CARPATHIAN J. MATH. Volume **38** (2022), No. 2, Pages 445 - 457 Online version at https://semnul.com/carpathian/ Print Edition: ISSN 1584 - 2851; Online Edition: ISSN 1843 - 4401 DOI: https://doi.org/10.37193/CJM.2022.02.14

Common endpoints of generalized Suzuki-Kannan-Ćirić type mappings in hyperbolic spaces

T. LAOKUL¹, B. PANYANAK^{2,3}, N. PHUDOLSITTHIPHAT^{2,3} and S. SUANTAI^{2,3}

ABSTRACT. In this paper, we introduce the concept of generalized Suzuki-Kannan-Ćirić type mappings in metric spaces and show that it is weaker than the concept of Suzuki-Kannan-Ćirić type mappings but stronger than the concept of semi-nonexpansive mappings. Moreover, we obtain the semiclosed principle and endpoint theorems for the class of generalized Suzuki-Kannan-Ćirić type mappings. The strong and Δ -convergence theorems of the Kuhfitting iteration for this class of mappings are also discussed.

1. INTRODUCTION

Let *D* be a nonempty subset of a metric space (M, ρ) . A mapping *g* from *D* into *D* is a contraction if there exists a constant λ in [0, 1) such that

(1.1) $\rho(g(x), g(y)) \le \lambda \rho(x, y), \text{ for all } x, y \in D.$

Moreover, if (1.1) holds when $\lambda = 1$, then *g* is said to be nonexpansive. A point *x* in *D* is called a fixed point of *g* if x = g(x).

The fixed point theory is a powerful tool for finding solutions of problems in the form of equations and inequalities. One of the remarkable results in the metric fixed point theory is the so-called Banach contraction principle [6] which states that every contraction on a complete metric space always has a unique fixed point. The principle has been studied and generalized in many directions, see, e.g., [2, 5, 8, 10, 14, 17, 20, 23, 41, 43] and references therein.

In 2011, Karapınar and Taş [24] combined the ideas of [14], [23] and [44] to introduce the concept of Suzuki-Kannan-Ćirić type mappings and prove the existence of fixed points for such kind of mappings. In 2015, Chang et al. [9] extended the results of [24] to the setting of multi-valued Suzuki-Kannan-Ćirić type mappings.

The concept of endpoints for multi-valued mappings is an important concept which is weaker than the concept of fixed points for single-valued mappings and stronger than the concept of fixed points for multi-valued mappings. In 1986, Corley [15] proved that a maximization with respect to a cone was equivalent to the problem of finding an endpoint of a certain multi-valued mapping. In 1997, Tarafdar and Yuan [47] proved the existence of Pareto optima for multi-valued mappings by using the concept of endpoints. For further applications of the endpoint theory, the reader is referred to [3, 21, 26, 27, 46, 48].

In 2015, Panyanak [38] proved the existence of endpoints for multi-valued nonexpansive mappings in uniformly convex Banach spaces as well as Banach spaces which satisfy the Opial's condition. It was quickly noted by Espínola et al. [18] that the results of Panyanak can be extended to more general classes of Banach spaces. In 2016, Saejung

2010 Mathematics Subject Classification. 47H09, 47H10.

Received: 24.04.2021. In revised form: 17.10.2021. Accepted: 24.10.2021

Key words and phrases. Endpoint, Suzuki-Kannan-Ćirić type mapping, semi-nonexpansive mapping, Kuhfitting iteration, uniformly convex hyperbolic space.

Corresponding author: B. Panyanak; bancha.p@cmu.ac.th

[42] obtained endpoint theorems for some generalized multi-valued nonexpansive mappings in certain classes of Banach spaces. Since then endpoint results for some generalized multi-valued nonexpansive mappings in several classes of metric and Banach spaces have been developed and many papers have appeared (see, e.g., [11, 12, 22, 29, 31, 32, 35, 39, 40]).

In this paper, we introduce the concept of generalized Suzuki-Kannan-Ćirić type for multi-valued mappings and show that it is more general than the concept of Suzuki-Kannan-Ćirić type mappings. We also give sufficient conditions for the existence of endpoints for generalized Suzuki-Kannan-Ćirić type mappings in uniformly convex hyperbolic spaces with monotone moduli of uniform convexity. Moreover, we also prove the strong and Δ -convergence theorems of the Kuhfitting iteration for the class of generalized Suzuki-Kannan-Ćirić type mappings. Our results extend and improve the results of [9, 12, 24, 29, 44] and many others.

2. PRELIMINARIES

Throughout this paper, \mathbb{N} stands for the set of natural numbers and \mathbb{R} stands for the set of real numbers. Let (M, ρ) be a metric space, $\emptyset \neq D \subseteq M$ and $x \in M$. The distance from x to D is defined by

$$\operatorname{dist}(x, D) := \inf\{\rho(x, y) : y \in D\}.$$

The radius of D relative to x is defined by

$$R(x,D) := \sup\{\rho(x,y) : y \in D\}.$$

We denote by $C\mathcal{B}(D)$ the family of nonempty closed bounded subsets of D and by $\mathcal{K}(D)$ the family of nonempty compact subsets of D. The Pompeiu-Hausdorff distance on $C\mathcal{B}(D)$ is defined by

(2.2)
$$H(A,B) := \max\left\{\sup_{a \in A} \operatorname{dist}(a,B), \sup_{b \in B} \operatorname{dist}(b,A)\right\},$$

for all $A, B \in \mathcal{CB}(D)$.

Now, we collect some basic properties of the radius and the Pompeiu-Hausdorff distance.

Proposition 2.1. Let (M, ρ) be a metric space, $x, y \in M$ and $A, B, C \in CB(M)$. Then the following conclusions hold:

(i) $R(x, B) = H(\{x\}, B)$. (ii) $R(x, B) \le R(x, A) + H(A, B)$. (iii) $R(x, B) \le \rho(x, y) + R(y, B)$. (iv) $H(A, C) \le H(A, B) + H(B, C)$.

Proof. (i) follows from (2.2) by choosing $A = \{x\}$. For (ii) we let $a \in A$ and $b \in B$. Then $\rho(x, b) \leq \rho(x, a) + \rho(a, b) \leq R(x, A) + \rho(a, b)$. Since $a \in A$ is arbitrary, we get

$$\rho(x,b) \le R(x,A) + \operatorname{dist}(b,A) \le R(x,A) + H(B,A).$$

Since $b \in B$ is arbitrary, we have $R(x, B) \leq R(x, A) + H(A, B)$. (iii) follows from (i) and (ii) by choosing $A = \{y\}$. (iv) follows from Theorem 2.1.7 of [45].

A mapping *S* from *D* into CB(M) is called a multi-valued mapping. In particular, if *Sx* is a singleton for all *x* in *D*, then *S* is called a single-valued mapping. A point *x* in *D* is called a fixed point of *S* if $x \in Sx$. Moreover, if $Sx = \{x\}$, then *x* is called an endpoint of *S*. We denote by F(S); the set of all fixed points of *S*, and by E(S); the set of all endpoints

of *S*. It is clear that $E(S) \subseteq F(S)$ for every multi-valued mapping *S*. Notice also that the following statements hold:

(i) $x \in F(S)$ if and only if dist(x, Sx) = 0.

(ii) $x \in E(S)$ if and only if R(x, Sx) = 0.

A sequence $\{x_n\}$ in *D* is called an approximate endpoint sequence of *S* [4] if

$$\lim_{n \to \infty} R(x_n, Sx_n) = 0$$

Moreover, if $\{S_i : i \in I\}$ is a family of multi-valued mappings from D into CB(M), then $\{x_n\}$ is called an approximate common endpoint sequence of $\{S_i : i \in I\}$ [1] if $\lim_{n\to\infty} R(x_n, S_i x_n) = 0$ for all $i \in I$.

Definition 2.1. A mapping $S : D \to C\mathcal{B}(M)$ is said to be

(i) Suzuki-Kannan-Ćirić type (SKC-type in short) if each $x, y \in D$, the condition $\frac{1}{2}$ dist $(x, Sx) \leq \rho(x, y)$ implies $H(Sx, Sy) \leq N_S(x, y)$, where

$$N_{S}(x,y) := \max\left\{\rho(x,y), \frac{1}{2}\{\operatorname{dist}(x,Sx) + \operatorname{dist}(y,Sy)\}, \frac{1}{2}\{\operatorname{dist}(x,Sy) + \operatorname{dist}(y,Sx)\}\right\};$$

(ii) quasi-nonexpansive if $F(S) \neq \emptyset$ and

 $H(Sx, Sp) \le \rho(x, p)$ for all $x \in D$ and $p \in F(S)$;

(iii) semi-nonexpansive if $E(S) \neq \emptyset$ and

 $H(Sx, Sq) \leq \rho(x, q)$ for all $x \in D$ and $q \in E(S)$.

It is known from [9] that if *S* is SKC-type and $F(S) \neq \emptyset$, then *S* is quasi-nonexpansive. Also notice that if *S* is quasi-nonexpansive and $E(S) \neq \emptyset$, then *S* is semi-nonexpansive, see [37]. Moreover, by using the proof of Lemma 1.12 in [9], we can obtain the following result.

Lemma 2.1. Let D be a nonempty subset of a metric space (M, ρ) and $S : D \to C\mathcal{B}(M)$ an SKC-type mapping. Let $x, y \in D$ and $u_x \in Sx$. Then the following conclusions hold:

- (i) $H(Sx, Su_x) \le \rho(x, u_x)$.
- (ii) Either $\frac{1}{2}$ dist $(x, Sx) \le \rho(x, y)$ or $\frac{1}{2}$ dist $(u_x, Su_x) \le \rho(y, u_x)$.
- (iii) Either $H(Sx, Sy) \leq N_S(x, y)$ or $H(Sy, Su_x) \leq N_S(y, u_x)$.

As a consequence of Lemma 2.1, we obtain the following corollary.

Corollary 2.1. Let D be a nonempty subset of a metric space (M, ρ) and $S : D \to C\mathcal{B}(M)$ an SKC-type mapping. Let $x, y \in D$ and $u_x \in Sx$. Then the following conclusions hold:

(i)
$$H(Sx, Su_x) \leq R(x, Sx)$$
.

(ii) Either $H(Sx, Sy) \leq L_S(x, y)$ or $H(Sy, Su_x) \leq L_S(y, u_x)$, where

$$L_S(x,y) := \max\left\{\rho(x,y), \frac{1}{2}\{R(x,Sx) + R(y,Sy)\}, \frac{1}{2}\{R(x,Sy) + R(y,Sx)\}\right\}.$$

The following result can be viewed as a counterpart of Lemma 1.13 in [9].

Proposition 2.2. Let D be a nonempty subset of a metric space (M, ρ) and $S : D \to C\mathcal{B}(M)$ an SKC-type mapping. If $x, y \in D$, then

(2.3)
$$R(x, Sy) \le 7R(x, Sx) + \rho(x, y).$$

Proof. By Corollary 2.1, for any $u_x \in Sx$, we have either $H(Sx, Sy) \leq L_S(x, y)$ or $H(Sy, Su_x) \leq L_S(y, u_x)$.

Case 1.
$$H(Sx, Sy) \leq L_S(x, y)$$
.

T. Laokul, B. Panyanak, N. Phudolsitthiphat and S. Suantai

(1.1) If $L_S(x, y) = \rho(x, y)$, then by Proposition 2.1, we get

$$R(x, Sy) \le R(x, Sx) + H(Sx, Sy) \le R(x, Sx) + \rho(x, y).$$

(1.2) If
$$L_S(x, y) = \frac{1}{2} \{ R(x, Sx) + R(y, Sy) \}$$
, then

$$\begin{aligned} R(x,Sy) &\leq & R(x,Sx) + H(Sx,Sy) \\ &\leq & R(x,Sx) + \frac{1}{2} \{ R(x,Sx) + R(y,Sy) \} \\ &\leq & R(x,Sx) + \frac{1}{2} \{ R(x,Sx) + \rho(y,x) + R(x,Sy) \}. \end{aligned}$$

This implies $R(x, Sy) \le 3R(x, Sx) + \rho(x, y)$. (1.3) If $L_S(x, y) = \frac{1}{2} \{R(x, Sy) + R(y, Sx)\}$, then

$$\begin{aligned} R(x,Sy) &\leq R(x,Sx) + H(Sx,Sy) \\ &\leq R(x,Sx) + \frac{1}{2} \{ R(x,Sy) + R(y,Sx) \} \\ &\leq R(x,Sx) + \frac{1}{2} \{ R(x,Sy) + \rho(y,x) + R(x,Sx) \}. \end{aligned}$$

This implies $R(x, Sy) \leq 3R(x, Sx) + \rho(x, y)$. Case 2. $H(Sy, Su_x) \leq L_S(y, u_x)$.

(2.1) If $L_S(y, u_x) = \rho(y, u_x)$, then by Proposition 2.1 and Corollary 2.1, we have

$$\begin{array}{lll} R(x,Sy) &\leq & R(x,Sx) + H(Sx,Su_x) + H(Su_x,Sy) \\ &\leq & R(x,Sx) + R(x,Sx) + \rho(y,u_x) \\ &\leq & 2R(x,Sx) + \rho(y,x) + \rho(x,u_x) \\ &\leq & 3R(x,Sx) + \rho(x,y). \end{array}$$

(2.2) If $L_S(y, u_x) = \frac{1}{2} \{ R(y, Sy) + R(u_x, Su_x) \}$, then by Proposition 2.1 and Corollary 2.1, we have

$$\begin{aligned} R(x,Sy) &\leq & R(x,Sx) + H(Sx,Su_x) + H(Su_x,Sy) \\ &\leq & R(x,Sx) + R(x,Sx) + \frac{1}{2} \{ R(y,Sy) + R(u_x,Su_x) \} \\ &\leq & 2R(x,Sx) + \frac{1}{2} \{ \rho(y,x) + R(x,Sy) \} \\ &\quad + \frac{1}{2} \{ \rho(u_x,x) + R(x,Sx) + H(Sx,Su_x) \} \\ &\leq & 2R(x,Sx) + \frac{1}{2} \{ \rho(x,y) + R(x,Sy) \} + \frac{3}{2} R(x,Sx). \end{aligned}$$

This implies $R(x,Sy) \leq 7R(x,Sx) + \rho(x,y)$.

(2.3) If $L_S(y, u_x) = \frac{1}{2} \{ R(y, Su_x) + R(u_x, Sy) \}$, then by Proposition 2.1 and Corollary 2.1, we have

$$\begin{split} R(x,Sy) &\leq R(x,Sx) + H(Sx,Su_x) + H(Su_x,Sy) \\ &\leq R(x,Sx) + R(x,Sx) + \frac{1}{2} \{ R(y,Su_x) + R(u_x,Sy) \} \\ &\leq 2R(x,Sx) + \frac{1}{2} \{ \rho(y,x) + R(x,Sx) + H(Sx,Su_x) \} \\ &\quad + \frac{1}{2} \{ \rho(u_x,x) + R(x,Sy) \} \\ &\leq 2R(x,Sx) + \frac{1}{2} \{ \rho(x,y) + 2R(x,Sx) \} + \frac{1}{2} \{ R(x,Sx) + R(x,Sy) \}. \end{split}$$

This implies $R(x, Sy) \leq 7R(x, Sx) + \rho(x, y)$. Hence, the proof is completed.

The previous result leads us to introduce the concept of generalized SKC-type mappings as the following definition.

Definition 2.2. Let *D* be a nonempty subset of a metric space (M, ρ) . A multi-valued mapping $S : D \to C\mathcal{B}(M)$ is said to be generalized SKC-type if there exists $\mu \ge 0$ such that

(2.4)
$$R(x, Sy) \le \mu R(x, Sx) + \rho(x, y), \text{ for all } x, y \in D.$$

Now, we establish the relationships between SKC-type, generalized SKC-type, and semi-nonexpansive mappings.

Proposition 2.3. Let $S : D \to C\mathcal{B}(M)$ be a multi-valued mapping. Then the following statements hold:

(i) If S is SKC-type, then S is generalized SKC-type.

(ii) If S is generalized SKC-type and $E(S) \neq \emptyset$, then S is semi-nonexpansive.

Proof. (i) follows from Proposition 2.2 with $\mu = 7$. For (ii) we let $q \in E(S)$ and $x \in D$. It follows from (2.4) and Proposition 2.1 that

$$H(Sq, Sx) = H(\{q\}, Sx) = R(q, Sx) \le \mu R(q, Sq) + \rho(q, x) = \rho(q, x).$$

Hence, S is semi-nonexpansive.

The following examples show that the converses of (i) and (ii) in Proposition 2.3 are not true. Notice also that Example 2.2 below is a modification of Example 2 in [19].

Example 2.1. Let $M = \mathbb{R}$, D = [0, 2] and $S : D \to \mathcal{CB}(M)$ be defined by

$$Sx = \begin{cases} \left[0, \frac{x}{2}\right] & \text{if } x \neq 2; \\ \left\{1\right\} & \text{if } x = 2. \end{cases}$$

It is known from [13] that *S* is not SKC-type. Now, we show that *S* is generalized SKC-type. Let $x, y \in D$.

Case 1. If x = y = 2, then R(x, Sy) = R(x, Sx) = R(x, Sx) + |x - y|. **Case 2.** If x = 2 and $y \in [0, 2)$, then

$$R(x, Sy) = 2 \le 2 + (2 - y) = 2R(x, Sx) + |x - y|.$$

Case 3. If $x \in [0, 2)$ and y = 2, then

$$R(x, Sy) = |x - 1| \le 2 = x + (2 - x) = R(x, Sx) + |x - y|.$$

Case 4. If $x, y \in [0, 2)$ and $x \ge y$, then $R(x, Sy) = x \le R(x, Sx) + |x - y|$. On the other hand, if $x, y \in [0, 2)$ and x < y, then

$$R(x, Sy) = \max\{x, \frac{y}{2} - x\} \le y = x + (y - x) = R(x, Sx) + |x - y|.$$

Therefore, *S* is a generalized SKC-type mapping with $\mu = 2$.

Example 2.2. Let $M = \mathbb{R}$, D = [0, 1] and $S : D \to \mathcal{CB}(M)$ be defined by

$$Sx = \begin{cases} \left[\left| x(1-x)\sin(\frac{1}{x}) \right|, \left| \frac{x}{1+x}\sin(\frac{1}{x}) \right| \right] & \text{if } x \neq 0; \\ \{0\} & \text{if } x = 0. \end{cases}$$

Then $E(S) = \{0\}$. For $x \in (0, 1]$, we have

(2.5)
$$H(Sx, S0) = \left|\frac{x}{1+x}\sin(\frac{1}{x})\right| \le \left|\frac{x}{1+x}\right| \le |x-0|.$$

 \Box

This implies that S is semi-nonexpansive. For each $n \in \mathbb{N}$, we set $x_n := \frac{1}{2\pi n + \pi/2}$ and $y_n := \frac{1}{2\pi n}$. Then $Sx_n = [x_n(1-x_n), \frac{x_n}{1+x_n}]$, $Sy_n = \{0\}$ and $R(x_n, Sy_n) = x_n$. Notice from (2.5) that $R(x_n, Sx_n) = x_n - x_n(1-x_n) = x_n^2$. Thus,

$$\frac{R(x_n, Sy_n) - |x_n - y_n|}{R(x_n, Sx_n)} = \frac{x_n - (y_n - x_n)}{x_n^2}$$
$$= \frac{2x_n - y_n}{x_n^2}$$
$$= \left(\frac{2}{2\pi n + \pi/2} - \frac{1}{2\pi n}\right)(2\pi n + \pi/2)^2$$
$$= \frac{(4\pi n - 2\pi n - \pi/2)(2\pi n + \pi/2)}{2\pi n}$$
$$= \frac{(2\pi n)^2 - (\pi/2)^2}{2\pi n} \to \infty.$$

This implies that *S* is not generalized SKC-type.

The concept of uniformly convex hyperbolic spaces is introduced by Leuştean [33].

Definition 2.3. A hyperbolic space is a metric space (M, ρ) together with a function W from $M \times M \times [0, 1]$ into M such that for $x, y, z, u \in M$ and $s, t \in [0, 1]$, we have

 $\begin{array}{l} (\text{W1}) \ \rho(z, W(x, y, s)) \leq (1 - s)\rho(z, x) + s\rho(z, y); \\ (\text{W2}) \ \rho(W(x, y, s), W(x, y, t)) = |s - t|\rho(x, y); \\ (\text{W3}) \ W(x, y, s) = W(y, x, 1 - s); \\ (\text{W4}) \ \rho(W(x, z, s), W(y, u, s)) \leq (1 - s)\rho(x, y) + s\rho(z, u). \end{array}$

To be convenient, from now on, we will use the notation $(1 - s)x \oplus sy$ instead of W(x, y, s). A nonempty subset D of M is said to be convex if $(1 - s)x \oplus sy \in D$ for all $x, y \in D$ and $s \in [0, 1]$. The hyperbolic space (M, ρ) is said to be uniformly convex if each $r \in (0, \infty)$ and $\varepsilon \in (0, 2]$, there exists $\delta \in (0, 1]$ such that

$$\rho\left(\frac{1}{2}x \oplus \frac{1}{2}y, z\right) \le (1-\delta)r,$$

for all $x, y, z \in M$ with $\rho(x, z) \leq r$, $\rho(y, z) \leq r$ and $\rho(x, y) \geq r\varepsilon$.

In this case, we call δ a modulus of uniform convexity. In particular, if δ is a nonincreasing function of r for every fixed ε , then we call it a monotone modulus of uniform convexity. It is well-known that every uniformly convex Banach space is a uniformly convex hyperbolic space. Also notice that every CAT(0) space is a uniformly convex hyperbolic space, see, e.g., [33]. From now on, M stands for a complete uniformly convex hyperbolic space with a monotone modulus of uniform convexity. The following fact can be found in [25].

Lemma 2.2. Let $p \in M$ and $\{\alpha_n\}$ be a sequence in [a, b] for some $a, b \in (0, 1)$. Let $\{x_n\}$ and $\{y_n\}$ be sequences in M such that $\limsup_{n \to \infty} \rho(x_n, p) \leq c$, $\limsup_{n \to \infty} \rho(y_n, p) \leq c$, and $\lim_{n \to \infty} \rho((1 - \alpha_n)x_n \oplus \alpha_n y_n, p) = c$ for some $c \geq 0$. Then $\lim_{n \to \infty} \rho(x_n, y_n) = 0$.

Let *D* be a nonempty subset of *M* and $\{x_n\}$ be a bounded sequence in *M*. The asymptotic radius of $\{x_n\}$ relative to *D* is defined by

$$r(D, \{x_n\}) := \inf \left\{ \limsup_{n \to \infty} \rho(x_n, x) : x \in D \right\}.$$

The asymptotic center of $\{x_n\}$ relative to *D* is defined by

$$A(D, \{x_n\}) := \{x \in D : \limsup_{n \to \infty} \rho(x_n, x) = r(D, \{x_n\})\}.$$

It is known from [34] that if *D* is a nonempty closed convex subset of *M*, then $A(D, \{x_n\})$ consists of exactly one point. Now, we give the concept of Δ -convergence and collect some of its basic properties.

Definition 2.4. Let *D* be a nonempty closed convex subset of *M* and $x \in D$. Let $\{x_n\}$ be a bounded sequence in *M*. We will say that $\{x_n\} \Delta$ -converges to *x* if $A(D, \{u_n\}) = \{x\}$ for every subsequence $\{u_n\}$ of $\{x_n\}$. In this case we write $x_n \xrightarrow{\Delta} x$ and call *x* the Δ -limit of $\{x_n\}$.

It is known from [28] that every bounded sequence in *X* has a Δ -convergent subsequence. The following fact is a consequence of Lemma 2.8 in [16].

Lemma 2.3. Let D be a nonempty closed convex subset of M and $\{x_n\}$ a bounded sequence in M. If $A(D, \{x_n\}) = \{x\}$ and $\{u_n\}$ is a subsequence of $\{x_n\}$ with $A(D, \{u_n\}) = \{u\}$ and the sequence $\{\rho(x_n, u)\}$ converges, then x = u.

Definition 2.5. Let *D* be a nonempty closed subset of *M* and $S : D \to C\mathcal{B}(M)$. Let I_D be the identity mapping on *D*. We say that $I_D - S$ is strongly semiclosed if for any sequence $\{x_n\}$ in *D*, the conditions $x_n \to x$ and $R(x_n, Sx_n) \to 0$ imply $Sx = \{x\}$. Moreover, if *D* is closed and convex, then $I_D - S$ is said to be semiclosed if for any sequence $\{x_n\}$ in *D* such that $x_n \xrightarrow{\Delta} x$ and $R(x_n, Sx_n) \to 0$, one has $Sx = \{x\}$.

Obviously, if $I_D - S$ is semiclosed, then it is strongly semiclosed. Moreover, by using Lemma 2.3 along with the proof of Lemma 3.3 in [31], we can obtain the following result.

Lemma 2.4. Let D be a nonempty closed convex subset of M and $S : D \to C\mathcal{B}(D)$ a mapping such that $I_D - S$ is semiclosed. If $\{x_n\}$ is a bounded sequence in D such that $\lim_{n\to\infty} R(x_n, Sx_n) = 0$ and $\{\rho(x_n, v)\}$ converges for all $v \in E(S)$, then $\omega_w(x_n) \subseteq E(S)$. Here $\omega_w(x_n) := \bigcup A(D, \{u_n\})$ where the union is taken over all subsequences $\{u_n\}$ of $\{x_n\}$. Moreover, $\omega_w(x_n)$ consists of exactly one point.

The following fact is also needed.

Lemma 2.5. Let D be a nonempty closed subset of M and $S : D \to C\mathcal{B}(D)$ a multi-valued mapping. If $I_D - S$ is strongly semiclosed, then E(S) is closed.

Proof. Let $\{x_n\}$ be a sequence in E(S) such that $\lim_{n\to\infty} x_n = x$. Then $R(x_n, Sx_n) = 0$ for all $n \in \mathbb{N}$. It follows from the strong semiclosedness of $I_D - S$ that $Sx = \{x\}$, and hence $x \in E(S)$. This shows that E(S) is closed.

3. ENDPOINT THEOREMS

This section is begun by proving the semiclosed principle for generalized SKC-type mappings in uniformly convex hyperbolic spaces. Notice that it is an extension of Lemma 3.1 in [12].

Theorem 3.1. Let D be a nonempty closed convex subset of M and $S : D \to C\mathcal{B}(D)$ a generalized SKC-type mapping with $\mu \ge 0$ then $I_D - S$ is semiclosed.

Proof. Let $\{x_n\}$ be a sequence in D such that $x_n \xrightarrow{\Delta} x$ and $R(x_n, Sx_n) \to 0$. Let $v \in Sx$. By (2.4) we have

$$\rho(x_n, v) \le R(x_n, Sx) \le \mu R(x_n, Sx_n) + \rho(x_n, x).$$

This implies that $\limsup_{n \to \infty} \rho(x_n, v) \leq \limsup_{n \to \infty} \rho(x_n, x)$ and so $v \in A(D, \{x_n\}) = \{x\}$. Thus, v = x for all $v \in Sx$. This shows that $Sx = \{x\}$ and hence the proof is complete. \Box

Now, we prove a common endpoint theorem.

Theorem 3.2. Let D be a nonempty closed convex subset of M and $\{S_i : i \in I\}$ a family of generalized SKC-type mappings from D into CB(D). If $\{S_i : i \in I\}$ has a bounded approximate common endpoint sequence in D, then it has a common endpoint in D.

Proof. Let $\{x_n\}$ be a bounded approximate common endpoint sequence of $\{S_i : i \in I\}$. As we have observed, there exists a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ such that $x_{n_k} \xrightarrow{\Delta} x \in D$. It follows from Theorem 3.1 that $S_i x = \{x\}$ for all $i \in I$. Thus, x is a common endpoint of $\{S_i : i \in I\}$.

As a consequence of Theorem 3.2, we obtain the following result.

Corollary 3.2. Let D be a nonempty closed convex subset of M and $S : D \to C\mathcal{B}(D)$ a generalized SKC-type mapping. If S has a bounded approximate endpoint sequence in D, then S has an endpoint in D.

The following result can be viewed as an extension of Theorem 3.2 in [32].

Theorem 3.3. Let D be a nonempty closed convex subset of M and $\{S_i : i \in I\}$ a family of generalized SKC-type mappings from D into CB(D). Suppose there exist two disjoint subsets A and B of I such that $A \cup B = I$. Also, suppose each $i \in A$, S_i has a bounded approximate endpoint sequence in $\cap_{i \in B} E(S_i)$ then $\{S_i : i \in I\}$ has a common endpoint in D.

Proof. Fix $i \in A$ and let $\{x_n\}$ be a bounded approximate endpoint sequence of S_i in $\cap_{j\in B}E(S_j)$. Without loss of generality, we may assume that $x_n \xrightarrow{\Delta} x \in D$. According to Theorem 3.1, $x \in E(S_i)$; fixing $j \in B$ and letting $w \in S_j x$, since S_j is generalized SKC-type so there exists $\mu_j \geq 0$ such that

$$\rho(x_n, w) \leq R(x_n, S_i x) \leq \mu_i R(x_n, S_i x_n) + \rho(x_n, x)$$
 for all $n \in \mathbb{N}$.

This implies $\limsup_{n\to\infty} \rho(x_n, w) \leq \limsup_{n\to\infty} \rho(x_n, x)$ and hence $w \in A(D, \{x_n\}) = \{x\}$. Thus, w = x for all $w \in S_j x$ and therefore $S_j x = \{x\}$. This shows that x is a common endpoint of $\{S_i : i \in I\}$.

Corollary 3.3. Let D be a nonempty closed convex subset of M and $S, T : D \to CB(D)$ be generalized SKC-type mappings. Suppose that S has a bounded approximate endpoint sequence in E(T). Then S and T has a common endpoint in D.

4. CONVERGENCE THEOREMS

In this section, we prove strong and Δ -convergence theorems of the Kuhfitting iteration [30] for finding a common endpoint of generalized SKC-type mappings. Let D be a nonempty convex subset of M and $S_i : D \to \mathcal{K}(D)$ (i = 1, 2, ..., m) be a finite family of multi-valued mappings. For each $i \in \{1, 2, ..., m\}$, let $\{\alpha_{n,i}\}$ be a sequence in [0, 1]. The sequence of Kuhfitting iteration is defined by given $x_1 \in D$ and for $n \in \mathbb{N}$, we let

(4.6)
$$\begin{cases} y_{n,1} = (1 - \alpha_{n,1})x_n \oplus \alpha_{n,1}z_{n,1} \\ y_{n,2} = (1 - \alpha_{n,2})x_n \oplus \alpha_{n,2}z_{n,2} \\ \vdots \\ y_{n,m-1} = (1 - \alpha_{n,m-1})x_n \oplus \alpha_{n,m-1}z_{n,m-1} \\ x_{n+1} = (1 - \alpha_{n,m})x_n \oplus \alpha_{n,m}z_{n,m}, \end{cases}$$

where $z_{n,1} \in S_1 x_n$ such that $\rho(x_n, z_{n,1}) = R(x_n, S_1 x_n)$ and $z_{n,i} \in S_i y_{n,i-1}$ such that $\rho(x_n, z_{n,i}) = R(x_n, S_i y_{n,i-1})$ for $i \in \{2, 3, ..., m\}$.

A sequence $\{x_n\}$ in M is said to be Fejér monotone with respect to D [7] if $\rho(x_{n+1}, p) \le \rho(x_n, p)$ for all $p \in D$ and $n \in \mathbb{N}$. The following result shows that the sequence of Kuhfitting iteration is Fejér monotone with respect to the common endpoint set of generalized SKC-type mappings.

Lemma 4.6. Let D be a nonempty convex subset of M and $S_i : D \to \mathcal{K}(D)$ (i = 1, 2, ..., m) be a finite family of generalized SKC-type mappings such that $E := \bigcap_{i=1}^{m} E(S_i) \neq \emptyset$. Let $\{x_n\}$ be the sequence of Kuhfitting iteration defined by (4.6). Then $\{x_n\}$ is Fejér monotone with respect to E.

Proof. Let $p \in E$. By Proposition 2.3, S_i is semi-nonexpansive for all $i \in \{1, 2, ..., m\}$. For each $n \in \mathbb{N}$ and $i \in \{1, 2, ..., m - 1\}$, we have

(4.7)

$$\begin{aligned}
\rho(y_{n,i},p) &\leq (1-\alpha_{n,i})\rho(x_n,p) + \alpha_{n,i}\rho(z_{n,i},p) \\
&\leq (1-\alpha_{n,i})\rho(x_n,p) + \alpha_{n,i}H(S_ix_n,S_ip) \\
&\leq \rho(x_n,p).
\end{aligned}$$

This implies that

(4.8)

$$\rho(x_{n+1},p) \leq (1 - \alpha_{n,m})\rho(x_n,p) + \alpha_{n,m}\rho(z_{n,m},p) \\
\leq (1 - \alpha_{n,m})\rho(x_n,p) + \alpha_{n,m}H(S_m y_{n,m-1}, S_m p) \\
\leq (1 - \alpha_{n,m})\rho(x_n,p) + \alpha_{n,m}\rho(y_{n,m-1},p) \\
\leq \rho(x_n,p).$$

Thus, $\{x_n\}$ is Fejér monotone with respect to *E*.

Now, we prove Δ -convergence theorem.

Theorem 4.4. Let D be a nonempty closed convex subset of M and $S_i : D \to \mathcal{K}(D)$ (i = 1, 2, ..., m) be a finite family of generalized SKC-type mappings such that $E := \bigcap_{i=1}^{m} E(S_i) \neq \emptyset$. Let $\{\alpha_{n,i}\} \subset [a,b] \subset (0,1)$ (i = 1, 2, ..., m), and $\{x_n\}$ be the sequence of Kuhfitting iteration defined by (4.6). Then $\{x_n\} \Delta$ -converges to a common endpoint of $\{S_1, S_2, ..., S_m\}$.

Proof. For each $i \in \{1, 2, ..., m\}$, there exists $\mu_i \ge 0$ such that

(4.9)
$$R(x, S_i y) \le \mu_i R(x, S_i x) + \rho(x, y) \text{ for all } x, y \in D.$$

We will show that

(4.10)
$$\lim_{n \to \infty} R(x_n, S_i x_n) = 0 \text{ for all } i \in \{1, 2, ..., m\}.$$

Fix $p \in E$. By Lemma 4.6, $\lim_{n \to \infty} \rho(x_n, p) = c$ for some $c \ge 0$. If c = 0, then for each $i \in \{1, 2, ..., m\}$ we have

$$R(x_n, S_i x_n) \leq \rho(x_n, p) + R(p, S_i x_n)$$

= $\rho(x_n, p) + H(S_i p, S_i x_n)$
 $\leq 2\rho(x_n, p) \rightarrow 0 \text{ as } n \rightarrow \infty.$

If c > 0, then by (4.7) we have

(4.11)
$$\limsup_{n \to \infty} \rho(y_{n,i}, p) \le c \text{ for all } i \in \{1, 2, ..., m-1\}.$$

We note that $\rho(z_{n,1}, p) = \text{dist}(z_{n,1}, S_1 p) \le H(S_1 x_n, S_1 p) \le \rho(x_n, p)$ and for each $i \in \{2, 3, ..., m\}$, we have

$$\rho(z_{n,i}, p) = \text{dist}(z_{n,i}, S_i p) \le H(S_i y_{n,i-1}, S_i p) \le \rho(y_{n,i-1}, p).$$

 \square

It follows that $\limsup_{n \to \infty} \rho(z_{n,i}, p) \le c$ for all $i \in \{1, 2, ..., m\}$. Since $\lim_{n \to \infty} \rho(x_{n+1}, p) = \lim_{n \to \infty} \rho((1 - \alpha_{n,m})x_n \oplus \alpha_{n,m}z_{n,m}, p) = c$, by Lemma 2.2 we have (4.12) $\lim_{n \to \infty} \rho(x_n, z_{n,m}) = 0.$

On the other hand, it follows from (4.8) that

$$\begin{aligned}
\rho(x_n, p) &\leq \frac{\rho(x_n, p) - \rho(x_{n+1}, p)}{\alpha_{n,m}} + \rho(y_{n,m-1}, p) \\
&\leq \frac{\rho(x_n, p) - \rho(x_{n+1}, p)}{a} + \rho(y_{n,m-1}, p),
\end{aligned}$$

which implies $c \leq \liminf_{n \to \infty} \rho(y_{n,m-1}, p)$. This, together with (4.11), implies that $\lim_{n \to \infty} \rho(y_{n,m-1}, p) = c$. Also, by Lemma 2.2 we have $\lim_{n \to \infty} \rho(x_n, z_{n,m-1}) = 0$. Since $\rho(y_{n,m-1}, p) \leq (1 - \alpha_{n,m-1})\rho(x_n, p) + \alpha_{n,m-1}\rho(y_{n,m-2}, p)$, we have

$$\rho(x_n, p) \leq \frac{\rho(x_n, p) - \rho(y_{n,m-1}, p)}{\alpha_{n,m-1}} + \rho(y_{n,m-2}, p) \\
\leq \frac{\rho(x_n, p) - \rho(y_{n,m-1}, p)}{a} + \rho(y_{n,m-2}, p)$$

which implies $c \leq \liminf_{n \to \infty} \rho(y_{n,m-2}, p)$. This, together with (4.11), implies that $\lim_{n \to \infty} \rho(y_{n,m-2}, p) = c$. By Lemma 2.2, we have $\lim_{n \to \infty} \rho(x_n, z_{n,m-2}) = 0$. Similarly, we can show that for each $i \in \{1, 2, ..., m-3\}$,

(4.13)
$$\lim_{n \to \infty} \rho(y_{n,i}, p) = c \text{ and } \lim_{n \to \infty} \rho(x_n, z_{n,i}) = 0.$$

Thus, for each $i \in \{1, 2, ..., m - 1\}$, we have

(4.14)
$$\rho(y_{n,i}, x_n) \le \alpha_{n,i} \rho(z_{n,i}, x_n) \to 0 \text{ as } n \to \infty$$

and

$$(4.15) R(x_n, S_i y_{n,i-1}) = \rho(x_n, z_{n,i}) \to 0 \text{ as } n \to \infty.$$

From (4.12), we have $\lim_{n\to\infty} R(x_n, S_1x_n) = 0$. For $i \in \{2, 3, ..., m\}$, by (4.9), (4.14) and (4.15), we have

$$\begin{array}{lll} R(x_n, S_i x_n) &\leq & \rho(x_n, y_{n,i-1}) + R(y_{n,i-1}, S_i x_n) \\ &\leq & \rho(x_n, y_{n,i-1}) + \mu_i R(y_{n,i-1}, S_i y_{n,i-1}) + \rho(y_{n,i-1}, x_n) \\ &\leq & 2\rho(x_n, y_{n,i-1}) + \mu_i \{\rho(y_{n,i-1}, x_n) + R(x_n, S_i y_{n,i-1})\} \\ &\to 0 \text{ as } n \to \infty. \end{array}$$

Hence, (4.10) helds. By Lemma 4.6, $\{\rho(x_n, v)\}$ converges for all $v \in E$. By Lemma 2.4, $\omega_w(x_n)$ consists of exactly one point and is contained in *E*. This shows that $\{x_n\} \Delta$ -converges to an element of *E*.

Next, we prove strong convergence theorems. A family of mappings $\{S_1, S_2, ..., S_m\}$ from D into $\mathcal{K}(D)$ is said to satisfy condition (J) [36] if $E := \bigcap_{i=1}^m E(S_i) \neq \emptyset$ and there exists a nondecreasing function $g : [0, \infty) \to [0, \infty)$ with g(0) = 0, g(r) > 0 for $r \in (0, \infty)$ and

(4.16)
$$\max_{1 \le i \le m} \{R(x, S_i x)\} \ge g(\operatorname{dist}(x, E)) \text{ for all } x \in D.$$

The following fact can be found in [12].

Lemma 4.7. Let D be a nonempty closed subset of M and $\{x_n\}$ a Fejér monotone sequence with respect to D. Then $\{x_n\}$ converges strongly to an element of D if and only if $\lim_{n\to\infty} dist(x_n, D) = 0$.

454

Theorem 4.5. Let D be a nonempty closed convex subset of M and $S_i : D \to \mathcal{K}(D)$ (i = 1, 2, ..., m) be a finite family of generalized SKC-type mappings which satisfies condition (J). Let $\{\alpha_{n,i}\} \subset [a,b] \subset (0,1)$ (i = 1, 2, ..., m), and $\{x_n\}$ be the sequence of Kuhfitting iteration defined by (4.6). Then $\{x_n\}$ converges strongly to a common endpoint of $\{S_1, S_2, ..., S_m\}$.

Proof. Let $E = \bigcap_{i=1}^{m} E(S_i)$. It follows from Lemmas 3.1 and 2.5 that E is closed. By (4.10) and (4.16) we get $\lim_{n \to \infty} g(\operatorname{dist}(x_n, E)) = 0$ and hence $\lim_{n \to \infty} \operatorname{dist}(x_n, E) = 0$. By Lemma 4.6, $\{x_n\}$ is Fejér monotone with respect to E. The conclusion follows from Lemma 4.7. \Box

A mapping $S : D \to \mathcal{K}(D)$ is said to be semicompact [36] if any sequence $\{x_n\}$ in D with $\lim_{n\to\infty} R(x_n, Sx_n) = 0$, there exists a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ such that $\lim_{k\to\infty} x_{n_k} = q \in D$.

Theorem 4.6. Let D be a nonempty convex subset of M and $S_i : D \to \mathcal{K}(D)$ (i = 1, 2, ..., m) be a finite family of generalized SKC-type mappings such that $\bigcap_{i=1}^{m} E(S_i) \neq \emptyset$ and S_j is semicompact for some $j \in \{1, 2, ..., m\}$. Let $\{\alpha_{n,i}\} \subset [a, b] \subset (0, 1)$ (i = 1, 2, ..., m), and $\{x_n\}$ be the sequence of Kuhfitting iteration defined by (4.6). Then $\{x_n\}$ converges strongly to a common endpoint of $\{S_1, S_2, ..., S_m\}$.

Proof. Since S_j is semicompact, by (4.10) there exists a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ such that $x_{n_k} \to q \in D$. For each $i \in \{1, 2, ..., m\}$, there exists $\mu_i \ge 0$ such that

$$R(x_{n_k}, S_i q) \le \mu_i R(x_{n_k}, S_i x_{n_k}) + \rho(x_{n_k}, q) \text{ for all } k \in \mathbb{N}.$$

This implies that

$$\begin{array}{lll} R(q,S_iq) &\leq & \rho(q,x_{n_k}) + R(x_{n_k},S_iq) \\ &\leq & 2\rho(x_{n_k},q) + \mu_i R(x_{n_k},S_ix_{n_k}) \to 0 \ \mbox{as} \ \ k \to \infty. \end{array}$$

Thus $q \in E(S_i)$ for all $i \in \{1, 2, ..., m\}$. According to Lemma 4.6, $\lim_{n \to \infty} \rho(x_n, q)$ exists and hence q is the strong limit of $\{x_n\}$.

Acknowledgements. This research was supported by Thailand Science Research and Innovation under the project IRN62W0007 and Chiang Mai University.

REFERENCES

- Abbas, M.; Khojasteh, F. Common *f*-endpoint for hybrid generalized multi-valued contraction mappings. *Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM* **108** (2014), 369–375.
- [2] Abdeljawad, T.; Karapınar, E.; Taş, K. A generalized contraction principle with control functions on partial metric spaces. *Comput. Math. Appl.* 63 (2012), 716–719.
- [3] Ahmad, B.; Ntouyas, S. K.; Tariboon, J. A study of mixed Hadamard and Riemann-Liouville fractional integro-differential inclusions via endpoint theory. *Appl. Math. Lett.* 52 (2016), 9–14
- [4] Amini-Harandi, A. Endpoints of set-valued contractions in metric spaces. Nonlinear Anal. 72 (2010), 132–134.
- [5] Arav, M.; Castillo Santos, F. E.; Reich, S.; Zaslavski, A. J. A note on asymptotic contractions. *Fixed Point Theory Appl.* 2007: Art. ID 39465 (2007), 1–6.
- [6] Banach, S. Sur les operations dans les ensembles abstraits et leurs applications. Fund. Math. 3 (1922), 133–181.
- [7] Bauschke, H. H.; Combettes, P. L. Convex Analysis and Monotone Operator Theory in Hilbert Spaces, Springer, New York, (2011)
- [8] Berinde, V. Some remarks on a fixed point theorem for Ciric-type almost contractions. *Carpathian J. Math.* 25 (2009), 157–162.
- [9] Chang, S. S.; Agarwal, R. P.; Wang, L. Existence and convergence theorems of fixed points for multi-valued SCC-, SKC-, SCS- and C-type mappings in hyperbolic spaces. *Fixed Point Theory Appl.* 2015: 83 (2015), 1–17.

- [10] Chang, S. S.; Lee, B. S.; Cho, Y. J.; Chen, Y. Q.; Kang, S. M.; Jung, J. S. Generalized contraction mapping principle and differential equations in probabilistic metric spaces. *Proc. Amer. Math. Soc.* **124** (1996), 2367–2376.
- [11] Chen, L.; Gao, L.; Chen, D. Fixed point theorems of mean nonexpansive set-valued mappings in Banach spaces. J. Fixed Point Theory Appl. 19 (2017), 2129–2143.
- [12] Chuadchawna, P.; Farajzadeh, A.; Kaewcharoen, A. Convergence theorems and approximating endpoints for multivalued Suzuki mappings in hyperbolic spaces. J. Comp. Anal. Appl. 28 (2020), 903–916.
- [13] Chuadchawna, P.; Farajzadeh, A.; Kaewcharoen, A. Convergence theorems for total asymptotically nonexpansive single-valued and quasi nonexpansive multi-valued mappings in hyperbolic spaces. J. Appl. Anal. 27 (2021), 129–142.
- [14] Ćirić, L. B. A generalization of Banach's contraction principle. Proc. Amer. Math. Soc. 45 (1974), 267-273.
- [15] Corley, H. W. Some hybrid fixed point theorems related to optimization. J. Math. Anal. Appl. 120 (1986), 528–532.
- [16] Dhompongsa, S.; Panyanak, B. On Δ-convergence theorems in CAT(0) spaces. Comput. Math. Appl. 56 (2008), 2572–2579.
- [17] Edelstein, M. On fixed and periodic points under contractive mappings. J. London Math. Soc. 37 (1962), 74–79.
- [18] Espínola, R.; Hosseini, M.; Nourouzi, K. On stationary points of nonexpansive set-valued mappings. *Fixed Point Theory Appl.* 2015 (2015), 236.
- [19] García-Falset, J.; Llorens-Fuster, E.; Suzuki, T. Fixed point theory for a class of generalized nonexpansive mappings. J. Math. Anal. Appl. 375 (2011), 185–195.
- [20] Geraghty, M. A. On contractive mappings. Proc. Amer. Math. Soc. 40 (1973), 604-608
- [21] Haddad, G. Monotone viable trajectories for functional-differential inclusions. J. Differential Equ. 42 (1981), 1–24
- [22] Hosseini, M.; Nourouzi, K.; O'Regan, D. Stationary points of set-valued contractive and nonexpansive mappings on ultrametric spaces. *Fixed Point Theory* **19** (2018), 587–594
- [23] Kannan, R. Some results on fixed points. Bull. Calcutta Math. Soc. 60 (1968), 71-76
- [24] Karapınar, E.; Taş, K. Generalized (C)-conditions and related fixed point theorems. Comput. Math. Appl. 61 (2011), 3370–3380.
- [25] Khan, A. R.; Fukhar-ud-din, H.; Khan, M. A. A. An implicit algorithm for two finite families of nonexpansive maps in hyperbolic spaces. *Fixed Point Theory Appl.* 2012:54 (2012), 1–12
- [26] Khanh, P. Q.; Long, V. S. T. Invariant-point theorems and existence of solutions to optimization-related problems. J. Global Optim. 58 (2014), 545–564
- [27] Khatibzadeh, H.; Piranfar, M. R.; Rooin, J. Convergence of dissipative-Like dynamics and algorithms governed by set-valued nonexpansive mappings. *Bull. Malays. Math. Sci. Soc.* 44 (2021), 1101–1121.
- [28] Kirk, W. A.; Panyanak, B. A concept of convergence in geodesic spaces. Nonlinear Anal. 68 (2008), 3689–3696.
- [29] Kudtha, A.; Panyanak, B. Common endpoints for Suzuki mappings in uniformly convex hyperbolic spaces. *Thai J. Math.* 2018(Special issue) (2018), 159–168.
- [30] Kuhfitting, P. K. F. Common fixed points of nonexpansive mappings by iteration. Pac. J. Math. 97 (1981), 137–139
- [31] Laokul, T.; Panyanak, B. A generalization of the (CN) inequality and its applications. Carpathian J. Math. 36 (2020), 81–90.
- [32] Laokul, T.; Panyanak, B. Common endpoints for non-commutative Suzuki mappings. Thai J. Math. 17 (2019), 821–828.
- [33] Leuştean, L. A quadratic rate of asymptotic regularity for CAT(0)-spaces. J. Math. Anal. Appl. 325 (2007), 386–399.
- [34] Leuştean, L. Nonexpansive iterations in uniformly convex W-hyperbolic spaces. Nonlinear Analysis and Optimization I. Nonlinear Analysis. vol. 513 of Contemporary Mathematics, pp. 193-210, American Mathematical Society, Providence, RI, USA, (2010).
- [35] Oyetunbi, D. M.; Khan, A. R. Approximating common endpoints of multivalued generalized nonexpansive mappings in hyperbolic spaces. *Appl. Math. Comput.* 392 (2021), 125699.
- [36] Panyanak, B. Approximating endpoints of multi-valued nonexpansive mappings in Banach spaces. J. Fixed Point Theory Appl. 20:77 (2018), 1–8.
- [37] Panyanak, B. Endpoint iterations for some generalized multivalued nonexpansive mappings. J. Nonlinear Convex Anal. 21 (2020), 1287–1295.
- [38] Panyanak, B. Endpoints of multivalued nonexpansive mappings in geodesic spaces. *Fixed Point Theory Appl.* 2015:147 (2015), 1–11
- [39] Panyanak, B. Stationary points of lower semicontinuous multifunctions. J. Fixed Point Theory Appl. 22:43 (2020), 1–12

- [40] Panyanak, B. The demiclosed principle for multi-valued nonexpansive mappings in Banach spaces. J. Nonlinear Convex Anal. 17 (2016), 2063–2070.
- [41] Reich, S.; Zaslavski, A. J. A note on Rakotch contractions. Fixed Point Theory 9 (2008), 267–273.
- [42] Saejung, S. Remarks on endpoints of multivalued mappings in geodesic spaces. *Fixed Point Theory Appl.* **2016**:52 (2016), 1–12.
- [43] Suzuki, T. A generalized Banach contraction principle that characterizes metric completeness. Proc. Amer. Math. Soc. 136 (2008), 1861–1869.
- [44] Suzuki, T. Fixed point theorems and convergence theorems for some generalized nonexpansive mappings. J. Math. Anal. Appl. **340** (2008), 1088–1095.
- [45] Takahashi, W. Nonlinear functional analysis. Fixed point theory and its applications. Yokohama Publishers, Yokohama, (2000).
- [46] Tarafdar, E.; Watson, P.; Yuan, X. Z. Poincare's recurrence theorems for set-valued dynamical systems. Appl. Math. Lett. 10 (1997), 37–44.
- [47] Tarafdar, E.; Yuan, X. Z. The set-valued dynamic system and its applications to Pareto optima. Acta Appl. Math. 46 (1997), 93–106.
- [48] Turinici, M. Differential Lipschitzianness tests on abstract quasimetric spaces. Acta Math. Hungar. 41 (1983), 93–100

¹Department of Mathematics and Computing Sciences Mahidol Wittayanusorn School Nakorn Pathom 73170, Thailand

²Research Grup in Mathematics and Applied Mathematics, Department of Mathematics Faculty of Science, Chiang Mai University Chiang Mai 50200, Thailand

³Department of Mathematics Data Science Research Center Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand