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The penalty method for generalized mixed
variational-hemivariational inequality problems

SHIH-SEN CHANG1, SALAHUDDIN2, A. A. H. AHMADINI2, L. WANG3 and G. WANG3

ABSTRACT. It is well known that many popular variational, quasi-variational, hemivariational inequalities
and variational inclusions involving constraints in a Banach space to convert a fixed point problems for finding
the solution of such problems. This paper is to infuse a sequence of penalized problems without constraints and
we show under the few reasonable assumptions to the Kuratowski upper limit with respect to the weak topology
of the sets of solutions to penalized problems is nonempty. As an application, we explore two complicated
partial differential systems of elliptic mixed boundary value problem involving a nonlinear nonhomogeneous
differential operator with an obstacle effect, and a nonlinear elastic contact problem in mechanics with unilateral
constraints.

1. INTRODUCTION

The theory of variational inequality problem was first initiated by Hartman and Stam-
pacchia in 1966, see [10] for modelling problems arising from mechanics. To study the
regularity problem for partial differential equations, Kinderlehrer and Stampacchia [11]
studied a generalization of the Lax-Milgram theorem and called all problems of such type
the variational inequality problems. The variational inequality problem is also known
to have numerous implications in diverse areas such as, physics, science and technol-
ogy, economics, optimal control theory, mathematical programming and others numer-
ous fields. This theory provides a simple, natural and unified framework for a general
treatment of various mathematical problems like the minimization problems, network
equilibrium problems, complementarity problems.
Panagiotopoulos demonstrated the hemivariational inequalities as the variational formu-
lation of important classes of unilateral and inequality problems in mechanical sciences,
see [22, 23, 20]. The notion of hemivariational inequality is a generalization of variational
inequality for a case where the function involved in nonconvex and nonsmooth. The
hemivariational inequalities is based on the concept of Clarke’s generalized gradient for
locally Lipschitz functions, see [5, 6, 7, 9, 16, 17, 21, 24].

In the past few years, several types of variational and hemivariational inequalities have
been developed and the study of variational-hemivariational inequalities has emerged to-
day as a new, noble, innovative and interesting branch of applied and industrial mathe-
matics, see [2, 18, 19, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36].
The problem of generalized mixed variational-hemivariational inequality problem demon-
strated in this work as follows:
Let (V, ∥·∥V) and (X, ∥·∥X) be reflexive and separable Banach spaces, and ℧ be a nonempty
closed convex subset of V . V∗ denotes the dual space of V and ⟨·, ·⟩ be the duality pair-
ing between V∗ and V . Given the mappings N : V × V → V∗, J : X → R, φ :
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V → R ∪ {+∞}, and an element f ∈ V∗, we consider the following generalized mixed
variational-hemivariational inequality problem with constraints for finding x ∈ ℧ such
that

(1.1) ⟨N (x, x)− f, y − x⟩+ φ(y)− φ(x) + J0(ςx; ςy − ςx) ≥ 0, ∀y ∈ ℧,

where J0(ς, x; y) stands for the generalized Clarke directional derivative of J(ς, ·) at a
point x ∈ X in the direction y ∈ X.
The aim of this paper is to provide an existence result for (1.1) by using the assertion of
relaxed monotonicity of N with respect to the first variable and relaxed Lipschitz conti-
nuity of the second variable. Latter on, we intend to discuss penalized problems without
constraints as follows:

(i) the Kuratowski upper limit with respect to the weak topology of the sets of solu-
tions to penalized problems, ρ− lim supn→∞ Pn is nonempty and

ρ− lim sup
n→∞

Pn ⊂ P

where Pn and P denotes the sets of solutions to penalized problem and (1.1), re-
spectively.

(ii) ρ− lim supn→∞ Pn = ϱ− lim supn→∞ Pn ⊂ P, if N satisfies (P+)-property.
(iii) If N satisfies (P+)-property then for each x ∈ ϱ − lim supn→∞ Pn and sequence

{x̃n} with x̃n ∈ argminxn∈Pn
∥xn −x∥V for each n ∈ N, there exists a subsequence

of {x̃n} converging strongly to x.
The last objective is to give some application, the first problem is an elliptic mixed bound-
ary value problem involving a nonlinear nonhomogeneous differential operator with an
obstacle effect which originates from the semipermeability phenomena. The second is an
elastic contact problem in which the constitutive law is described by a convex subdifferen-
tial inclusion, while the contact boundary conditions involve non monotone constraints
and a reformulated by a generalized Signorini contact condition governed by a Clarke
subdifferential of a locally Lipschitz function.

2. PRELIMINARIES

Throughout the text ” ⇀ ” and ” → ” stand for the weak and the strong convergence,
respectively.

Definition 2.1. A single-valued mapping A : V → V∗ has (P+)-property, if any sequence
{xn} weakly convergent to x with

lim sup
n→∞

⟨A (xn), xn − x⟩ ≤ 0

strongly converges to x.

Definition 2.2. Let (X, ζ) be a Hausdorff topological space and {An} ⊂ 2X for n ≥ 1. We
define

ζ − lim
n→∞

inf An =
{
x ∈ X |x = ζ − lim

n→∞
xn, xn ∈ An ∀ n ≥ 1

}
,

and

ζ − lim
n→∞

supAn =
{
x ∈ X |x = ζ − lim

κ→∞
xnκ

, xnκ
∈ Anκ

, n1 < n2 < · · · < nnκ
< · · ·

}
.

The set ζ − limn→∞ inf An is called the ζ-Kuratowski lower limit of the sets An and
ζ − limn→∞ supAn is called the ζ-Kuratowski upper limit of the sets An.
We note that if A = ζ − limn→∞ inf An = ζ − limn→∞ supAn, then A is called ζ-
Kuratowski limit of the sets An.
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Definition 2.3. [5] A function J : V → R is called locally Lipschitz at x ∈ V if there exist
a neighborhood C(x) of x in V and a constant ℓx > 0 such that

|J(z)− J(y)| ≤ ℓx∥z − y∥V , ∀ z, y ∈ C(x).

Definition 2.4. [5] Given a locally Lipschitz function J : V → R, we denote by J0(x; y)
the generalized directional derivative of J at x ∈ V in the direction y ∈ V defined by

J0(x; y) = lim sup
λ→0+,z→x

J(z + λy)− J(z)

λ
.

The generalized gradient of J : V → R at x ∈ V is defined by

∂J(x) = {ξ ∈ V∗|J0(x; y) ≥ ⟨ξ, y⟩, ∀ y ∈ V}.

Proposition 2.1. [16] Let J : V → R be the locally Lipschitz function, then
(i) for every x ∈ V, the function V ∋ y → J0(x; y) ∈ R is positively homogeneous and

subadditive, i.e.,

J0(x; ςy) = ςJ0(x; y), ∀ ς ≥ 0, y ∈ V
and

J0(x; y1 + y2) ≤ J0(x; y1) + J0(x; y2), ∀y1, y2 ∈ V.
(ii) for every y ∈ V, it holds

J0(x; y) = max{⟨ξ, y⟩ | ξ ∈ ∂J(x)}.
(iii) the function V × V ∋ (x, y) → J0(x; y) ∈ R is upper semicontinuous.
(iv) the graph of generalized gradient ∂J : V → 2V

∗
is closed in V × (ρ∗ − V∗) topology, i.e.,

if {xn} ⊂ V and {ξn} ⊂ V∗ are sequences such that

ξn ∈ ∂J(xn)

and
xn → x, ξn → ξ

weakly∗ in V∗, then
ξ ∈ ∂J(x),

where (ρ∗ − V∗) denotes the space V equipped with weak∗ topology.

Definition 2.5. [32] Let X be a Hausdorff topological vector space and let ℧ ⊆ X. The
application G : ℧ ⇒ X is called a KKM application if for every finite number of elements
x1, x2, · · · , xn ∈ ℧ one has

co{x1, x2, · · · , xn} ⊆
n⋃

i=1

G (xi).

Lemma 2.1. [32] Let X be a Hausdorff topological vector space, ℧ ⊆ X and . The application
G : ℧ ⇒ X be a KKM application. If G (x) is closed for every x ∈ ℧, and there exists x0 ∈ ℧ such
that G (x0) is compact, then ⋂

x∈℧
G (x) ̸= ∅.

Proposition 2.2. [3] Assume that φ : X → (−∞,+∞] is convex, lower semi continuous and
φ ̸≡ +∞. Then φ∗ ̸≡ +∞, and in particular, φ is bounded below by an affine continuous function.

Definition 2.6. [1] Let N : V × V → V∗ be a mapping. Then N is said to be
(i) monotone, if

⟨N (y, y)− N (x, x), y − x⟩ ≥ 0, ∀x, y ∈ V.
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(ii) strongly monotone, if there exist c > 0 and r > 1 such that for all x, y ∈ V,

⟨N (y, y)− N (x, x), y − x⟩ ≥ c∥x− y∥r.

(iii) relaxed monotone with respect to first variable of N if there exist c > 0 and r > 1
such that for all x, y ∈ V,

⟨N (y, y)− N (x, x), y − x⟩ ≥ −c∥x− y∥r.

(iv) relaxed Lipschitz continuous with respect to the second variable if there exist β ≥
0 and r > 1 such that for all x, y ∈ N ,

⟨N (y, y)− N (x, x), y − x⟩ ≤ −β∥x− y∥r.

3. MAIN RESULTS

The goal of this section is to establish an existence and convergence result for a gener-
alized penalty method utilized to the generalized mixed variational-hemivariational in-
equality problem (1.1). First of all we define the following assertions.

H(φ): φ : V → R ∪ {+∞} is a proper, convex and lower-semicontinuous function.
H(ς): ς : V → X is a linear and continuous operator.
H(J): J : X → R is a locally Lipschitz function.
H(T ): T : V → R is a function such that

T (0V) ≤ 0

and

(i) lim supt→0+
T (ty)

t
≥ 0,∀y ∈ V.

(ii) for all {yn} ⊂ V with yn ⇀ y ∈ V , we have

T (y) ≤ lim sup
n→∞

T (yn).

H(N ): N : V × V → V∗ is an operator such that

(i) the inequality

lim inf
t→0+

⟨N (ty + (1− t)x, x), y − x⟩ ≤ ⟨N (x, x), y − x⟩

holds for all x, y ∈ ℧, similarly, we have also

lim inf
t→0+

⟨N (x, ty + (1− t)x), y − x⟩ ≤ ⟨N (x, x), y − x⟩.

(ii) the set-valued map
x→ N (x, x) + ς∗∂J(ςx)

is relaxed N -monotone, i.e., the inequality

⟨N (x, x)− N (y, y), u− v⟩+ ⟨ξx − ξy, ς(x− y)⟩X∗×X ≥ T (x− y)

holds for all ξx ∈ ∂J(ςx), ξy ∈ ∂J(ςy) and all x, y ∈ V.
(iii) there exists y0 ∈ ℧ ∩D(φ) such that

(3.2) lim inf
x∈V,

∥x∥V→+∞

⟨N (x, x), x− y0⟩+ inf
ξx∈∂J(ςx)

⟨ξx, ς(x− y0)⟩X∗×X

∥x∥V
= +∞.
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Remark 3.1. Condition H(N )(iii) represents a generalized coercivity condition for the
map

x→ N (x, x) + ς∗∂J(ςx).

In particular, if N : V × V → V∗ is such that

⟨N (x, x), x⟩ ≥ r(∥x∥V)∥x∥V ,∀x ∈ V,

and
x→ ∂J(x)

satisfies the growth condition

∥∂J(x)∥X∗ ≤ ℓ(∥x∥X)∥x∥X,∀x ∈ X,

where r : R→ R and ℓ : R+ → R+ are such that

r(s) → ∞ as s→ ∞,

and
ℓ(s∥ς∥)
r(s)

→ 0 as s→ ∞

or
ℓ(s∥ς∥)∥ς∥ < r(s),∀ s ≥ s0 with some s0 > 0,

then the condition H(N )(iii) holds.

We now provide the following general existence theorem for (1.1).

Theorem 3.1. Assume that H(N ), H(φ), H(ς), H(T ) and H(J) hold. Then, we have
(i) for each f ∈ V∗, x ∈ ℧ is a solution to (1.1) if and only if it solves the following Minty

variational-hemivariational inequality problem for finding x ∈ ℧ such that

⟨N (y, y)− f, y − x⟩+ J0(ςy; ςy − ςx) + φ(y)− φ(x) ≥ T (y − x) ∀y ∈ ℧.

(ii) the set of solutions to (1.1), denoted by P, is nonempty, bounded and weakly closed.
(iii) if T : V → R is a convex function, then P is convex.
(iv) if T (y) > 0 for all y ∈ V \ {0V}, then (1.1) has a unique solution.

Proof. (i) The part of the proof is standard, and is omitted here.
(ii) It is follows the results of [12], Lemma 3.3 and Theorem 3.4 or [13], Lemma 3.1 and

Theorem 3.2. Therefore, we omit the specifics.
First, we show the nonemptiness of the solution set P. Assume that ℧ is a bounded
set and consider a set-valued mapping G : ℧ → 2℧ defined by

G(y) =
{
x ∈ ℧|⟨N (y, y)− f, y − x⟩
+ inf

ξy∈∂J(ςy)
⟨ξy, ς(y − x)⟩X∗×X + φ(y)− φ(x) ≥ T (y − x)

}
,∀y ∈ ℧.

From the assumptions of H(φ) and H(T ) we see that G(y) is nonempty and weakly
closed for each y ∈ ℧. Next, we distinguish two cases:
(a) G is a KKM-map, and
(b) G is not a KKM-map.

If (a) is true, then by the KKM principle, we have⋂
y∈℧

G(y) ̸= ∅.

Therefore, invoking assertion (i) we deduce that P is nonempty.
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Furthermore, if (b) true, then we are able to defined a finite set {y1, y2, · · · , yN}

⊂ ℧ and x0 ∈ ℧ with x0 =
N∑
i=1

tiyi, ti ∈ [0, 1] for all i = 1, 2, · · · , N and
N∑
i=1

ti = 1,

such that

x0 ̸∈
N⋃
i=1

G(yi).

Hence,

⟨N (yi, yi), yi − x0⟩+ inf
ξi∈∂J(ςyi)

⟨ξi, ς(yi − x0)⟩X∗×X + φ(yi)− φ(x0) < ⟨f, yi − x0⟩

(3.3) +T (yi − x0), for all i = 1, 2, · · · , N.

We now assert that there exists a neighborhood O of x0 such that

⟨N (yi, yi), yi − y⟩+ inf
ξi∈∂J(ςyi)

⟨ξi, ς(yi − y)⟩X∗×X + φ(yi)− φ(y) < ⟨f, yi − y⟩

(3.4) +T (yi − y), for all y ∈ O ∩ ℧ and i = 1, 2, · · · , N.

By contrary we suppose there exist j0 ∈ {1, 2, · · · , N} and a sequence {xn} with

xn → x0 as n→ ∞

such that

⟨N (yj0 , yj0), yj0 − xn⟩+ ⟨ξj0 , ς(yj0 − xn)⟩X∗×X + φ(yj0)− φ(xn) ≥ ⟨f, yj0 − xn⟩
+ T (yj0 − xn), for all ξj0 ∈ ∂J(ςyj0) and all n ∈ N.

Passing to the upper limit, as n → ∞, and using the hypothesis H(T )(ii), we
obtain

⟨N (yj0 , yj0), yj0 − x0⟩+ ⟨ξj0 , ς(yj0 − x0)⟩X∗×X + φ(yj0)− φ(x0) ≥ ⟨f, yj0 − x0⟩
+ T (yj0 − x0), for all ξj0 ∈ ∂J(ςyj0).

This results a contradiction with (3.3), therefore the assertion (3.4) is valid.
By virtue of (3.4) and the monotonicity of

x→ N (x, x) + ς∗∂J(ςx),

one has

⟨N (y, y), y − yi⟩+ ⟨ξy, ς(y − yi)⟩X∗×X + φ(y)− φ(yi)

≥ ⟨N (yi, yi), y − yi⟩+ ⟨ξi, ς(y − yi)⟩X∗×X + φ(y)− φ(yi) + T (yi − y)

≥ ⟨f, y − yi⟩ − T (yi − y) + T (yi − y)

= ⟨f, y − yi⟩ ∀ ξy ∈ ∂J(ςy), ξi ∈ ∂J(ςyi), all y ∈ O ∩ ℧ and all i = 1, 2, · · · , N.

By a direct calculation, we have

⟨N (y, y)− f, y − x0⟩+ ⟨ξy, ς(y − x0)⟩X∗×X + φ(y)− φ(x0) ≥ 0, ∀ ξy ∈ ∂J(ςy),

and all y ∈ O ∩ ℧.

Let z ∈ ℧ be arbitrary and x0 ∈ int(O), so we are able to find t ∈ (0, 1) small
enough such that

yt = tz + (1− t)x0 ∈ O ∩ ℧.
Inserting y = yt into the above inequality, a simple calculation gives

⟨N (x0, x0)− f, y − x0⟩+ J0(ςx0, ςy − ςx0) + φ(y)− φ(x0) ≥ 0, ∀ y ∈ ℧,
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that is
x0 ∈ P ̸= ∅.

Further, we consider the situation that ℧ is unbounded. The above analysis indi-
cates that for each r > 0, there exists xr ∈ ℧r such that

(3.5) ⟨N (xr, xr)− f, y − xr⟩+ J0(ςxr, ςy − ςxr) + φ(y)− φ(xr) ≥ 0, ∀ y ∈ ℧r ∩ B̄(0, r),

where
B̄(0, r) = {y ∈ V

∣∣ ∥y∥V ≤ r}.
Moreover, we shows that there exist r0 > 0 and a solution x⋆ to the problem (3.5)
with r = r0 such that

∥x∗∥V < r0

Let z ∈ ℧ be arbitrary and t ∈ (0, 1) be small enough. Putting y = tz + (1 − t)x∗

into (3.5) for r = r0, and then passing to the upper limit, as t→ 0+, we have

⟨N (x∗, x∗)− f, z − x∗⟩+ J0(ςx∗, ςz − ςx∗) + φ(z)− φ(x∗) ≥ 0.

Since z ∈ ℧ is arbitrary and we infer that x∗ is a solution to (1).
We now show that P is bounded. By the coercivity condition H(N )(iii) and H(φ),
we infer
⟨N (x, x), x− y0⟩+ inf

ξ∈∂J(ςx)
⟨ξx, ς(x− y0)⟩X∗×X + φ(x)− φ(y0)

∥x∥X

≥
⟨N (x, x), x− y0⟩+ inf

ξ∈∂J(ςx)
⟨ξx, ς(x− y0)⟩X∗×X − αφ∥x∥V − βφ − φ(y0)

∥x∥X
where αφ, βφ > 0 are such that

(3.6) φ(y) ≥ −αφ∥y∥V − βφ, ∀ y ∈ V.

This implies that

(3.7) lim inf
x∈℧,∥x∥V→∞

⟨N (x, x), x− y0⟩+ inf
ξ∈∂J(ςx)

⟨ξx, ς(x− y0)⟩X∗×X + φ(x)− φ(y0)

∥x∥X
= +∞.

We used the coercivity condition H(N )(iii) and the fact that y0 ∈ D(φ). From the
preceding condition, it is not difficult to demonstrate that for each f ∈ V∗ fixed,
there exists a constant γf > 0 such that

∥x∥V ≤ γf ∀ x ∈ P.

Hence the set P is bounded.
Next, we show that P is weakly closed. Let {xn} ⊂ P be such that

xn ⇀ x as n→ ∞ for some x ∈ ℧.

Utilizing the T -relaxed monotonicity of the map

x→ N (x, x) + ς∗∂J(ςx),

we have

⟨N (y, y)− f, y − xn⟩+ ⟨ξy, ς(y − xn)⟩X∗×X + φ(y)− φ(xn)

≥ T (y − xn), ∀ξy ∈ ∂J(ςy), y ∈ ℧.
We reach to the upper limit, as n→ ∞, we have

(3.8) ⟨N (y, y)− f, y − x⟩+ J0(ςy, ςy − ςx) + φ(y)− φ(x) ≥ T (y − x), ∀y ∈ ℧,
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that is
x ∈ P.

Consequently, the set P is weakly closed and proof is completed.
(iii) Assume that the function T is convex. Let x1, x2 ∈ P, t ∈ (0, 1) be arbitrary, and

denote xt = tx1 + (1− t)x2. Hence,

⟨N (y, y)− f, y − xi⟩+ ⟨ξy, ς(y − xi)⟩X∗×X + φ(y)− φ(xi) ≥ T (y − xi),

∀ξy ∈ ∂J(ςy), y ∈ ℧.
The convexity of T and φ reveals

⟨N (y, y)− f, y − xt⟩+ J0(ςy, ςy − ςxt) + φ(y)− φ(xt)

≥ ⟨N (y, y)− f, y − xt⟩+ ⟨ξy, ς(y − xt)⟩X∗×X + φ(y)− φ(xt)

≥ t[⟨N (y, y)− f, y − x1⟩+ ⟨ξy, ς(y − x1)⟩X∗×X + φ(y)− φ(x1)]

+ (1− t)[⟨N (y, y)− f, y − x2⟩+ ⟨ξy, ς(y − x2)⟩X∗×X + φ(y)− φ(x2)]

≥ tT (y − x1) + (1− t)T (y − x2)

≥ T (y − xt), ∀ξy ∈ ∂J(ςy), ∀y ∈ ℧.

Hence xt ∈ P. Therefore the set P is convex.
(iv) Let x1, x2 ∈ ℧ be two solutions to (1), then

T (x1 − x2) ≤ ⟨N (x1, x1)− N (x2, x2), x1 − x2⟩+ ⟨ξ1 − ξ2, ς(x1 − x2)⟩X∗×X ≤ 0,

where ξ1 ∈ ∂J(ςx1), ξ2 ∈ ∂J(ςx2) are such that

J0(ςx1; ςx2 − ςx1) = ⟨ξ1, ς(x2 − x1)⟩X∗×X,

J0(ςx2; ςx1 − ςx2) = ⟨ξ2, ς(x1 − x2)⟩X∗×X.

The along with the fact that

T (y) > 0, ∀ y ∈ V \ {OV}

and implies
x1 = x2,

it shows that (1.1) has an unique solution.
□

Now we are in a position to demonstrate the penalty approximation procedure. Let
λn ∈ R+ and Pn : V → V∗ be sequences satisfying the following hypotheses.
H(λn): λn > 0 for all n ∈ N, and

λn → 0 as n→ ∞.

H(Pn): Pn : V × V → V∗ is a bounded, demicontinuous and monotone operator for all
n ∈ N such that

(i) for each y ∈ ℧, there is a sequence {yn} ⊂ V with the property

Pn(yn, yn) = OV∗ , ∀n ∈ N

and
yn → y ∈ V as n→ ∞.

(ii) there exists an operator P : V × V → V∗ such that
(a) P(x, x) = 0V∗ implies x ∈ ℧,
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(b) for any sequence {xn} with xn ⇀ x in V and

lim sup
n→∞

⟨Pn(xn, xn), xn − x⟩ ≤ 0,

we have

lim inf
n→∞

⟨Pn(xn, xn), xn − y⟩ ≥ ⟨P(x, x), x− y⟩, ∀y ∈ V.

Further, the following stronger versions of H(φ), H(N )(iii) and H(ς) will be used.
H(φ)′ : φ : V → R is a convex and lower semicontinuous function.
H(N )(i)′: N : V × V → V∗ is a continuous operator.
H(N )(iii)′: There exists y0 ∈ ℧ such that the coercivity condition holds

lim inf
y∈B(y0,1),x∈V,

∥x∥V→+∞

⟨N (x, x), x− y⟩+ inf
ξ∈∂J(ςx)

⟨ξx, ς(x− y)⟩X∗×X

∥x∥V
= +∞, ∀y0 ∈ D.

H(ς)′: ς : V → X is a linear, continuous and compact operator.
We introduce the following sequence of penalized problems associated to (1.1) for find-

ing xn ∈ V such that

⟨N (xn, xn)− f, y − xn⟩+
1

λn
⟨Pn(xn, xn), y − xn⟩+ J0(ςxn; ςy − ςxn)

(3.9) +φ(y)− φ(xn) ≥ 0, ∀y ∈ V.
The second main result of this section is the following.

Theorem 3.2. Assume that the hypotheses H(N )(i)′, H(N )(ii), H(N )(iii)′, H(T ), H(J),
H(ς)′, H(φ)′, H(Pn), and H(λn) hold, f ∈ V∗, and T : V → R is bounded. Then, we have

(i) for each n ∈ N, the set of solutions to (3.9), denoted by Pn, is nonempty, bounded and
weakly closed.

(ii) ∅ ≠ ρ− lim sup
n→∞

Pn ⊂ P.

(iii) if N satisfies (P+)-property, then ρ-lim sup
n→∞

Pn = ϱ− lim sup
n→∞

Pn.

(iv) if N satisfies (P+)-property, then for each x ∈ ϱ - lim sup
n→∞

Pn and any sequence {x̃n}

with
x̃n ∈ arg min

xn∈Sn
∥xn − x∥V , ∀n ∈ N,

there exists a subsequence of {ũn} converging strongly to x.
(v) if (1.1) has a unique solution x∗ ∈ ℧, then (3.9) has a unique solutions and the whole

sequence of solutions {xn} of (3.9) converges weakly to x. Moreover, if, in addition,
N satisfies (P+)-property, then the whole sequence {xn} solutions to (3.9) converges
strongly to x.

Proof. (i) For each given n ∈ N, we define an operator Nn : V × V → V∗ by

Nn(x, x) = N (x, x) +
1

λn
Pn(x, x), ∀x ∈ V.

The boundedness of N and Pn guarantees that Nn is bounded too. Therefore,
from the continuity of Pn and hypothesis H(N )(i)′ that Nn satisfies condition
H(N )(i). In addition, the monotonicity of Pn and of

x→ N (x, x) + ς∗∂J(ςx)

imply that
x→ Nn(x, x) + ς∗∂J(ςx)
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is T -relaxed monotone, i.e., Nn satisfies H(N )(ii). Next, for any given y0 ∈ V , the
following estimate

1

λn
⟨Pn(x, x), x− y0⟩ ≥

1

λn
⟨Pn(y0, y0), x− y0⟩

≥ − 1

λn
∥Pn(y0, y0)∥V∗ (∥y0∥V + ∥x∥V)

together with the coercivity condition H(N )(iii) entail that Nn fulfils H(N )(iii).
Therefore, employing Theorem 3.1, we conclude that for each n ∈ N, the set Pn of
solutions to (3.9) is nonempty, bounded and weakly closed.

(ii) First, we prove that the set ρ-lim sup
n→∞

Pn is nonempty. Indeed, we have the follow-

ing claim.
Claim 1. The set ∪n∈NPn is uniformly bounded in V.

By contradiction, assume that ∪n∈NPn is unbounded. With out any loss of gener-
ality, we may assume that there exists a sequence {xn} with xn ∈ Pn such that

∥xn∥V → ∞ as n→ ∞.

Hence,

⟨N (xn, xn)− f, y − xn⟩+
1

λn
⟨Pn(xn, xn), y − xn⟩+ J0(ςxn; ςy − ςxn)

(3.10) +φ(y)− φ(xn) ≥ 0,∀y ∈ V, n ∈ N.
Since y0 ∈ ℧, see H(N )(iii)′ and H(Pn)(i), let {yn} ⊂ V be a sequence such that

(3.11) Pn(yn, yn) = 0V∗ ∀ n ∈ N and yn → y0 as n→ ∞.

Inserting y = yn into (10) gives

⟨N (xn, xn)− f, xn − yn⟩+ φ(xn)− φ(yn)− J0(ςxn; ςyn − ςxn)

≤ 1

λn
⟨Pn(xn, xn)− Pn(yn, yn), yn − xn⟩.

The monotonicity of Pn and the Cauchy inequality reveal

0 ≥ ⟨N (xn, xn)− f, xn − yn⟩+ φ(xn)− φ(yn)− J0(ςxn; ςyn − ςxn)

= ⟨N (xn, xn)− f, xn − yn⟩+ φ(xn)− φ(yn)− ⟨ξ̃n, ς(yn − xn)⟩X∗×X

≥ ⟨N (xn, xn), xn − yn⟩ − αφ∥xn∥V − βφ − φ(yn)

− sup
ξn∈∂J(ςxn)

⟨ξn, ς(yn − xn)⟩X∗×X − ∥f∥V∗ (∥xn∥V + ∥yn∥V),

where αφ, βφ > 0 are given in (6), and ξ̃n ∈ ∂J(ςxn) is such that

J0(ςxn; ςyn − ςxn) = ⟨ξ̃n, ς(yn − xn)⟩X∗×X.

Hence, for n large enough we have

0 ≥ ⟨N (xn, xn)− f, xn − yn⟩+ φ(xn)− φ(yn)− J0(ςxn; ςyn − ςxn)

∥xn∥V

≥
⟨N (xn, xn), xn − yn⟩ − inf

ξn∈∂J(ςxn)
⟨ξn, ς(yn − xn)⟩X∗×X − βφ − φ(yn)− ∥f∥V∗γ0

∥xn∥V
− (αφ + ∥f∥V∗),

where γ0 = ∥y0∥V + 1. The latter combined with the assumption

∥xn∥V → ∞ as n→ ∞,
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and the coercivity condition H(N )(iii)′ (due to yn → y0 as n→ ∞) implies

0 ≥ ⟨N (xn, xn)− f, xn − yn⟩+ φ(xn)− φ(yn)− J0(ςxn; ςyn − ςxn)

∥xn∥V
> 0,

which is a contradiction. Hence, the set⋃
n∈N

Pn

is uniformly bounded in V. Subsequently, for any sequence {xn} ⊂ V with xn ∈ Pn

for all n ∈ N, it is implied by Claim 1 that {xn} is bounded in V as well. We may
presume that along a relabeled subsequence one has

(3.12) xn ⇀ x as n→ ∞ for some x ∈ V.

This ensures that the set
ρ− lim sup

n→∞
Pn

is nonempty.
Next, we shall show that ρ − lim sup

n→∞
Pn is a subset of P. Let x ∈ ρ − lim sup

n→∞
Pn

be arbitrary. Without any loss of generality, we may assume that there exists a
sequence {xn} with xn ∈ Pn for all n ∈ N such that (3.12) holds. Our goal is to
prove that x ∈ P.

Claim 2. We prove that x ∈ ℧. In fact, for each n ∈ N, we have

1

λn
⟨Pn(xn, xn), xn − y⟩ ≤ ⟨N (xn, xn)− f, y − xn⟩+ φ(y)− φ(xn)

+J0(ςxn; ςy − ςxn), ∀y ∈ V.
Utilizing the hypothesis H(N )(ii), we have

1

λn
⟨Pn(xn, xn), xn − y⟩

≤ ⟨N (xn, xn)− N (y, y), y − xn⟩+ J0(ςxn; ςy − ςxn) + J0(ςy; ςxn − ςy)

+ ⟨N (y, y)− f, y − xn⟩+ φ(y)− φ(xn)− J0(ςy; ςxn − ςy)

≤ ⟨N (y, y)− f, y − xn⟩+ φ(y)− φ(xn)− J0(ςy; ςxn − ςy)− T (y − xn), ∀y ∈ V,

as a result that
1

λn
⟨Pn(xn, xn), xn − y⟩ ≤ ∥N (y, y)− f∥V∗ ∥y − xn∥V

+ ∥∂J(ςy)∥X∗ ∥ς∥∥y − xn∥V
+ φ(y)− φ(xn)− T (y − xn), ∀y ∈ V.

Since N is bounded, thus for each y ∈ V , there exists χ(y) > 0, which relies on y
but is independent of n, such that

(3.13) ⟨Pn(xn, xn), xn − y⟩ ≤ λnχ(y),

where we have made use of the fact that

xn ⇀ x as n→ ∞.

Combining (3.13) with the hypothesis H(λn)
′ we get

(3.14) lim sup
n→∞

⟨Pn(xn, xn), xn − y⟩ ≤ 0, ∀y ∈ V.
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Putting y = x in (3.14) and employ the convergence (3.12) and the condition
H(Pn)(ii)(b) to get

⟨P(x, x), x− y⟩ ≤ lim inf
n→∞

⟨Pn(xn, xn), xn − y⟩

≤ lim sup
n→∞

⟨Pn(xn, xn), xn − y⟩

≤ 0.

Since y ∈ V is arbitrary, we draw the conclusion that

⟨P(x, x), y⟩ = 0, ∀y ∈ V
implies that

P(x, x) = 0V∗

and the hypothesis H(Pn)(ii) establishes x ∈ ℧ and is proved.
Claim 3. We will show that x ∈ P. Let y ∈ ℧ be fixed. The hypothesis H(Pn)(i)
allows to defined a sequence {yn} ⊂ V such that

(3.15) Pn(yn, yn) = 0V∗ , and yn → y as n→ ∞.

Thus, we have

⟨N (yn, yn), xn − yn⟩+ T (yn − xn) ≤ ⟨f, xn − yn⟩+
1

λn
⟨Pn(xn, xn), yn − xn⟩

+ φ(yn)− φ(xn) + J0(ςyn; ςyn − ςxn).

By virtue of the monotonicity of Pn, and

Pn(yn, yn) = 0V∗ ,

it brings in

⟨N (yn, yn), xn − yn⟩+ T (yn − xn) ≤ ⟨f, xn − yn⟩

+
1

λn
⟨Pn(xn, xn)− Pn(yn, yn), yn − xn⟩

+ ⟨ξn, ς(yn − xn)⟩X∗×X + φ(yn)− φ(xn)

(3.16) ≤ ⟨f, xn − yn⟩+ ⟨ξn, ς(yn − xn)⟩X∗×X + φ(yn)− φ(xn),

where ξn ∈ ∂J(ςyn) is such that

J0(ςyn; ςyn − ςxn) = ⟨ξn, ς(yn − xn)⟩X∗×X.

Since yn → y as n→ ∞ and the map

x→ ∂J(x)

is locally bounded, we arrive at the conclusion that the sequence {ξn} ⊂ X∗ is
bounded too. With no loss of generality, we may assume that

ξn ⇀ ξ ∈ X∗ as n→ ∞ for some ξ ∈ X∗.

Invoking Proposition 2.1 (iv) and the convergence yn → y, as n → ∞, we obtain
ξ ∈ ∂J(ςy). The continuity and convexity of φ, H (φ)′ and the compactness of ς ,
we have

(3.17) ⟨ξn, ς(yn − xn)⟩X∗×X → ⟨ξ, ς(y − x)⟩X∗×X,

lim sup
n→∞

(φ(yn)− φ(xn)) ≤ lim
n→∞

φ(yn)− lim inf
n→∞

φ(xn)

(3.18) ≤ φ(y)− φ(x).



The penalty method... 369

In addition, the continuity of N and the condition H(T )(ii) imply

(3.19) ⟨N (yn, yn), xn − yn⟩ → ⟨N (y, y), y − x⟩,

(3.20) lim sup
n→∞

T (yn − xn) ≥ T (y − x).

From (3.17) - (3.20) and the upper limit as n→ ∞ in (3.16), we get

⟨N (y, y), y − x⟩+ T (y − x) ≤ ⟨f, y − x⟩+ ⟨ξ, ς(y − x)⟩X∗×X + φ(y)− φ(x)

≤ ⟨f, y − x⟩+ J0(ςy; ςy − ςx) + φ(y)− φ(x),

where ξ ∈ ∂J(ςy). Because y ∈ ℧ is arbitrary, it follows from Theorem 3.1 that
x ∈ ℧ solves (1), i.e., x ∈ P. Consequently, we have

ρ− lim sup
n→∞

Pn ⊂ P.

(iii) Since
ϱ− lim sup

n→∞
Pn ⊂ ρ− lim sup

n→∞
Pn,

it is adequate to confirm the condition

ρ− lim sup
n→∞

Pn ⊂ ϱ− lim sup
n→∞

Pn.

Let x ∈ ρ − lim sup
n→∞

Pn be arbitrary. Without loss of generality, there exists a se-

quence {xn} with xn ∈ Pn such that

xn ⇀ x as n→ ∞.

We claim that xn → x as n → ∞. Since x ∈ ℧, so, we are able to find a sequence
{yn} ⊂ V such that

Pn(yn, yn) = 0V∗ and yn → x as n→ ∞.

Also, we have

⟨N (xn, xn), xn − yn⟩ ≤ ⟨f, xn − yn⟩+ φ(yn)− φ(xn) + J0(ςxn; ςyn − ςxn).

Passing to the upper limit as n→ ∞ in the aforemention inequality, and using the
following result

lim sup
n→∞

⟨N (xn, xn), xn − yn⟩

= lim sup
n→∞

⟨N (xn, xn), xn − x+ x− yn⟩

≤ lim sup
n→∞

⟨N (xn, xn), xn − x⟩+ lim sup
n→∞

⟨N (xn, xn), x− yn⟩

= lim sup
n→∞

⟨N (xn, xn), xn − x⟩

≤ 0.

The latter coupled with the convergence xn ⇀ x as n→ ∞ and the fact that N sat-
isfies (P+)-property implies xn → x as n→ ∞ imply that x ∈ ϱ− lim supn→∞ Pn.
Therefore, it holds

ϱ− lim sup
n→∞

Pn = ρ− lim sup
n→∞

Pn.
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(iv) For any x ∈ ϱ − lim supn→∞ Pn, without any loss of generality, we may assume
that there exists a sequence {xn} ⊂ V with xn ∈ Pn such that xn → x as n → ∞.
Recall that for each n ∈ N, the set Pn of solutions to (3.9) is nonempty and closed.
Consider the sequence {x̃n} ⊂ V such that

x̃n ∈ arg min
yn∈Pn

∥yn − x∥V , for each n ∈ N.

As a consequence of Claim 1 that the sequence {x̃n} is bounded. Therefore we
may assume a subsequence, not relabeled, that

x̃n ⇀ x̃ as n→ ∞ for some x̃ ∈ V.

Using the same logic as in the proof of Claim 2, we obtain that x̃ ∈ ℧. Let y ∈ ℧.
Then, there exists a sequence {yn} ⊂ V such that (3.15) is available, and

⟨N (yn, yn), x̃n − yn⟩+ T (yn − x̃n) ≤⟨f, x̃n − yn⟩+ φ(yn)− φ(x̃n)

+ J0(ςyn; ςyn − ςx̃n).

Taking upper limit as n→ ∞, in the above inequality, we get

⟨N (y, y), x̃− y⟩+ T (y − x̃) ≤ ⟨f, x̃− y⟩+ φ(y)− φ(x̃) + J0(ςy; ςy − ςx̃).

Since y ∈ ℧ is arbitrary, by Theorem 3.1(i), we conclude that x̃ ∈ P. From assertion
(iii), it follows that x̃ ∈ ϱ − lim supn→∞ Pn ⊂ P. Next, we shall demonstrate that
x = x̃. By the virtue of definition of x̃n and xn ∈ Pn, we have

∥x̃n − x∥V = d(x,Pn)

≤ ∥x− xn∥V .

Since xn → x as n→ ∞, the above results show

∥x̃n − x∥V → 0 as n→ ∞.

This together with the convergence x̃n → x̃ as n → ∞ implies x = x̃. Conse-
quently, for any sequence {x̃n} ⊂ V with x̃n ∈ argminyn∈Pn ∥yn − x∥V for each
n ∈ N, there exists a subsequence {x̃nk

} of {x̃n} such that x̃nk
→ x̃ as k → ∞.

(v) Assume that P = {x∗}. It goes without saying that for each n ∈ N, (3.9) has
a unique solution xn ∈ V. Since ∅ = ρ − lim supn→∞ Pn ⊂ P, we deduce that
there exists a subsequence of {xn} converging weakly to x∗. We now justify that
the whole sequence {xn} converges weakly to x∗. In fact, we can see that each
subsequence of {xn} converges weakly to the same limit in V that coincides with
the unique solution of (1.1). The latter combined with the boundedness of {xn}
entails that the whole sequence {xn} converges weakly to x∗. Moreover, if N
satisfies (P+)-property, then we can apply the similar arguments as in the proof of
assertion (iii) to obtain that the whole sequence {xn} converges strongly to x∗.

□

Let P : V × V → V∗ be a penalty operator of ℧. Consider the following problem for
finding xn ∈ V such that

⟨N (xn, xn)− f, y − xn⟩+
1

λn
⟨P(xn, xn), y − xn⟩+ J0(ςxn; ςy − ςxn)

(3.21) +φ(y)− φ(xn) ≥ 0, ∀y ∈ V.

Theorem 3.3. Assume that the hypotheses H(N )(i)-(iii), H(T ), H(J), H(ς)′, H(φ), and H(λn)
are satisfied, f ∈ V∗, T : V∗ → R is bounded, and P : V × V → V∗ is a penalty operator. Then
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(i) for each n ∈ N, the set of solutions to (3.21), denoted by P̃n, is nonempty, bounded and
weakly closed.

(ii) ∅ ≠ ρ− lim supn→∞ P̃n ⊂ P.
(iii) if N satisfies (P+)-property, then

ρ− lim sup
n→∞

P̃n = ϱ− lim sup
n→∞

P̃n.

(iv) if N satisfies (P+)-property, then for each x ∈ ϱ − lim supn→∞ P̃n and any sequence
{x̃n} with x̃n ∈ argminxn∈P̃n

∥xn − x∥V for each n ∈ N, there exists a subsequence of
{x̃n} converging strongly to x.

(v) if (1) has a unique solution x∗ ∈ ℧, then (3.21) has a unique solution, and the whole
sequence {xn} of solutions to (3.21) converges weakly to x. Moreover, if, in addition, N
satisfies (P+)-property, then the whole sequence {xn} of solutions to (3.21) converges
strongly to x.

4. NONLINEAR NONHOMOGENEOUS MIXED BOUNDARY VALUE PROBLEMS

This is devoted with the applicability of the theoretical systems of nonlinear nonho-
mogeneous mixed boundary value problem (see, more detail [8]) involving a differential
operator with an obstacle effect which comes from the modeling of semipermeability. Let
Ω be a bounded domain in RN(N ≥ 2) and ℸ = ∂Ω is a boundary of class C2. Assume
that ℸ is divided into three disjoint measurable parts ℸ1, ℸ2 and ℸ3 with meas(ℸ1) > 0.
Let ν be the outward unit normal to the boundary ℸ. Consider the following nonlinear
nonhomogeneous mixed boundary value problem with constraints for finding a function
x : Ω̄ → R such that

(4.22) −div(a(u,∇x(u))) + ∂cϕ(u, x(u)) ∋ f0(u) in Ω

where ∂cϕ is a convex subdifferential of the function ϕ : Ω × R → R with respect to
second variable. The function x denotes the electric potential or temperature, the function
a = a(u,∇x) is the dielectric coefficient, magnetic permeability or thermal conductivity,
and f0 = f0(u) is a given source term. The material which occupies Ω is non-isotropic and
heterogeneous, and therefore the effectively depends on u.

(4.23) x(u) ≤ Φ(u) in Ω,

represents an additional unilateral constraint for the solution.

(4.24) x(u) = 0 in ℸ1,

(4.25)
∂x(u)

∂na
= (a(u,∇x(u)),ν)RN = f2(u) on ℸ2,

(4.26)
∂x(u)

∂na
= −g(u)sgn(x(u)) on ℸ3

where sgn is a function defined by

(4.27) sgn(t) =


[−1, 1] if t = 0

1 it t > 0

−1 otherwise.

The mathematical model (4.22)-(4.26) is motivated by the study of semi permeability phe-
nomena which may appear in the interior and on the boundary of the body Ω. Now, we
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are in position to study the weak solutions of (4.22)-(4.26) to its variational formulation
for the following function space

V = {y ∈W 1,p(Ω)|ςy(u) = 0 for a.e.u ∈ ℸ1},
where W 1,p(Ω), 2 ≤ p <∞, is the well-known Sobolev space with the usual norm

∥x∥W 1,p(Ω) = ∥x∥Lp(Ω) + ∥∇x∥Lp(Ω;RN),

and ς : W 1,p(Ω) → Lp(ℸ) stands for the trace operator which is known to be linear,
bounded, and compact. Also, we need the constraint set defined by

℧ = {y ∈ V|y(u) ≤ ϕ(u) for a.e.u ∈ Ω}.
Further, we impose the assumptions for the data of (4.22)-(4.26).

H(ϕ) ϕ : Ω×R→ R is such that
(i) for each s ∈ R, u → ϕ(u, s) is measurable on Ω, and there exists e ∈ Lp(Ω) such

that
u → ϕ(u, e(u)) ∈ L1(Ω),

(ii) for a.e. u ∈ Ω, s→ ϕ(u, s) is convex and lower semicontinuous.
H(0): f0 ∈ Lp(Ω), f2 ∈ Lp(ℸ2), Φ ∈ V with Φ(w) ≥ cϕ > 0 for a.e. w ∈ Ω, g ∈ L∞(ℸ3),

g(u) ≥ 0 for a.e. u ∈ ℸ3 and g ̸≡ 0. Assume that x is smooth function on Ω which solves
problem (4.22)-(4.26) and let y ∈ ℧. Multiplying (4.22) by y − x and applying Green’s
Theorem, we have∫

Ω

(a(u,∇x(u)),∇y(u)−∇x(u))RN du =

∫
Ω

(f0(u)− ξ(u))(y(u)− x(ν))du

+

∫
ℸ

∂x(u)

∂na
(y(u)− x(u))dℸ,

where ξ(u) ∈ ∂cϕ(u, x(u)) for a.e. u ∈ Ω is such that

−div (a(u,∇x(x))) + ξ(u) = f0(u) for a.e. u ∈ Ω.

Now by using the Riesz representation theorem to find a function f ∈ V∗ such that

(4.28) ⟨f, v⟩ =
∫
Ω

f0(u)y(u)du+

∫
ℸ2

f2(u)ςy(u)dℸ, ∀y ∈ V.

Furthermore, using the equality∫
ℸ

∂x(u)

∂na
(y(u)− x(u))dℸ =

∫
ℸ1

∂x(u)

∂na
(y(u)− x(u))dℸ+

∫
ℸ2

∂x(u)

∂na
(y(u)− x(u))dℸ

+

∫
ℸ3

∂x(u)

∂na
(y(u)− x(u))dℸ

and boundary conditions (4.24)-(4.25), we get∫
Ω

(a(u,∇x(u)),∇y(u)−∇x(u))RN du+

∫
Ω

ξ(u)(y(u)− x(ν))du = ⟨f, y − x⟩

+

∫
ℸ3

∂x(u)

∂na
(y(u)− x(u))dℸ.

From (4.26)-(4.27) and the definition of convex subgradient that∫
Ω

(a(u,∇x(u)),∇y(u)−∇x(u))RN du+

∫
Ω

ϕ(u, y(u))− ϕ(u, x(y))du

+

∫
ℸ3

g(u)(|y(u)| − |x(u)|)dℸ ≥ ⟨f, y − x⟩.
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Hence we get the following variational formulation of (4.22)-(4.26) for finding x ∈ ℧ such
that ∫

Ω

(a(u,∇x(u)),∇y(u)−∇x(u))RN du+

∫
Ω

ϕ(u, y(u))− ϕ(u, x(u))du

(4.29) +

∫
ℸ3

g(u)(|y(u)| − |x(u)|)dℸ ≥ ⟨f, y −X⟩, ∀y ∈ ℧.

Theorem 4.4. Assume that H(a), H(ϕ) and H(0) hold. Then (4.29) has a unique solution x ∈ ℧.

Proof. Consider a function φ : V → R defined by

φ(x) =

∫
Ω

ϕ(u, x(u))du+

∫
ℸ3

g(u)|x(u)|dℸ ∀x ∈ V.

Under this notation, we can be rewritten (4.29) for finding x ∈ ℧ such that

(4.30) ⟨N (x, x)− f, y − x⟩+ φ(y)− φ(x) ≥ 0, ∀y ∈ ℧.

From hypotheses H(0) and H(ϕ), we see that the function φ is convex and continuous
and conditions H(N )(i)-(ii) hold with T = J = 0. Since the trace operator ς :W 1,p(Ω) →
Lp(ℸ) is linear, bounded and compact then we show that the coercivity condition H(N )(iii)
is satisfied. Therefore the following holds:

⟨N (x, x), x⟩ =
∫
Ω

(a(u,∇x(u)),∇x(u))RNdu

≥ a3
p− 1

∫
Ω

∥∇x(u)∥pdu

=
a3
p− 1

∥u∥pV ∀x ∈ V,

where we used the Poincar inequality [8]. This implies that the coercivity condition
H(N )(iii) holds with J = 0. Then we conclude that (4.29) has an unique solution. □

Let {Φn} be a sequence such that

(4.31) Φn → Φ ∈ V as n→ ∞.

From assumption H(0), we assume that

Φn(w) ≥ 0 for a.e. w ∈ Ω, and all n ∈ N.

For some λn > 0, the penalized problem associated with (4.22)-(4.26) to find a function
xn : Ω̄n → R such that

−div (a(u,∇xn(u))) + ∂cϕ(u, xn(u)) +
1

λn
(xn(u)− Φn(u))

+ ∋ f0(u) in Ω,

xn(u) = 0 on ℸ1,

∂xn(u)

∂na
= (a(u,∇xn(u)),ν)RN = f2(u) on ℸ2,

(4.32)
∂xn(u)

∂na
= −g(u)sgn(xn(u))on ℸ3.

Here, r+ = max{0, r} stands for the positive part of r ∈ R.
Consider the operator Pn : V × V → V∗ given by

(4.33) ⟨Pn(x, x), y⟩ =
∫
Ω

(x(u)− Φn(u))
+y(u)du, ∀x, y ∈ V, n ∈ N.
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Lemma 4.2. Assume that the sequence {Φn} satisfies (4.31), then the sequence of operators {Pn}
defined by (4.33) satisfies the condition H(Pn).

Proof. From (4.33), it is easy to see that Pn is a bounded, continuous and monotone oper-
ator for each n ∈ N. For y ∈ ℧, let the sequence {yn} ⊂ V be defined by

yn(u) =
y(u)Φn(u)

Φ(u)
, ∀u ∈ Ω and n ∈ N.

Since y ∈ ℧, it satisfied

yn(u) ≤
Φ(u)Φn(u)

Φ(u)
, ∀ u ∈ Ω and n ∈ N.

Hence, by (4.33), we have
Pn(yn, yn) = 0V∗ , ∀n ∈ N.

Using (4.31) and the Lebesgue convergence theorem, we have

lim
n→∞

∥yn − y∥pV = lim
n→∞

∫
Ω

∥∇yn(u)−∇y(u)∥pdu

= lim
n→∞

∫
Ω

∥∥∥∥∇y(u)(1− Φn(u)

Φ(u)

)
+ y(u)∇

(
Φn

Φ

)∥∥∥∥p du
=

∫
Ω

lim
n→∞

∥∥∥∥∇y(u)(1− Φn(u)

Φ(u)

)
+ y(u)∇

(
Φn

Φ

)∥∥∥∥p du
= 0.

Therefore H(P)(i) is justified.
Consider the operator P : V × V → V∗ given by

⟨P(x, x), y⟩ =
∫
Ω

(x(u)− Φ(u))+y(u)du ∀x, y ∈ V.

Now we show that
℧ = {x ∈ V|P(x, x) = 0V∗},

hence H(P)(ii) holds. Next, we assume that {xn} is a sequence satisfying

xn ⇀ x ∈ V and lim sup
n→∞

⟨Pn(xn, xn), xn − x⟩ ≤ 0, for some x ∈ V.

Since the embedding of V into Lp(Ω) is compact then we may assume that

xn(u) → x(u) and Φn(u) → Φ(u) as n→ ∞ for a.e. u ∈ Ω.

The boundedness of the operator Pn and the Lebesgue convergence theorem imply

lim
n→∞

⟨Pn(xn, xn), xn − y⟩ = lim
n→∞

∫
Ω

(xn(u)− Φn(u))
+(xn(u)− y(u))du

=

∫
Ω

lim
n→∞

(xn(u)− Φn(u))
+(xn(u)− y(u))du

=

∫
Ω

(x(u)− Φ(u))+(x(u)− y(u))du

= ⟨P(x, x), x− y⟩,∀y ∈ V.
This shows that H(Pn)(b) is satisfied, and the proof is completed. □

Theorem 4.5. Assume that H(a), H(ϕ), H(0) and (4.31) are satisfied. If, in addition, {λn} is
such that λn > 0 and λn → 0 as n→ ∞, then

(i) (4.32) has a unique solution xn ∈ V.
(ii) the solution xn of (4.32) converges strongly to the solution x of (4.22)-(4.26).
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5. A FRICTIONAL ELASTIC CONTACT PROBLEMS

In the section we discuss the frictional elastic contact problems which is described by a
convex subdifferential operator, and a generalized Signorini contact condition associated
with the Clarke subdifferential term of a locally Lipschitz function. Consider a nonlinear
elastic body which occupies a bounded domain Ω inRd, where d = 2, 3, and the boundary
ℸ = ∂Ω of Ω is Lipschitz continuous which is composed of four mutually disjoint parts
ℸD, ℸD1

, ℸD2
and ℸD3

such that meas(ℸD) > 0. Let Fd the space of real symmetric d × d
matrices. We utilize Rd for inner product, Fd for norms and defined by

ξ · η = ξi ηi, ∥ξ∥ =
√
(ξ · ξ) for ξ = (ξi), η = (ηi) ∈ Rd,

σ · τ = ξij τij , ∥σ∥ =
√
(σ · σ) for σ = (σij), τ = (τij) ∈ Fd,

where i, j, k, l ∈ {1, · · · , d} and the summation convention over repeated indices is used.
The normal and tangential components of a vector field ξ on the boundary are defined
by ξν = ξ · ν and ξτ = ξ − ξνν where ν is a outward unit normal at the boundary ℸ.
Also, σν and στ denotes the normal and tangential components of the stress field σ on
the boundary, that is, σν = (σν) · ν and στ = σν − σνν.

The classical formulation of the frictional elastic contact problem for finding a displace-
ment field x : Ω → Rd, a stress field σ : Ω → Fd and an interface force ξν : ℸD1

→ R such
that

(5.34) div σ + f0 = 0 in Ω,

here f0 is a density of the body forces,

(5.35) σ ∈ N (ε(x), ε(x)) + ∂cψ(ε(x)) in Ω,

here N is a elasticity operator and ∂cψ the convex subdifferential operator of a convex
function ψ’

(5.36) x = 0 on ℸD,

describe the displacement,

(5.37) σν = fD1
on ℸD1

,

represent the traction boundary conditions. Assumed the body is fixed on ΓD and surface
traction of density fD1

act on ℸD1
,

(5.38)



xν ≤ g,

σν + ξν ≤ 0,

(xν − g)(σν + ξν) = 0, on ℸD2

ξν ∈ ∂Jν(xν)

στ = 0

(5.39)


−σν = F ,

∥στ∥ ≤ µ|σν |, on ℸD3

−στ = µ|σν |
xτ

∥xτ∥
, if xτ ̸= 0.

The (5.38) is the model the frictionless contact with a foundation made of a rigid body
covered by a layer made of elastic material which shows the penetration of restricted,
since xν ≤ g where g is a thickness of the elastic layer [14] and the normal displacement
does not reach the bound g, the contact is described by a multivalued normal compliance
condition of the form ξν ∈ ∂jν(xν). Therefore ξν can be interpreted as the opposite of the
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normal stress on the contact surface. On boundary ℸD3
, the normal stress on the contact

boundary is assumed to be given by a function F . By friction law, if at a point u ∈ ℸD3
,

the inequality ∥στ (u)∥ < µ(u)F (u) holds, then xτ (u) = 0 and the material point u is in
the so-called stick zone; but if ∥στ (u)∥ = µ(u)F (u), then the point u is in the so-called
slip zone, see [[30], pp. 108 and 109].

(A) N : Ω× Ω× Fd → Fd is such that
(i) the mapping u → N (u,u, ε) is measurable on Ω, for any ε ∈ Fd,

(ii) there exist d0 > 0 and d1 > 0 such that

(5.40) ∥N (u,u, ε)∥Fd ≤ d0 + d1∥ε∥Fd , ∀ ε ∈ Fd and a.e. u ∈ Ω,

(iii) the mapping ε → N (u,u, ε) is continuous for a.e. u ∈ Ω,
(iv) relaxed monotone with respect to the first variable then there exists αN > 0

such that

(5.41) (N (u,u, ε1)−N (u,u, ε2))·(ε1−ε2)) ≥ −αN ∥ε1−ε2∥2Fd , ∀ε1, ε2 ∈ Fd, and u ∈ Ω,

(v) relaxed Lipschitz continuous with respect to the second variable then there
exists βN > 0 such that

(5.42) (N (u,u, ε1)−N (u,u, ε2))·(ε1−ε2)) ≤ −βN ∥ε1−ε2∥2Fd , ∀ε1, ε2 ∈ Fd, and u ∈ Ω,

(B) ψ : Ω× Fd → R is such that
(i) ψ(·, ε) is measurable on Ω for all ε ∈ Fd and there exists w ∈ L2(Ω;Fd) such

that
ψ(·,w(·)) belongs to L1(Ω),

(ii) ψ(u, ·) is convex and lower semicontinuous for a.e. u ∈ Ω.
(C) jν : ℸD2 ×R→ R is such that

(i) jν(·, r) is measurable on ℸD2
for all r ∈ R and there exists e ∈ L2(ℸD2

) such
that jν(·, e(·)) ∈ L1(ℸD2

),
(ii) jν(u, ·) is locally Lipschitz on R for a.e. u ∈ ℸD2

.
(iii) there are constants π0ν , π1ν ≥ 0 such that

(5.43) |∂jν(u, r)| ≤ π0ν + π1ν |r|, for a.e.u ∈ R,

(iv) there exists αjν ≥ 0 and all r1, r2 ∈ R such that

(5.44) j0ν(u, r1; r2 − r1) + j0ν(u, r2; r1 − r2) ≤ αjν |r1 − r2|2, for a.e. u ∈ ℸD2
.

The regularity hypotheses where densities of volume forces and surface traction satisfying

(5.45) f0 ∈ L2(Ω;Rd), fD1
∈ L2(ℸD1

;Rd),

and µ, F , g fulfill the following assumptions

(5.46)


g ≥ o,

F ∈ L∞(ℸD2
), F ≥ 0, a.e. on ℸD3

,

µ ∈ L∞(ℸD3
), µ ≥ 0, a.e. on ℸD3

.

Now we define the following function spaces as

V = {y ∈ H1(Ω;Rd) | y = 0 on ℸD},

H = L2(Ω;Rd),

H = L2(Ω;Fd).
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Here the trace operator ς : V → L2(ℸD;Rd) is linear, bounded and compact. Therefore
V is endowed with the Hilbertian structure by the inner product and the corresponding
norm

⟨x,y⟩ = ⟨ε(x), ε(y)⟩H, ∥y∥V = ∥ε(y)∥H ∀x,y ∈ V.

Since set ℧ of admissible displacement fields is defined by

℧ = {y ∈ V |yν ≤ g a.e. on ℸD2}.
By Green formula, we have the following variational formulation of (5.34)-(5.39) for find-
ing a displacement field x ∈ ℧ such that

⟨N (ε(x), ε(x)), ε(y)− ε(x)⟩H +

∫
Ω

ψ(ε(x))du+

∫
Ω

ψ(ε(x))du+

∫
ℸD3

F (yν − xν)dℸ

+

∫
ℸD3

µF (∥yτ∥ − ∥xτ∥)dℸ+

∫
ℸD2

j0τ (xτ ;yτ − xτ )dℸ

(5.47) ≥ ⟨f ,y − x⟩, ∀y ∈ ℧,
where f ∈ V∗ is such that

⟨f ,y⟩ = ⟨f0,y⟩H + ⟨fD1 ,y⟩Lp(ℸD1
,Rd), ∀y ∈ V.

Theorem 5.6. Assume that (A)-(C), (5.45)-(5.46) hold. If the inequalities

(5.48) αjν∥ς∥2 ≤ αN − βN and π1ν∥ς∥2
√
2 < αN − βN .

hold, then the solution set to (5.47), denoted by P, is nonempty, bounded, closed and convex.

Proof. Let X = L2(ℸD2
) and the functional J : X → R defined by

J(z) =

∫
ℸD2

jτ (zτ )dℸ, ∀z ∈ X.

It follows from hypothesis (C) and locally Lipschitz function of J , the inequalities

(5.49)

{
J0(z;w) ≤

∫
ℸD2

J0
τ (zτ ;wτ )dℸ,

∥∂J(z)∥X∗ ≤ π2ν +
√
2π1ν∥z∥X, ∀ z,w ∈ X with some π2ν ≥ 0.

Now, the intermediate problem for (1.1) is to find x ∈ ℧ such that

(5.50) ⟨N (x,x)− f ,y − x⟩+ J0(ςx; ςy − ςx) + φ(y)− φ(x) ≥ 0, ∀y ∈ ℧,
where N : V × V → V∗ and φ : V → R are defined by

⟨N (x,x),y⟩ = ⟨N (ε(x), ε(x)), ε(y)⟩H

φ(x) =

∫
Ω

ψ(ε(x))du+

∫
ℸD3

Fxν +

∫
ℸD3

µ∥xτ∥dℸ, ∀x, y ∈ V,

Since x ∈ V is a solution of (5.50), then it is a solution of (5.47) as well. Therefore, we show
that (5.47) has at least one solution, it is enough to prove that (5.50) is solvable.

Let K ⊂ V be a bounded set and for any y0 ∈ K. From the inequality π1ν∥ς∥2
√
2 < αN

and y0 ∈ K, we have

lim inf
x∈V,∥x∥V→∞

⟨N (x,x),x− y0⟩+ inf
ξx∈∂J(ςx)

⟨ξx,x− y0⟩X∗×X

∥x∥V
= +∞.

Hence H(N )(iii) is valid.
Therefore the set of solutions to (5.50) is nonempty, bounded, closed and convex and this
show that solution set of (5.47) has the same properties. □
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Now, we consider a normal compliance function pν : ℸD2
× ℸD2

×R → R+ satisfying
the following conditions:

(a) for all r ∈ R, the function u → pν(u,u, r) is measurable on ℸD2 ,
(b) there exists Lpν > 0, L ′

pν
> 0 such that

|pν(u,u, r1)− pν(u,u, r2)| ≤ Lpν
|r1 − r2|+ L ′

pν
|r1 − r2|

(5.51) ≤ (Lpν
+ L ′

pν
)|r1 − r2|, ∀r1, r2 ∈ R and u ∈ ℸD2

,

(c) for all r1, r2 ∈ R and u ∈ ℸD2
,

(5.52) (pν(u,u, r1)− pν(u,u, r2))(r1 − r2) ≥ 0,

(d) for a.e. u ∈ ℸD2 , pν ∈ (u,u, r) = 0 if and only if

r ≤ 0.

Let {gn}, {λn} ⊂ R+ be such that

(5.53) gn > 0, for all n ∈ N and gn → g as n→ ∞,

and

(5.54) λn > 0, for all n ∈ N and λn → λ as n→ ∞.

Then we find a displacement field xn : Ω → Rd, a stress field σn : Ω → Fd and an interface
force ξnν : ℸD2

→ R such that

(5.55) Div σn + f0 = 0 in Ω,

(5.56) σn ∈ N (ε(xn), ε(xn)) + ∂cψ(ε(xn)) in Ω,

(5.57) xn = 0 on ℸD,

(5.58) σnν = fN on ℸD1 ,

(5.59)


−σnν =

1

λn
pν(xnν − gn)ξnν ,

ξnν ∈ ∂jν(xnν),

σnτ = 0, on ℸD2

here λn be the deformability coefficient and
1

λn
denotes the surface stiffness coefficient.

(5.60)


−σnν = F ,

∥σnτ∥ ≤ µ|σnν |, on ℸD3

−σnτ = µ|σnν |
xnτ

∥xnτ∥
, if xnτ ̸= 0.

The variational formulation of (5.55)-(5.60) for finding a displacement field xn ∈ V such
that

⟨N (ε(xn), ε(xn)), ε(y)− ε(xn)⟩H +

∫
Ω

ψ(ε(y))du−
∫
Ω

ψ(ε(xn))du+

∫
ℸD3

F (yν − xnν)dℸ

+

∫
ℸD3

µF (∥yτ∥ − ∥xnτ∥)dℸ+
1

λn

∫
ℸD2

pν(xnν − gn)(yν − xnν)dℸ

(5.61) +

∫
ℸD2

j0τ (xnτ ;yτ − xnτ )dℸ ≥ ⟨f ,y − xn⟩, ∀y ∈ V.
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Theorem 5.7. Assume that (A)-(C), (5.45)-(5.46) and (5.51)-(5.54) are fulfilled. If, in addition,
the inequalities (5.48) hold, then

(i) for each n ∈ N, the set of solutions of (5.61), denoted by Pn, is nonempty, bounded, closed
and convex.

(ii) ∅ ≠ ϱ− lim supn→∞ Pn = ρ− lim supn→∞ Pn ⊂ P.
(iii) for each x ∈ ϱ− lim supn→∞ Pn, there exists a subsequence of {x̃n} converging strongly

to x, where x̃n = projPn
(x) for all n ∈ N.

Proof. Consider the operator Pn : V × V → V∗ defined by

⟨Pn(x,x),y⟩ =
∫
ℸD2

pν(xν − gn)yνdℸ, ∀ x,y ∈ V.

From hypotheses (5.51)-(5.52), Pn is bounded, continuous and monotone for each n ∈ N.
Let y ∈ ℧ be arbitrary and consider the sequence {yn} defined by

yn =

{
gn
g y if g > 0

y if g = 0.

Since y ∈ ℧, yν ≤ g on ℸD2
and gn > 0, then ynν − gn ≤ 0. Combining pν(u, s) = 0 with

s ≤ 0, entails that

Pn(yn,yn) = 0 ∀n ∈ N.

Additionally,

yn → y as n→ ∞,

therefore the condition H(Pn)(i) holds. Next, we define the operator P : V × V → V∗ by

⟨P(x,x),y⟩ =
∫
ℸD2

pν(xν − gn)yνdℸ, ∀x,y ∈ V.

Using the assumption (5.51)-(5.52), P satisfies condition H(Pn)(ii). Let {xn} ⊂ V be such
that

xn ⇀ x

and

lim sup
n→∞

⟨Pn(xn,xn),xn − x⟩ ≤ 0.

Hence, the compactness of the embedding of V into L2(ℸ), and the continuity of pν(x,x, ·)
for a.e. x ∈ ℸD2 imply

lim inf
n→∞

∫
ℸD2

pν(xnν − gn)(xnν − yν)dℸ ≥ lim inf
n→∞

∫
ℸD2

pν(xnν − gn)(xnν − xν)dℸ

+ lim inf
n→∞

∫
ℸD2

pν(xnν − gn)(xν − yν)dℸ

≥
∫
ℸD2

pν(xν − g)(xν − yν)dℸ

= ⟨P(x,x),x− y⟩.

This showed that the condition H(Pn)(ii)(b) holds and proof is completed. □
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[9] Han, W.; Migórski, S.; Sofonea, M. A class of variational-hemivariational inequalities with applications to

frictional contact problems. SIAM J. Math. Anal. 46 (2014), 3891–3912.
[10] Hartman, P.; Stampacchia, G. On some nonlinear elliptic differential functional equations. Acta Mathematica

115 (1966), 271–310.
[11] Kinderlehrer, D.; Stampacchia, G. An introduction to variational inequalities and their applications. Academic

Press, New York 1980.
[12] Liu, Z. H.; Motreanu, D.; Zeng, S. D. Nonlinear evolutionary systems driven by mixed variational inequal-

ities and its applications. Nonlinear Anal. RWA 42 (2018), 409–421 .
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