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Efficient solution and value function for non-convex
variational problems

M. DARABI and J. ZAFARANI

ABSTRACT. In this paper, we want to investigate a wide range of non-convex variational problems and obtain
some sufficient and necessary conditions for existence of a feasible solution for these problems. Hence, we define
optimal value function corresponding to these problems and obtain a relationship between subdifferential of the
optimal value function and the set of Lagrange multipliers.

1. INTRODUCTION

Non-convex variational problems have played a crucial role in mathematical econom-
ics. One of the most important subjects in economic observations is to analyze the rela-
tionship between traders and productions. In this paper, our purpose is to find the total
cost of a material that is purchased by a trader. The outline of this paper is as follows: In
this Section, we define the non-convex variational problem and some preliminary defini-
tions and results which will used in the sequel. In Section 2, we obtain some sufficient and
necessary conditions for be a feasible solution for the non-convex variational problem.

In Section 3, we define optimal value function corresponding to the non-convex vari-
ational problem and obtain a relationship between subdifferential of the optimal value
function and the set of Lagrange multipliers.

Let X, Y and Z be Banach spaces, i and W be closed, convex and pointed cones in ¥ and
Z, respectively. Cone K induces a partial ordering on Y, defined so that <y y if and
only if y — 2 € K. We denote the positive polar cone of K by K+ as

Kt ={y*eY*: (y*,y) >0y € K}.

Definition 1.1 (Definition A.10 [8]). Let J be an interval in X, then a function f : J — Y
is Bochner integrable if there exists a sequence of simple functions f,, : / — Y such that
the following two conditions are satisfied

lim f,(t) = f(t), almost everywhere,

n——o0

and

Jim [0 = 1) =
Definition 1.2 (Definition 2.4. [11]). Function f : X — Y is called K-convex, if for all
z1,22 € X and all X € [0, 1]

(@) + (1= V() € FOa + (1= \)y) + K.
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It is called K-concave, if — f is K-convex.

Suppose I' : [0,1] —» 2% is a set-valued mapping such that for all ¢ € [0,1], ['(¢) is a
nonempty and closed set and

Z={ye L*0,1],X): y(t) € T(t) a.e. t € [0,1]}.

Suppose that fo : [0,1] x X — Y and go : [0,1] x X — Z are Bochner integrable
functions. Let us define the maps f : L'([0,1], X) — Y and g : L'([0,1], X) — Z as

1
ﬂv%:A folt, (),

mwz/%wwm%

0

where gy is W-convex in the second argument. We consider the following optimization
problem

nin f (7) (OP(a))
where for all a € Z, we define K(a) = {y € Z: g(v) € =W + a}, clearly if gy is a W-
convex function in the second argument and by the convexity of W, we get the convexity
of K(a). We denote the solution set of Problem (OP(a)) by S(a). The Problem (OP(a))
is a generalization of the Problem (1.1) in [2], the Problem (P) in [1], the Problem (P) in
[12] and the Problem (P) in [14] . Hence, the amount of the material j to be purchased by
the trader t is denoted by ~; (¢). Therefore, the Problem (OP(a)) means the total cost of set
K (a) that consists of materials . The existence result due to Bazan et al. [2] requires
(i) the lower semi-continuity of fo(¢,.);
(ii) continuity for a.e. ¢t € [0,1] of go(¢,.);
(iii) measurablity of go (¢, .);
(iv) fo is a Borel function;
(v) fo(-,v(.)) and go(.,7(.)) are member of L'([0, 1], R™).
Our goal is to obtain a solution for Problem (OP(a)) in Banach spaces where the functions
fo(.,7(.)) and go(.,7(.)) are Bochner integrable. For undefined notions we refer to [7].

Definition 1.3. A Set-valued operator 7' : X — 2V is called:
(a) closed if Gr(T) = {(z,y) € X xY :y € T(x),x € X} is a closed subset of X x Y.
(b) intersectionally closed on A C X, if;

m cd(T(z)) =l ﬂ T(z)).
T€A z€A
(c) topological pseudomonotone, if for all a,b € Y,
cl( ﬂ T(u)) Nla,b] = ﬂ T(u) N Ja,b],
u€la,b) u€[a,b)

where [a,b] ={y €Y : a <g y <k b}.
(d) KKM map, if
convH C U T(x), for each H € (X),
reH

where we denote by (X)) the family of all nonempty finite subsets of the set X.
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Definition 1.4 (Definition 3.6.1 in [6]). Let X be a Banach space and A be a nonempty
subset of X. The Normal cone of A, N(A,a) : X — 2% is defined as

{veX*: (v,x—a)<0Vx e A} ifac A,
N(A,a) =

0 o.w,

Theorem 1.1 (Theorem 2 in [9]). Let K be a nonempty and convex subset of a Hausdorff topo-
logical vector space X and T : K — 2%. Suppose that the following conditions hold:

(A1) T is a KKM map;

(A2) for each H € (K), the set-valued map T N conv H is intersectionally closed on convH;
(A3) T is topological pseudomonotone;

(A4) there exist a nonempty subset B of K and a nonempty compact subset D of K such that
conv(HUB) is compact for any H € (K), and for each y € K\ D, there exists x € conv(BU{y})
such that y & T (x).

Then, (M, cx T(x) # 0.

2. EXISTENCE OF SOLUTION FOR PROBLEM (OP(a))

In this section, we consider sufficient conditions for the existence of a solution of Pro-
blem (OP(a)). In the following, we obtain an existence result of Problem (OP(a)) by using
a fixed point theorem.

Theorem 2.2. Suppose the set-valued map T : K (a) N (L*([0,1], X)) — 2K@n(L"([0.1].X))
defined as
T(y) ={a € L'([0,1], X)N K(a) : f(7) — f(a) € K}.

Also consider the following conditions hold:

(a) K C Y isa pointed cone (not necessary convex) such thatY = K U —K;

(b) fo is a lower semi continuous map and K-convex in the second arqument;

(c) go is a lower semi continuous map and W-convex in the second argument;

(d) there exist a nonempty subset B of (K (a) N L'([0,1], X)) and a nonempty compact subset
D of (K(a) N L*([0,1], X)) such that conv(H U B) is compact for any H € (K), and for each
a € K\ D there exists v € conv(B U {a}) such that o & T(7).

Then Problem (OP(a)) has a solution.

Proof. We will show that 7" is a KKM map. Suppose on the contrary that 7" is not a KKM
map, then there exists H = {v1, 72, ..., 7o} C (K(a) N L*([0,1], X)), t; > 0,i =1,2,...,n
with 37 ¢, = 1such thaty = Y | ;7 & U, T'(7:). Thus for each i = 1,2,...,n, we
have v & T'(v;), therefore f(v;) — f(v) € K. SinceY = K U —K, then f(y) — f(v:) € K.
For all yo* € K*1 and for all i

@1) / o (ot 1(8)) — Folt,3a(6)))dt = 9o ( / folt, A()dt — / folt 7(£))dt) > 0.
Therefore

(2.2) Yo" (fo(t,7(t)) — fo(t,7i(t))) >0 a.e. t€[0,1].
Since for all i € {1,2,...,n}, t; > 0, then for almost everywhere ¢ € [0, 1] we have

(2.3)  yo (folt, (1) — Biqtifo(t, (1)) = Bitqti(yo™ (fo(t,7(t)) — fo(t,7i(t)))) >0,
on the other hand, fj is K-convex in the second argument,

(24) Siqtifo(t,vi(t) — fo(t,v(t) = Bisiti fo(t, vi(t)) — folt, Xis tivi(t)) € K,
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then yo™ (X114 fo(¢,7i(t)) — fo(t,7(t))) > 0so,

(2.5) Yo" (fo(t,7(t)) — Ziytifo(t, 7i(t))) <0,
which contradicts (2.3), thus T' is a KKM map and therefore,
fo(t, %) — fo(t,7(t) € K, a.e. tel0,1].

Now we show that for each H € (A), the set-valued map T' N conv(H) is intersectionally
closed on conv(H); i.e.,

(2.6) ﬂ c(T(vy) NconvH) = cl( m (T'(y) NconvH)).

yEconvH yEconvH
The inclusion D in (2.6), is always true. Conversely; let a € (¢ opy s l(T(7) N convH),
then for all v € convH, we have a € cl(T(y) N convH) and there exists a sequence («;,) C
T(y) NconvH such that «;, — «. Since «,, € T(7) and fj is lower semi continuous, then
a € T(v).So for all v € convH, we have « € T(y) NconvH and

a€ ﬂ (T'(y) NconvH) C cl( ﬂ (T'(y) NconvH)).

yEconvH yEconvH

Here we show that T is topological pseudomonotone. For fixed a,b € X, obviously:

M @nfab)=( ) TG)nabl Sel () T())Nlab].
v€Ela,b] v€Ela,b] v€Ela,b]
Conversely, let o € cl((, (4, T(7)) N [a, b], then there exists a sequence
(an) € (Myejap (1) N [a, b] such that e, — a. Since o, € T'(v) and fj is lower semi
continuous in the second argument, then for all v € [a,b] we have o € T'(7). So for all
v € [a,b], we have a € T(y) N [a, b] and therefore,

ae () (T()Nab).

~v€E|a,b]

By Theorem 1.1 we have [, 4, T'(7) # 0, let 7o be in this intersection, then 7 is a solution
of Problem (OP(a)). O

Let v € L'(]0,1], X). As a reminder, if there exists a neighbourhood U of v, such that
f(y) = f(w) € KVy e UN K(a),

then 7 is a local efficient solution of Problem (OP(a)). Hence every solution of Problem
(OP(a)) is said to be a global efficient solution.

Bazan et al. [2] showed that if f; and gy are measurable, lower semi-continuous and
continuous, respectively and W is a closed convex cone, then 0 € int[g(Cy) + W] and
each local efficient solution for (OP(a)) is a global efficient solution. Here, we shall obtain
by different assumptions that each local efficient solution of (OP(a)) is a global efficient
solution.

Theorem 2.3. Let fi be a lower semi continuous and K-convex function in the second argument
and go be W -convex function in the second argument. Then each local efficient solution of (OP(a))
is a global efficient solution.

Proof. Let vy € L'([0,1], X) N K(a) be a local efficient solution, then there exists a neig-
hbourhood U of 7 such that

f() = f(o) e K Yy € UNK(a),
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therefore,
1 1
/0 folt,(8))dt — / folt,70(t))dt € K vy € UN K (a).

Soforall y* € K+
1

1
y*(/o (fo(t,v(t)) — fo(t,vo(t)))dt) = / y* (fo(t,7(t)) = fo(t,10(t)))dt > 0Vy € UN K(a).

0
Therefore, y* (fo(t,7(t)) — fo(t,v0(t))) > 0 almost everywhere ¢ € [0,1] and
(2.7) fot,v(t)) — fo(t,v0(t)) € K a.e. t € [0,1] Vy e UNK(a).

Let o € L'([0,1],X) N K(a) be given. By W-convexity of go for all » €]0, 1, we have
Yo+7(a—") € K(a). On the other hand, there exists ry € (0, 1) such that for all » € [0, ro],
we have vy + r(a — ) € U N K(a) and from (2.7), we obtain

(2.8) fot, (0 + (a0 —7))(#) — fot,70(t) € K a.e.t €0,1].

On the other hand, f; is K-convex in the second argument, then

—fo(t, (vo +7(a—10))®)) + (1 = 1) fo(t,10(t)) + rfolt,at)) € K,
and
=7 folt, (o + (@ —70)) (1) + (r = 1) fo(t, (vo + (o = 70))(2))

+(1 =7)fo(t,v0(t)) +rfo(t,at)) € K,
therefore
r(fo(t,a(t)) = fo(t, (vo + (o —70))(?)))
+(r = 1) (fo(t, (vo + (= 70))(t)) — fo(t,10(t))) € K.

From (2.8) and the above relation, we have

(2.9) Jo(t,a(t)) = folt, (o + r(a —))(t) € K a.e.t €0,1].
by summing (2.8) and (2.9), we obtain

folt,a(t)) — fo(t,v(t)) € K a.e. t €]0,1],
and for all y* € K+, we obtain y*(fo(¢, a(t)) — fo(t,v0(t))) > 0, therefore
fo (fo(t,a(t)) = fo(t,yo(t)))dt =

1

y (| fo(t, a(t)) = fol(t,r0(8))dt) =y (f () — f(70)) = 0.

0
So f(a) — f(v) € K for almost everywhere ¢ € [0, 1]. O

Here, we consider sufficient conditions for the existence of a feasible solution of Pro-
blem (OP(a)).
Definition 2.5. Letn: X x X — X.

e [15] A subset 2 of X is said to be invex with respect to 7 if for any z,y € Q and
A€0,1], y+ Az, y) € Q.

e [10] Let 2 C X be an invex set with respect to n and F : @ — 2. F is said to be
K-preinvex with respect to 7 on Q if for any z1,z2 € Q and A € [0, 1], one has

AF(z1) + (1 = AN F(x2) C F(z2 + Mn(x1,22)) + K.
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Definition 2.6. [5] Given a subset A of a Banach space Y which is ordered by a closed and
convex cone K C Y, we say that a € A is a super minimal point of A (a € SE(4; K)) if
there is a number M > 0 such that

cllcone(A —a)|N(By — K) C MBy,
where By denotes the closed unit ball of Y. Let (Z, ) € grF with Z € Q, then (Z,7) is a
local super minimmizer of problem
minimize F'(z), subject to z € Q,
if there is a neighbourhood U of Z such that y € SE(F(2NU); K).

Obviously every local super efficient solution of the above problem is a local efficient
solution.

Theorem 2.4. [13] Let 2 be a closed and invex set, K be a closed convex pointed ordering cone in
Y and F : Q — 2Y be a K-preinvex map with respect to n) which is continuous with respect to
the second argument. Suppose that (Z,y) € GrF and there is a y* € intK™ such that

0 € 0F(z,9)(y") + N(7; ).
Then (Z,§) is a local super minimizer of Problem
minimize F'(z), subject to x € Q.

Theorem 2.5. Let K be a closed convex pointed ordering cone in' Y and f : L*([0,1],R") — Y
be a W-convex map. Suppose that there is a y* € int K" such that

0€df(¥)(y") + N (% L'([0,1],R™)).
Then 7 is a local super minimizer of Problem (OP(a)).

Proof. Obviously L'([0,1],R") is a closed and convex set and therefore it is invex with
respect to n which n(z, y) = x —y. Now an appeal to Theorem 2.4 completes the proof. O

3. EXISTENCE OF SOLUTION FOR (OP(0)) AND OPTIMAL VALUE FUNCTION

For Problem (OP(a)) and fixed yo* € K+, the optimal value function ¢ : Z — R is
defined as:

» { inf{yo"(f(7)) - 9() € =W +a}  K(a) #0,
¥(a) =

+00 oW,

Obviously, if there exists g € K(a) such that ¥(a) = yo*(f(7)), then v € S(a) and
the converse holds as well. In the following results, we focus on the set of Lagrange
multipliers f(v) + (\, g(7)), where A € Z* and v € L'([0, 1], X). We shall show a relation
between subdifferential of the optimal value function for Problem (OP(0)) and the set of
Lagrange multipliers which refines the Corollary 3.7 in [2]. Motivated by an idea in [5],
we consider the following result.

Theorem 3.6. —\ € 90v(0) if and only if
@HDrxewt;
(ii) for all v € K (a),

$(0) < wo* (F (7)) + (A 9())-
Proof. Let —\ € 0y(0) = {a* € Z* : (a*,a) < ¥(a) — ¥(0) Va € Z}. Since ¢(a) =
nf{yo" (f(7)) : 9() € —W +a} and ¥(0) = inf{y* (f()) : 9() € W} foralla € W,

we have
{wo" (f(7) : g(v) € =W} CH{wo"(f(7)) : 9(v) € =W +a}.
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Therefore, ¢(a) < 1(0). Since —\ € 9¥(0), then
(=X a—0) <¢(a) —4(0) <0.

Therefore we get forall a € W, (\,a) > 0and A € W+ which completes the proof of part
().
For part (ii), suppose that —\ € 99 (0) and (=X, g()) < ¥(g(7)) — ¥(0), therefore,

$(0) <¢P(g(v)) + A 9(7) < wo™ (F(7)) + (A 9(9))-
Conversely, let A € Wt and v € K(a), then g(y) € =W + a and (\, g(y) — a) < 0. On the
other hand, from our assumption (ii), we have

$(0) < w"(f(1) +ANg(v)

yO*(f(/Y)) + <)‘ag(7> - CL> + <)‘7a>
Yo (f(7) + A a).

By taking the infimum on the left hand side over K (a), we obtain

$(0) <wo* (f(7)) + (A a),

IA

and
$(0) < ¢la) + (A, a).
Thus, —(\, a) < ¥(a) —1¥(0) and —X € 9¢(0). O

In the following theorem, we obtain a relationship between solutions of Problem (OP(0))
and the set of Lagrange multipliers.

Theorem 3.7. Let (Z,\) € X x Z* then —\ € 0y(0) and & € S(0), if and only if
HDIxeWt;
(ii) Z is a solution of the following problem (I)

Wg;;?a)(yo*(f(v)) + N\ g()) (D).

(iii) (X, g(Z)) = 0.
Proof. Let —\ € 9¢(0) and z € S(0), then by applying Theorem 3.6, we know A\ € WT.

From definition of the subdifferential of ¢) and by our assumptions, we have

v (f(Z)) = inf w*(f(7))

YEK(0)

= inf{yo"(f(7)): g(7) € =W} =2(0).

On the other hand,

(3.10) 0< (=X, 9(7) < ¥(g(7) —(0).
Since Z € K(0), then g(Z)—¢g(Z) =0 € —W and ¢g(Z) € g(Z) —W, s0 ¥(g(Z)) < yo™(f(
1(0). From 3.10, (\, g(Z)) = 0 and from Theorem 3.6, for all v € K(a)

v (f(2) + A g(@) = w"(f(2))

= (o)
Yo" (F () + A g(7))-
Conversely, let A € W+ and z be a solution of Problem (1). If v € K(0), then g(v) € —W,
and since A € W, we have (), g(v)) < 0. Therefore, by assumption (ii) we have
W) 2w )+ Aa)

Yo" (f(7)) + (A 9(7)).

B
I

IN

(AVARVS
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So yo*(f(7)) = yo* (f(Z)) + (A, 9(Z)), and by using our assumption (A, g(Z)) = 0 and
yo" (f(7)) = wo™ (f (%))

Taking the infimum on the right hand side over K(0), we obtain

Y(0) = inf v (f(7)) =y"(f(7))

Y€K (0)
Thus z € S(0). Now we show that —\ € 9¢(0). If v € K(a), and by having A € W and
g(y) € =W + a, we get (X, g(7)) < (A, a). On the other hand, for all v € K(0), we have
g(v) € =W and by using assumption (ii), we deduce that
$(0) < o™ (f(2)) o™ (f(7) + (A, (7))
Yo" (F(M) + A g(7)
yo" (f(7) + (A a).

IAIA

Then,
$(0) <y (f(7) + (A a).
Taking the infimum over K (a), we obtain
$(0) < ¢(a) + (A a).
Therefore, —\ € 9¢(0). O

Now we consider the Problem (O P(a)). For this idea, we define the Hamiltonian function
H :[0,1] x Z* — R U {£o0} corresponding to Problem (OP(a)) as

H(t,\) = ilellg{@,g(v» — 5" (f(7)}-

In the following theorem, we will show the existence of a solution of the Problem (P(a))
is equivalent to

H(t,\) = ilég){(&g(v)} — 90" (f(7)},

and we will obtain a relationship between the subdifferential of the optimal value function
of Problem (P(a)) and the set of Lagrange multipliers. In fact,we obtain a necessary and
sufficient condition for the existence of solution for Problem (P(a)).

Theorem 3.8. If A € Oy (a) and & € S(a), then
(i) =Ae Wt
(i) \ € NW, —g(Z) — a) and

then A € 0Y(a) and T € S(a).

Proof. Suppose that A € 9¢(a) and T € S(a), select b € W, if g(y) € =W + a then g(v) €
—W + a + b. Therefore,

{wo™(f(0) = 9(v) € =W +a} S{y"(f(7) : 9(v) € =W +a+b},
and having v(a + b) < ¢(a), then
(A b) = (\b+a—a) <P(b+a)—1p(a) <0,
so—-AeWT.
Since A € 9y (a), then
(A b—a) < () —b(a) b e Z.
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On the other hand, z € S(a) i.e. ¥(a) = yo*(f(Z)). Then,

(A g(y) —g(@)) Ag(r) —g(@) —a+ta)
P(9(v) — 9(%) + a) —P(a)
Yo" (f (7)) — o™ (f(2)).

IAIA

Therefore,

Yo" (f(2))
then H(t, A) = (A, g(z)) — yo™ (/(
Since g(Z) € —W + a, then (), g(

(A b+ g(
Therefore, A € N(W, —g(Z) — a).
Conversely, since A\ € N(W,—g(Z) + a) and for all v € K(a), g(y) € =W + a then
a—g(y) € Wand
(3.11) (\a—g(7)+g(z) — a) <0.
Thus, (A, g(Z) — g()) < 0. On the other hand, H(t, A) = (A, g(Z)) — yo™(f(Z)), then

Y (@) < yo (f() =\ (7)>+</\ 9(z )>
= 2" (f(1) + N g(@) —9(7)
<y (f(v)-
Hence, z € S(a) and ¢/(a )—yo (f(2)).
Now we will show A € 9(a). Since

H(t,A) = (A 9(2)) = yo™ (f(7))-

A g(@) <y (f(7) — (A g(7),
))-

) — a) > 0. Furthermore, for all b € W we have

) +a) <p(b+a) —¥(g(z) <0.

ISR

8l

Then for all ¥ € Z, we have

Yo" (f(Z2) =la) < yo (f(7)+ N g(@) —g(7))
(3.12) = v (f(v)+Ng@) —9(y) —b+b—a+a)
= 9" (f(v) +Na—b)+(\g(@) —g(y) +b—a).

Since A € N(W, —g(z) + a), if v € K(b), then b — g(v) € W, and

(A g(@) —g(7) +b—a) <0,
from 3.12, we obtain

P(a) = yo™(f(Z)) < o™ (f(7)) + (A a =),

then

(A b—a) <y (f(7)) — ¥(a).
By taking the infimum over K (b), we obtain

(A, b—a) <2(b) —¥(a),

then \ € 9y (a). O

The following result is a generalization of Theorem 4.1 in [2].

Corollary 3.1. A € 0¢(0) and Z € S(0), if and only if
(i) =xeWwt;
(i) \ € N(W, —g(z)) and
H(t,A) = (A 9(2)) = yo™ (£ (7))

Proof. It suffies to set a = 0 in the Theorem 3.8. O
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