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Common endpoints of generalized Suzuki-Kannan-Ćirić
type mappings in hyperbolic spaces

T. LAOKUL1, B. PANYANAK2,3, N. PHUDOLSITTHIPHAT2,3 and S. SUANTAI2,3

ABSTRACT. In this paper, we introduce the concept of generalized Suzuki-Kannan-Ćirić type mappings in
metric spaces and show that it is weaker than the concept of Suzuki-Kannan-Ćirić type mappings but stronger
than the concept of semi-nonexpansive mappings. Moreover, we obtain the semiclosed principle and endpoint
theorems for the class of generalized Suzuki-Kannan-Ćirić type mappings. The strong and ∆−convergence
theorems of the Kuhfitting iteration for this class of mappings are also discussed.

1. INTRODUCTION

Let D be a nonempty subset of a metric space (M,ρ). A mapping g from D into D is a
contraction if there exists a constant λ in [0, 1) such that

(1.1) ρ(g(x), g(y)) ≤ λρ(x, y), for all x, y ∈ D.

Moreover, if (1.1) holds when λ = 1, then g is said to be nonexpansive. A point x in D is
called a fixed point of g if x = g(x).

The fixed point theory is a powerful tool for finding solutions of problems in the form
of equations and inequalities. One of the remarkable results in the metric fixed point the-
ory is the so-called Banach contraction principle [6] which states that every contraction
on a complete metric space always has a unique fixed point. The principle has been stud-
ied and generalized in many directions, see, e.g., [2, 5, 8, 10, 14, 17, 20, 23, 41, 43] and
references therein.

In 2011, Karapınar and Taş [24] combined the ideas of [14], [23] and [44] to introduce the
concept of Suzuki-Kannan-Ćirić type mappings and prove the existence of fixed points for
such kind of mappings. In 2015, Chang et al. [9] extended the results of [24] to the setting
of multi-valued Suzuki-Kannan-Ćirić type mappings.

The concept of endpoints for multi-valued mappings is an important concept which
is weaker than the concept of fixed points for single-valued mappings and stronger than
the concept of fixed points for multi-valued mappings. In 1986, Corley [15] proved that a
maximization with respect to a cone was equivalent to the problem of finding an endpoint
of a certain multi-valued mapping. In 1997, Tarafdar and Yuan [47] proved the existence of
Pareto optima for multi-valued mappings by using the concept of endpoints. For further
applications of the endpoint theory, the reader is referred to [3, 21, 26, 27, 46, 48].

In 2015, Panyanak [38] proved the existence of endpoints for multi-valued nonexpan-
sive mappings in uniformly convex Banach spaces as well as Banach spaces which satisfy
the Opial’s condition. It was quickly noted by Espı́nola et al. [18] that the results of
Panyanak can be extended to more general classes of Banach spaces. In 2016, Saejung
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[42] obtained endpoint theorems for some generalized multi-valued nonexpansive map-
pings in certain classes of Banach spaces. Since then endpoint results for some generalized
multi-valued nonexpansive mappings in several classes of metric and Banach spaces have
been developed and many papers have appeared (see, e.g., [11, 12, 22, 29, 31, 32, 35, 39,
40]).

In this paper, we introduce the concept of generalized Suzuki-Kannan-Ćirić type for
multi-valued mappings and show that it is more general than the concept of Suzuki-
Kannan-Ćirić type mappings. We also give sufficient conditions for the existence of end-
points for generalized Suzuki-Kannan-Ćirić type mappings in uniformly convex hyper-
bolic spaces with monotone moduli of uniform convexity. Moreover, we also prove the
strong and ∆−convergence theorems of the Kuhfitting iteration for the class of general-
ized Suzuki-Kannan-Ćirić type mappings. Our results extend and improve the results of
[9, 12, 24, 29, 44] and many others.

2. PRELIMINARIES

Throughout this paper, N stands for the set of natural numbers and R stands for the set
of real numbers. Let (M,ρ) be a metric space, ∅ ̸= D ⊆ M and x ∈ M. The distance from
x to D is defined by

dist(x,D) := inf{ρ(x, y) : y ∈ D}.
The radius of D relative to x is defined by

R(x,D) := sup{ρ(x, y) : y ∈ D}.

We denote by CB(D) the family of nonempty closed bounded subsets of D and by K(D)
the family of nonempty compact subsets of D. The Pompeiu-Hausdorff distance on CB(D)
is defined by

(2.2) H(A,B) := max

{
sup
a∈A

dist(a,B), sup
b∈B

dist(b, A)
}
,

for all A,B ∈ CB(D).

Now, we collect some basic properties of the radius and the Pompeiu-Hausdorff dis-
tance.

Proposition 2.1. Let (M,ρ) be a metric space, x, y ∈ M and A,B,C ∈ CB(M). Then the
following conclusions hold:

(i) R(x,B) = H({x}, B).
(ii) R(x,B) ≤ R(x,A) +H(A,B).
(iii) R(x,B) ≤ ρ(x, y) +R(y,B).
(iv) H(A,C) ≤ H(A,B) +H(B,C).

Proof. (i) follows from (2.2) by choosing A = {x}. For (ii) we let a ∈ A and b ∈ B. Then
ρ(x, b) ≤ ρ(x, a) + ρ(a, b) ≤ R(x,A) + ρ(a, b). Since a ∈ A is arbitrary, we get

ρ(x, b) ≤ R(x,A) + dist(b, A) ≤ R(x,A) +H(B,A).

Since b ∈ B is arbitrary, we have R(x,B) ≤ R(x,A) +H(A,B). (iii) follows from (i) and
(ii) by choosing A = {y}. (iv) follows from Theorem 2.1.7 of [45]. □

A mapping S from D into CB(M) is called a multi-valued mapping. In particular, if Sx
is a singleton for all x in D, then S is called a single-valued mapping. A point x in D is
called a fixed point of S if x ∈ Sx. Moreover, if Sx = {x}, then x is called an endpoint of
S. We denote by F (S); the set of all fixed points of S, and by E(S); the set of all endpoints
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of S. It is clear that E(S) ⊆ F (S) for every multi-valued mapping S. Notice also that the
following statements hold:

(i) x ∈ F (S) if and only if dist(x, Sx) = 0.
(ii) x ∈ E(S) if and only if R(x, Sx) = 0.

A sequence {xn} in D is called an approximate endpoint sequence of S [4] if

lim
n→∞

R(xn, Sxn) = 0.

Moreover, if {Si : i ∈ I} is a family of multi-valued mappings from D into CB(M),
then {xn} is called an approximate common endpoint sequence of {Si : i ∈ I} [1] if
lim
n→∞

R(xn, Sixn) = 0 for all i ∈ I.

Definition 2.1. A mapping S : D → CB(M) is said to be

(i) Suzuki-Kannan-Ćirić type (SKC-type in short) if each x, y ∈ D, the condition
1
2dist(x, Sx) ≤ ρ(x, y) implies H(Sx, Sy) ≤ NS(x, y), where

NS(x, y) := max
{
ρ(x, y),

1

2
{dist(x, Sx) + dist(y, Sy)}, 1

2
{dist(x, Sy) + dist(y, Sx)}

}
;

(ii) quasi-nonexpansive if F (S) ̸= ∅ and

H(Sx, Sp) ≤ ρ(x, p) for all x ∈ D and p ∈ F (S);

(iii) semi-nonexpansive if E(S) ̸= ∅ and

H(Sx, Sq) ≤ ρ(x, q) for all x ∈ D and q ∈ E(S).

It is known from [9] that if S is SKC-type and F (S) ̸= ∅, then S is quasi-nonexpansive.
Also notice that if S is quasi-nonexpansive and E(S) ̸= ∅, then S is semi-nonexpansive,
see [37]. Moreover, by using the proof of Lemma 1.12 in [9], we can obtain the following
result.

Lemma 2.1. Let D be a nonempty subset of a metric space (M,ρ) and S : D → CB(M) an
SKC-type mapping. Let x, y ∈ D and ux ∈ Sx. Then the following conclusions hold:

(i) H(Sx, Sux) ≤ ρ(x, ux).
(ii) Either 1

2dist(x, Sx) ≤ ρ(x, y) or 1
2dist(ux, Sux) ≤ ρ(y, ux).

(iii) Either H(Sx, Sy) ≤ NS(x, y) or H(Sy, Sux) ≤ NS(y, ux).

As a consequence of Lemma 2.1, we obtain the following corollary.

Corollary 2.1. Let D be a nonempty subset of a metric space (M,ρ) and S : D → CB(M) an
SKC-type mapping. Let x, y ∈ D and ux ∈ Sx. Then the following conclusions hold:

(i) H(Sx, Sux) ≤ R(x, Sx).
(ii) Either H(Sx, Sy) ≤ LS(x, y) or H(Sy, Sux) ≤ LS(y, ux), where

LS(x, y) := max
{
ρ(x, y),

1

2
{R(x, Sx) +R(y, Sy)}, 1

2
{R(x, Sy) +R(y, Sx)}

}
.

The following result can be viewed as a counterpart of Lemma 1.13 in [9].

Proposition 2.2. Let D be a nonempty subset of a metric space (M,ρ) and S : D → CB(M) an
SKC-type mapping. If x, y ∈ D, then

(2.3) R(x, Sy) ≤ 7R(x, Sx) + ρ(x, y).

Proof. By Corollary 2.1, for any ux∈Sx, we have either H(Sx, Sy)≤LS(x, y) or H(Sy, Sux)
≤LS(y, ux).

Case 1. H(Sx, Sy) ≤ LS(x, y).
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(1.1) If LS(x, y) = ρ(x, y), then by Proposition 2.1, we get

R(x, Sy) ≤ R(x, Sx) +H(Sx, Sy) ≤ R(x, Sx) + ρ(x, y).

(1.2) If LS(x, y) =
1
2{R(x, Sx) +R(y, Sy)}, then

R(x, Sy) ≤ R(x, Sx) +H(Sx, Sy)

≤ R(x, Sx) +
1

2
{R(x, Sx) +R(y, Sy)}

≤ R(x, Sx) +
1

2
{R(x, Sx) + ρ(y, x) +R(x, Sy)}.

This implies R(x, Sy) ≤ 3R(x, Sx) + ρ(x, y).
(1.3) If LS(x, y) =

1
2{R(x, Sy) +R(y, Sx)}, then

R(x, Sy) ≤ R(x, Sx) +H(Sx, Sy)

≤ R(x, Sx) +
1

2
{R(x, Sy) +R(y, Sx)}

≤ R(x, Sx) +
1

2
{R(x, Sy) + ρ(y, x) +R(x, Sx)}.

This implies R(x, Sy) ≤ 3R(x, Sx) + ρ(x, y).
Case 2. H(Sy, Sux) ≤ LS(y, ux).
(2.1) If LS(y, ux) = ρ(y, ux), then by Proposition 2.1 and Corollary 2.1, we have

R(x, Sy) ≤ R(x, Sx) +H(Sx, Sux) +H(Sux, Sy)

≤ R(x, Sx) +R(x, Sx) + ρ(y, ux)

≤ 2R(x, Sx) + ρ(y, x) + ρ(x, ux)

≤ 3R(x, Sx) + ρ(x, y).

(2.2) If LS(y, ux) = 1
2{R(y, Sy) + R(ux, Sux)}, then by Proposition 2.1 and Corollary

2.1, we have

R(x, Sy) ≤ R(x, Sx) +H(Sx, Sux) +H(Sux, Sy)

≤ R(x, Sx) +R(x, Sx) +
1

2
{R(y, Sy) +R(ux, Sux)}

≤ 2R(x, Sx) +
1

2
{ρ(y, x) +R(x, Sy)}

+
1

2
{ρ(ux, x) +R(x, Sx) +H(Sx, Sux)}

≤ 2R(x, Sx) +
1

2
{ρ(x, y) +R(x, Sy)}+ 3

2
R(x, Sx).

This implies R(x, Sy) ≤ 7R(x, Sx) + ρ(x, y).
(2.3) If LS(y, ux) = 1

2{R(y, Sux) + R(ux, Sy)}, then by Proposition 2.1 and Corollary
2.1, we have

R(x, Sy) ≤ R(x, Sx) +H(Sx, Sux) +H(Sux, Sy)

≤ R(x, Sx) +R(x, Sx) +
1

2
{R(y, Sux) +R(ux, Sy)}

≤ 2R(x, Sx) +
1

2
{ρ(y, x) +R(x, Sx) +H(Sx, Sux)}

+
1

2
{ρ(ux, x) +R(x, Sy)}

≤ 2R(x, Sx) +
1

2
{ρ(x, y) + 2R(x, Sx)}+ 1

2
{R(x, Sx) +R(x, Sy)}.
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This implies R(x, Sy) ≤ 7R(x, Sx) + ρ(x, y). Hence, the proof is completed. □

The previous result leads us to introduce the concept of generalized SKC-type map-
pings as the following definition.

Definition 2.2. Let D be a nonempty subset of a metric space (M,ρ). A multi-valued
mapping S : D → CB(M) is said to be generalized SKC-type if there exists µ ≥ 0 such
that

(2.4) R(x, Sy) ≤ µR(x, Sx) + ρ(x, y), for all x, y ∈ D.

Now, we establish the relationships between SKC-type, generalized SKC-type, and
semi-nonexpansive mappings.

Proposition 2.3. Let S : D → CB(M) be a multi-valued mapping. Then the following state-
ments hold:

(i) If S is SKC-type, then S is generalized SKC-type.
(ii) If S is generalized SKC-type and E(S) ̸= ∅, then S is semi-nonexpansive.

Proof. (i) follows from Proposition 2.2 with µ = 7. For (ii) we let q ∈ E(S) and x ∈ D. It
follows from (2.4) and Proposition 2.1 that

H(Sq, Sx) = H({q}, Sx) = R(q, Sx) ≤ µR(q, Sq) + ρ(q, x) = ρ(q, x).

Hence, S is semi-nonexpansive. □

The following examples show that the converses of (i) and (ii) in Proposition 2.3 are not
true. Notice also that Example 2.2 below is a modification of Example 2 in [19].

Example 2.1. Let M = R, D = [0, 2] and S : D → CB(M) be defined by

Sx =

{[
0, x

2

]
if x ̸= 2;

{1} if x = 2.

It is known from [13] that S is not SKC-type. Now, we show that S is generalized SKC-
type. Let x, y ∈ D.

Case 1. If x = y = 2, then R(x, Sy) = R(x, Sx) = R(x, Sx) + |x− y|.
Case 2. If x = 2 and y ∈ [0, 2), then

R(x, Sy) = 2 ≤ 2 + (2− y) = 2R(x, Sx) + |x− y|.
Case 3. If x ∈ [0, 2) and y = 2, then

R(x, Sy) = |x− 1| ≤ 2 = x+ (2− x) = R(x, Sx) + |x− y|.
Case 4. If x, y ∈ [0, 2) and x ≥ y, then R(x, Sy) = x ≤ R(x, Sx) + |x− y|. On the other

hand, if x, y ∈ [0, 2) and x < y, then

R(x, Sy) = max{x, y
2
− x} ≤ y = x+ (y − x) = R(x, Sx) + |x− y|.

Therefore, S is a generalized SKC-type mapping with µ = 2.

Example 2.2. Let M = R, D = [0, 1] and S : D → CB(M) be defined by

Sx =

{[∣∣x(1− x) sin( 1x )
∣∣ , ∣∣ x

1+x sin( 1x )
∣∣] if x ̸= 0;

{0} if x = 0.

Then E(S) = {0}. For x ∈ (0, 1], we have

(2.5) H(Sx, S0) =

∣∣∣∣ x

1 + x
sin(

1

x
)

∣∣∣∣ ≤ ∣∣∣∣ x

1 + x

∣∣∣∣ ≤ |x− 0|.
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This implies that S is semi-nonexpansive. For each n ∈ N, we set xn := 1
2πn+π/2 and

yn := 1
2πn . Then Sxn =

[
xn(1− xn),

xn

1+xn

]
, Syn = {0} and R(xn, Syn) = xn. Notice from

(2.5) that R(xn, Sxn) = xn − xn(1− xn) = x2
n. Thus,

R(xn, Syn)− |xn − yn|
R(xn, Sxn)

=
xn − (yn − xn)

x2
n

=
2xn − yn

x2
n

=
( 2

2πn+ π/2
− 1

2πn

)
(2πn+ π/2)2

=
(4πn− 2πn− π/2)(2πn+ π/2)

2πn

=
(2πn)2 − (π/2)2

2πn
→ ∞.

This implies that S is not generalized SKC-type.

The concept of uniformly convex hyperbolic spaces is introduced by Leuştean [33].

Definition 2.3. A hyperbolic space is a metric space (M,ρ) together with a function W
from M ×M × [0, 1] into M such that for x, y, z, u ∈ M and s, t ∈ [0, 1], we have

(W1) ρ(z,W (x, y, s)) ≤ (1− s)ρ(z, x) + sρ(z, y);
(W2) ρ(W (x, y, s),W (x, y, t)) = |s− t|ρ(x, y);
(W3) W (x, y, s) = W (y, x, 1− s);
(W4) ρ(W (x, z, s),W (y, u, s)) ≤ (1− s)ρ(x, y) + sρ(z, u).

To be convenient, from now on, we will use the notation (1 − s)x ⊕ sy instead of
W (x, y, s). A nonempty subset D of M is said to be convex if (1 − s)x ⊕ sy ∈ D for
all x, y ∈ D and s ∈ [0, 1]. The hyperbolic space (M,ρ) is said to be uniformly convex if
each r ∈ (0,∞) and ε ∈ (0, 2], there exists δ ∈ (0, 1] such that

ρ
(1
2
x⊕ 1

2
y, z

)
≤ (1− δ)r,

for all x, y, z ∈ M with ρ(x, z) ≤ r, ρ(y, z) ≤ r and ρ(x, y) ≥ rε.
In this case, we call δ a modulus of uniform convexity. In particular, if δ is a nonin-

creasing function of r for every fixed ε, then we call it a monotone modulus of uniform
convexity. It is well-known that every uniformly convex Banach space is a uniformly
convex hyperbolic space. Also notice that every CAT(0) space is a uniformly convex hy-
perbolic space, see, e.g., [33]. From now on, M stands for a complete uniformly convex
hyperbolic space with a monotone modulus of uniform convexity. The following fact can
be found in [25].

Lemma 2.2. Let p ∈ M and {αn} be a sequence in [a, b] for some a, b ∈ (0, 1). Let {xn} and
{yn} be sequences in M such that lim sup

n→∞
ρ(xn, p) ≤ c, lim sup

n→∞
ρ(yn, p) ≤ c, and lim

n→∞
ρ((1 −

αn)xn ⊕ αnyn, p) = c for some c ≥ 0. Then lim
n→∞

ρ(xn, yn) = 0.

Let D be a nonempty subset of M and {xn} be a bounded sequence in M. The asymp-
totic radius of {xn} relative to D is defined by

r(D, {xn}) := inf
{
lim sup
n→∞

ρ(xn, x) : x ∈ D
}
.

The asymptotic center of {xn} relative to D is defined by

A(D, {xn}) :=
{
x ∈ D : lim sup

n→∞
ρ(xn, x) = r(D, {xn})

}
.
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It is known from [34] that if D is a nonempty closed convex subset of M , then A(D, {xn})
consists of exactly one point. Now, we give the concept of ∆−convergence and collect
some of its basic properties.

Definition 2.4. Let D be a nonempty closed convex subset of M and x ∈ D. Let {xn} be a
bounded sequence in M. We will say that {xn}∆−converges to x if A(D, {un}) = {x} for
every subsequence {un} of {xn}. In this case we write xn

∆−→ x and call x the ∆−limit of
{xn}.

It is known from [28] that every bounded sequence in X has a ∆−convergent subse-
quence. The following fact is a consequence of Lemma 2.8 in [16].

Lemma 2.3. Let D be a nonempty closed convex subset of M and {xn} a bounded sequence in
M. If A(D, {xn}) = {x} and {un} is a subsequence of {xn} with A(D, {un}) = {u} and the
sequence {ρ(xn, u)} converges, then x = u.

Definition 2.5. Let D be a nonempty closed subset of M and S : D → CB(M). Let ID be
the identity mapping on D. We say that ID − S is strongly semiclosed if for any sequence
{xn} in D, the conditions xn → x and R(xn, Sxn) → 0 imply Sx = {x}. Moreover, if D
is closed and convex, then ID − S is said to be semiclosed if for any sequence {xn} in D

such that xn
∆−→ x and R(xn, Sxn) → 0, one has Sx = {x}.

Obviously, if ID − S is semiclosed, then it is strongly semiclosed. Moreover, by using
Lemma 2.3 along with the proof of Lemma 3.3 in [31], we can obtain the following result.

Lemma 2.4. Let D be a nonempty closed convex subset of M and S : D → CB(D) a mapping
such that ID−S is semiclosed. If {xn} is a bounded sequence in D such that lim

n→∞
R(xn, Sxn) = 0

and {ρ(xn, v)} converges for all v ∈ E(S), then ωw(xn) ⊆ E(S). Here ωw(xn) :=
⋃
A(D, {un})

where the union is taken over all subsequences {un} of {xn}. Moreover, ωw(xn) consists of exactly
one point.

The following fact is also needed.

Lemma 2.5. Let D be a nonempty closed subset of M and S : D → CB(D) a multi-valued
mapping. If ID − S is strongly semiclosed, then E(S) is closed.

Proof. Let {xn} be a sequence in E(S) such that lim
n→∞

xn = x. Then R(xn, Sxn) = 0 for

all n ∈ N. It follows from the strong semiclosedness of ID − S that Sx = {x}, and hence
x ∈ E(S). This shows that E(S) is closed. □

3. ENDPOINT THEOREMS

This section is begun by proving the semiclosed principle for generalized SKC-type
mappings in uniformly convex hyperbolic spaces. Notice that it is an extension of Lemma
3.1 in [12].

Theorem 3.1. Let D be a nonempty closed convex subset of M and S : D → CB(D) a generalized
SKC-type mapping with µ ≥ 0 then ID − S is semiclosed.

Proof. Let {xn} be a sequence in D such that xn
∆−→ x and R(xn, Sxn) → 0. Let v ∈ Sx. By

(2.4) we have
ρ(xn, v) ≤ R(xn, Sx) ≤ µR(xn, Sxn) + ρ(xn, x).

This implies that lim sup
n→∞

ρ(xn, v) ≤ lim sup
n→∞

ρ(xn, x) and so v ∈ A(D, {xn}) = {x}. Thus,

v = x for all v ∈ Sx. This shows that Sx = {x} and hence the proof is complete. □
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Now, we prove a common endpoint theorem.

Theorem 3.2. Let D be a nonempty closed convex subset of M and {Si : i ∈ I} a family of
generalized SKC-type mappings from D into CB(D). If {Si : i ∈ I} has a bounded approximate
common endpoint sequence in D, then it has a common endpoint in D.

Proof. Let {xn} be a bounded approximate common endpoint sequence of {Si : i ∈ I}. As
we have observed, there exists a subsequence {xnk

} of {xn} such that xnk

∆−→ x ∈ D. It
follows from Theorem 3.1 that Six = {x} for all i ∈ I. Thus, x is a common endpoint of
{Si : i ∈ I}. □

As a consequence of Theorem 3.2, we obtain the following result.

Corollary 3.2. Let D be a nonempty closed convex subset of M and S : D → CB(D) a generalized
SKC-type mapping. If S has a bounded approximate endpoint sequence in D, then S has an
endpoint in D.

The following result can be viewed as an extension of Theorem 3.2 in [32].

Theorem 3.3. Let D be a nonempty closed convex subset of M and {Si : i ∈ I} a family of
generalized SKC-type mappings from D into CB(D). Suppose there exist two disjoint subsets A
and B of I such that A∪B = I. Also, suppose each i ∈ A, Si has a bounded approximate endpoint
sequence in ∩j∈BE(Sj) then {Si : i ∈ I} has a common endpoint in D.

Proof. Fix i ∈ A and let {xn} be a bounded approximate endpoint sequence of Si in
∩j∈BE(Sj). Without loss of generality, we may assume that xn

∆−→ x ∈ D. According
to Theorem 3.1, x ∈ E(Si); fixing j ∈ B and letting w ∈ Sjx, since Sj is generalized
SKC-type so there exists µj ≥ 0 such that

ρ(xn, w) ≤ R(xn, Sjx) ≤ µjR(xn, Sjxn) + ρ(xn, x) for all n ∈ N.
This implies lim sup

n→∞
ρ(xn, w) ≤ lim sup

n→∞
ρ(xn, x) and hence w ∈ A(D, {xn}) = {x}. Thus,

w = x for all w ∈ Sjx and therefore Sjx = {x}. This shows that x is a common endpoint
of {Si : i ∈ I}. □

Corollary 3.3. Let D be a nonempty closed convex subset of M and S, T : D → CB(D) be
generalized SKC-type mappings. Suppose that S has a bounded approximate endpoint sequence in
E(T ). Then S and T has a common endpoint in D.

4. CONVERGENCE THEOREMS

In this section, we prove strong and ∆−convergence theorems of the Kuhfitting itera-
tion [30] for finding a common endpoint of generalized SKC-type mappings. Let D be a
nonempty convex subset of M and Si : D → K(D) (i = 1, 2, ...,m) be a finite family of
multi-valued mappings. For each i ∈ {1, 2, ...,m}, let {αn,i} be a sequence in [0, 1]. The
sequence of Kuhfitting iteration is defined by given x1 ∈ D and for n ∈ N, we let

(4.6)



yn,1 = (1− αn,1)xn ⊕ αn,1zn,1

yn,2 = (1− αn,2)xn ⊕ αn,2zn,2
...
yn,m−1 = (1− αn,m−1)xn ⊕ αn,m−1zn,m−1

xn+1 = (1− αn,m)xn ⊕ αn,mzn,m,

where zn,1 ∈ S1xn such that ρ(xn, zn,1) = R(xn, S1xn) and zn,i ∈ Siyn,i−1 such that
ρ(xn, zn,i) = R(xn, Siyn,i−1) for i ∈ {2, 3, ...,m}.
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A sequence {xn} in M is said to be Fejér monotone with respect to D [7] if ρ(xn+1, p) ≤
ρ(xn, p) for all p ∈ D and n ∈ N. The following result shows that the sequence of Kuhfit-
ting iteration is Fejér monotone with respect to the common endpoint set of generalized
SKC-type mappings.

Lemma 4.6. Let D be a nonempty convex subset of M and Si : D → K(D) (i = 1, 2, ...,m) be a
finite family of generalized SKC-type mappings such that E := ∩m

i=1E(Si) ̸= ∅. Let {xn} be the
sequence of Kuhfitting iteration defined by (4.6). Then {xn} is Fejér monotone with respect to E.

Proof. Let p ∈ E. By Proposition 2.3, Si is semi-nonexpansive for all i ∈ {1, 2, ...,m}. For
each n ∈ N and i ∈ {1, 2, ...,m− 1}, we have

ρ(yn,i, p) ≤ (1− αn,i)ρ(xn, p) + αn,iρ(zn,i, p)

≤ (1− αn,i)ρ(xn, p) + αn,iH(Sixn, Sip)

≤ ρ(xn, p).(4.7)

This implies that

ρ(xn+1, p) ≤ (1− αn,m)ρ(xn, p) + αn,mρ(zn,m, p)

≤ (1− αn,m)ρ(xn, p) + αn,mH(Smyn,m−1, Smp)

≤ (1− αn,m)ρ(xn, p) + αn,mρ(yn,m−1, p)

≤ ρ(xn, p).(4.8)

Thus, {xn} is Fejér monotone with respect to E. □

Now, we prove ∆−convergence theorem.

Theorem 4.4. Let D be a nonempty closed convex subset of M and Si : D → K(D) (i =
1, 2, ...,m) be a finite family of generalized SKC-type mappings such that E := ∩m

i=1E(Si) ̸= ∅.
Let {αn,i} ⊂ [a, b] ⊂ (0, 1) (i = 1, 2, ...,m), and {xn} be the sequence of Kuhfitting iteration
defined by (4.6). Then {xn} ∆−converges to a common endpoint of {S1, S2, ..., Sm}.

Proof. For each i ∈ {1, 2, ...,m}, there exists µi ≥ 0 such that

(4.9) R(x, Siy) ≤ µiR(x, Six) + ρ(x, y) for all x, y ∈ D.

We will show that

(4.10) lim
n→∞

R(xn, Sixn) = 0 for all i ∈ {1, 2, ...,m}.

Fix p ∈ E. By Lemma 4.6, lim
n→∞

ρ(xn, p) = c for some c ≥ 0. If c = 0, then for each

i ∈ {1, 2, ...,m} we have

R(xn, Sixn) ≤ ρ(xn, p) +R(p, Sixn)

= ρ(xn, p) +H(Sip, Sixn)

≤ 2ρ(xn, p) → 0 as n → ∞.

If c > 0, then by (4.7) we have

(4.11) lim sup
n→∞

ρ(yn,i, p) ≤ c for all i ∈ {1, 2, ...,m− 1}.

We note that ρ(zn,1, p) = dist(zn,1, S1p) ≤ H(S1xn, S1p) ≤ ρ(xn, p) and for each i ∈
{2, 3, ...,m}, we have

ρ(zn,i, p) = dist(zn,i, Sip) ≤ H(Siyn,i−1, Sip) ≤ ρ(yn,i−1, p).
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It follows that lim sup
n→∞

ρ(zn,i, p) ≤ c for all i ∈ {1, 2, ...,m}. Since lim
n→∞

ρ(xn+1, p) = lim
n→∞

ρ((1−

αn,m)xn ⊕ αn,mzn,m, p) = c, by Lemma 2.2 we have

(4.12) lim
n→∞

ρ(xn, zn,m) = 0.

On the other hand, it follows from (4.8) that

ρ(xn, p) ≤ ρ(xn, p)− ρ(xn+1, p)

αn,m
+ ρ(yn,m−1, p)

≤ ρ(xn, p)− ρ(xn+1, p)

a
+ ρ(yn,m−1, p),

which implies c ≤ lim inf
n→∞

ρ(yn,m−1, p). This, together with (4.11), implies that lim
n→∞

ρ(yn,m−1, p)=

c. Also, by Lemma 2.2 we have lim
n→∞

ρ(xn, zn,m−1)= 0. Since ρ(yn,m−1, p) ≤ (1−αn,m−1)ρ(xn, p)+

αn,m−1ρ(yn,m−2, p), we have

ρ(xn, p) ≤ ρ(xn, p)− ρ(yn,m−1, p)

αn,m−1
+ ρ(yn,m−2, p)

≤ ρ(xn, p)− ρ(yn,m−1, p)

a
+ ρ(yn,m−2, p),

which implies c≤ lim inf
n→∞

ρ(yn,m−2, p). This, together with (4.11), implies that lim
n→∞

ρ(yn,m−2, p)=

c. By Lemma 2.2, we have lim
n→∞

ρ(xn, zn,m−2) = 0. Similarly, we can show that for each

i ∈ {1, 2, ...,m− 3},
(4.13) lim

n→∞
ρ(yn,i, p) = c and lim

n→∞
ρ(xn, zn,i) = 0.

Thus, for each i ∈ {1, 2, ...,m− 1}, we have

(4.14) ρ(yn,i, xn) ≤ αn,iρ(zn,i, xn) → 0 as n → ∞
and

(4.15) R(xn, Siyn,i−1) = ρ(xn, zn,i) → 0 as n → ∞.

From (4.12), we have lim
n→∞

R(xn, S1xn) = 0. For i ∈ {2, 3, ...,m}, by (4.9), (4.14) and (4.15),
we have

R(xn, Sixn) ≤ ρ(xn, yn,i−1) +R(yn,i−1, Sixn)

≤ ρ(xn, yn,i−1) + µiR(yn,i−1, Siyn,i−1) + ρ(yn,i−1, xn)

≤ 2ρ(xn, yn,i−1) + µi{ρ(yn,i−1, xn) +R(xn, Siyn,i−1)}
→ 0 as n → ∞.

Hence, (4.10) helds. By Lemma 4.6, {ρ(xn, v)} converges for all v ∈ E. By Lemma 2.4,
ωw(xn) consists of exactly one point and is contained in E. This shows that {xn}∆−converges
to an element of E. □

Next, we prove strong convergence theorems. A family of mappings {S1, S2, ..., Sm}
from D into K(D) is said to satisfy condition (J) [36] if E := ∩m

i=1E(Si) ̸= ∅ and there exists
a nondecreasing function g : [0,∞) → [0,∞) with g(0) = 0, g(r) > 0 for r ∈ (0,∞) and

(4.16) max
1≤i≤m

{R(x, Six)} ≥ g(dist(x,E)) for all x ∈ D.

The following fact can be found in [12].

Lemma 4.7. Let D be a nonempty closed subset of M and {xn} a Fejér monotone sequence with
respect to D. Then {xn} converges strongly to an element of D if and only if lim

n→∞
dist(xn, D) = 0.
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Theorem 4.5. Let D be a nonempty closed convex subset of M and Si : D → K(D) (i =
1, 2, ...,m) be a finite family of generalized SKC-type mappings which satisfies condition (J). Let
{αn,i} ⊂ [a, b] ⊂ (0, 1) (i = 1, 2, ...,m), and {xn} be the sequence of Kuhfitting iteration defined
by (4.6). Then {xn} converges strongly to a common endpoint of {S1, S2, ..., Sm}.

Proof. Let E = ∩m
i=1E(Si). It follows from Lemmas 3.1 and 2.5 that E is closed. By (4.10)

and (4.16) we get lim
n→∞

g(dist(xn, E)) = 0 and hence lim
n→∞

dist(xn, E) = 0. By Lemma 4.6,

{xn} is Fejér monotone with respect to E. The conclusion follows from Lemma 4.7. □

A mapping S : D → K(D) is said to be semicompact [36] if any sequence {xn} in D
with lim

n→∞
R(xn, Sxn) = 0, there exists a subsequence {xnk

} of {xn} such that lim
k→∞

xnk
=

q ∈ D.

Theorem 4.6. Let D be a nonempty convex subset of M and Si : D → K(D) (i = 1, 2, ...,m) be
a finite family of generalized SKC-type mappings such that ∩m

i=1E(Si) ̸= ∅ and Sj is semicompact
for some j ∈ {1, 2, ...,m}. Let {αn,i} ⊂ [a, b] ⊂ (0, 1) (i = 1, 2, ...,m), and {xn} be the sequence
of Kuhfitting iteration defined by (4.6). Then {xn} converges strongly to a common endpoint of
{S1, S2, ..., Sm}.

Proof. Since Sj is semicompact, by (4.10) there exists a subsequence {xnk
} of {xn} such

that xnk
→ q ∈ D. For each i ∈ {1, 2, ...,m}, there exists µi ≥ 0 such that

R(xnk
, Siq) ≤ µiR(xnk

, Sixnk
) + ρ(xnk

, q) for all k ∈ N.

This implies that

R(q, Siq) ≤ ρ(q, xnk
) +R(xnk

, Siq)

≤ 2ρ(xnk
, q) + µiR(xnk

, Sixnk
) → 0 as k → ∞.

Thus q ∈ E(Si) for all i ∈ {1, 2, ...,m}. According to Lemma 4.6, lim
n→∞

ρ(xn, q) exists and

hence q is the strong limit of {xn}. □
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[40] Panyanak, B. The demiclosed principle for multi-valued nonexpansive mappings in Banach spaces. J. Non-
linear Convex Anal. 17 (2016), 2063–2070.

[41] Reich, S.; Zaslavski, A. J. A note on Rakotch contractions. Fixed Point Theory 9 (2008), 267–273.
[42] Saejung, S. Remarks on endpoints of multivalued mappings in geodesic spaces. Fixed Point Theory Appl.

2016:52 (2016), 1–12.
[43] Suzuki, T. A generalized Banach contraction principle that characterizes metric completeness. Proc. Amer.

Math. Soc. 136 (2008), 1861–1869.
[44] Suzuki, T. Fixed point theorems and convergence theorems for some generalized nonexpansive mappings.

J. Math. Anal. Appl. 340 (2008), 1088–1095.
[45] Takahashi, W. Nonlinear functional analysis. Fixed point theory and its applications. Yokohama Publishers,

Yokohama, (2000).
[46] Tarafdar, E.; Watson, P.; Yuan, X. Z. Poincare’s recurrence theorems for set-valued dynamical systems. Appl.

Math. Lett. 10 (1997), 37–44.
[47] Tarafdar, E.; Yuan, X. Z. The set-valued dynamic system and its applications to Pareto optima. Acta Appl.

Math. 46 (1997), 93–106.
[48] Turinici, M. Differential Lipschitzianness tests on abstract quasimetric spaces. Acta Math. Hungar. 41 (1983),

93–100

1DEPARTMENT OF MATHEMATICS AND COMPUTING SCIENCES

MAHIDOL WITTAYANUSORN SCHOOL

NAKORN PATHOM 73170, THAILAND

2RESEARCH GRUP IN MATHEMATICS AND APPLIED MATHEMATICS, DEPARTMENT OF MATHEMATICS

FACULTY OF SCIENCE, CHIANG MAI UNIVERSITY

CHIANG MAI 50200, THAILAND

3DEPARTMENT OF MATHEMATICS

DATA SCIENCE RESEARCH CENTER

FACULTY OF SCIENCE, CHIANG MAI UNIVERSITY, CHIANG MAI 50200, THAILAND


