

Then,
ψ(0) ≤ y0∗(f(γ)) + 〈λ, a〉.

Taking the infimum over K(a), we obtain

ψ(0) ≤ ψ(a) + 〈λ, a〉.
Therefore, −λ ∈ ∂ψ(0). �

Now we consider the Problem (OP (a)). For this idea, we define the Hamiltonian function
H : [0, 1]× Z∗ −→ R ∪ {±∞} corresponding to Problem (OP (a)) as

H(t, λ) = sup
γ∈Z
{〈λ, g(γ)〉 − y0∗(f(γ))}.

In the following theorem, we will show the existence of a solution of the Problem (P (a))
is equivalent to

H(t, λ) = sup
γ∈Z
{〈λ, g(γ)〉 − y0∗(f(γ))},

and we will obtain a relationship between the subdifferential of the optimal value function
of Problem (P (a)) and the set of Lagrange multipliers. In fact,we obtain a necessary and
sufficient condition for the existence of solution for Problem (P (a)).

Theorem 3.8. If λ ∈ ∂ψ(a) and x̄ ∈ S(a), then
(i) −λ ∈W+;
(ii) λ ∈ N(W,−g(x̄)− a) and

H(t, λ) = y0
∗(f(x̄))− 〈λ, g(x̄)〉.

Conversely, if −λ ∈W+, λ ∈ N(W,−g(x̄) + a) and

H(t, λ) = y0
∗(f(x̄))− 〈λ, g(x̄)〉,

then λ ∈ ∂ψ(a) and x̄ ∈ S(a).

Proof. Suppose that λ ∈ ∂ψ(a) and x̄ ∈ S(a), select b ∈ W, if g(γ) ∈ −W + a then g(γ) ∈
−W + a+ b. Therefore,

{y0∗(f(γ)) : g(γ) ∈ −W + a} ⊆ {y0∗(f(γ)) : g(γ) ∈ −W + a+ b},
and having ψ(a+ b) ≤ ψ(a), then

〈λ, b〉 = 〈λ, b+ a− a〉 ≤ ψ(b+ a)− ψ(a) ≤ 0,

so −λ ∈W+.
Since λ ∈ ∂ψ(a), then

〈λ, b− a〉 ≤ ψ(b)− ψ(a) b ∈ Z.
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On the other hand, x̄ ∈ S(a) i.e. ψ(a) = y0
∗(f(x̄)). Then,

〈λ, g(γ)− g(x̄)〉 = 〈λ, g(γ)− g(x̄)− a+ a〉
≤ ψ(g(γ)− g(x̄) + a)− ψ(a)

≤ y0
∗(f(γ))− y0∗(f(x̄)).

Therefore,
y0
∗(f(x̄))− 〈λ, g(x̄)〉 ≤ y0∗(f(γ))− 〈λ, g(γ)〉,

then H(t, λ) = 〈λ, g(x̄)〉 − y0∗(f(x̄)).
Since g(x̄) ∈ −W + a, then 〈λ, g(x̄)− a〉 ≥ 0. Furthermore, for all b ∈W we have

〈λ, b+ g(x̄) + a〉 ≤ ψ(b+ a)− ψ(g(x̄)) ≤ 0.

Therefore, λ ∈ N(W,−g(x̄)− a).
Conversely, since λ ∈ N(W,−g(x̄) + a) and for all γ ∈ K(a), g(γ) ∈ −W + a then
a− g(γ) ∈W and

(3.11) 〈λ, a− g(γ) + g(x̄)− a〉 ≤ 0.

Thus, 〈λ, g(x̄)− g(γ)〉 ≤ 0. On the other hand, H(t, λ) = 〈λ, g(x̄)〉 − y0∗(f(x̄)), then

y0
∗(f(x̄)) ≤ y0

∗(f(γ))− 〈λ, g(γ)〉+ 〈λ, g(x̄)〉
= y0

∗(f(γ)) + 〈λ, g(x̄)− g(γ)〉
≤ y0

∗(f(γ)).

Hence, x̄ ∈ S(a) and ψ(a) = y0
∗(f(x̄)).

Now we will show λ ∈ ∂ψ(a). Since

H(t, λ) = 〈λ, g(x̄)〉 − y0∗(f(x̄)).

Then for all γ ∈ Z, we have

y0
∗(f(x̄)) = ψ(a) ≤ y0

∗(f(γ)) + 〈λ, g(x̄)− g(γ)〉
= y0

∗(f(γ)) + 〈λ, g(x̄)− g(γ)− b+ b− a+ a〉(3.12)
= y0

∗(f(γ)) + 〈λ, a− b〉+ 〈λ, g(x̄)− g(γ) + b− a〉.
Since λ ∈ N(W,−g(x̄) + a), if γ ∈ K(b), then b− g(γ) ∈W, and

〈λ, g(x̄)− g(γ) + b− a〉 ≤ 0,

from 3.12, we obtain

ψ(a) = y0
∗(f(x̄)) ≤ y0∗(f(γ)) + 〈λ, a− b〉,

then
〈λ, b− a〉 ≤ y0∗(f(γ))− ψ(a).

By taking the infimum over K(b), we obtain

〈λ, b− a〉 ≤ ψ(b)− ψ(a),

then λ ∈ ∂ψ(a). �

The following result is a generalization of Theorem 4.1 in [2].

Corollary 3.1. λ ∈ ∂ψ(0) and x̄ ∈ S(0), if and only if
(i) −λ ∈W+;
(ii) λ ∈ N(W,−g(x̄)) and

H(t, λ) = 〈λ, g(x̄)〉 − y0∗(f(x̄)).

Proof. It suffies to set a = 0 in the Theorem 3.8. �
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