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On the maximum modulus principle and the identity
theorem in arbitrary dimension

VLAD TIMOFTE

ABSTRACT. We prove an identity theorem for Gâteaux holomorphic functions on polygonally connected 2-
open sets, which yields a very general maximum norm principle and a sublinear “max-min” principle. All
results apply in particular to vector-valued functions which are holomorphic (in any sense that implies Gâteaux
holomorphy) on domains in Hausdorff locally convex spaces.

1. INTRODUCTION

For any domain (that is, a connected open set) Ω ⊂ C and holomorphic function f ∈
H(Ω), the classical maximum modulus principle (MMP) states that if |f(·)| has a maximum
on Ω, then f is constant. The conclusion still holds if we only require |f(·)| to have a local
maximum; in this case f is constant on a neighborhood of some point, and hence on Ω,
by the classical identity theorem. For a complex Banach (or just normed) space Y and
f ∈ H(Ω, Y ) such that ‖f(·)‖ has a maximum, it is well-known ([5, p.230]) that ‖f(·)‖ is
constant, while f may be nonconstant. In [12, Th. 3.1] Thorp and Whitley have shown that
MMP holds for holomorphic functions f ∈ H(Ω, Y ), if and only if Y is a strictly c-convex
Banach space (also see [3, Th. 4.4, p.164]).

Let us recall that a point e in a convex subset K of a complex Banach space Y is said to
be complex extreme for K, if and only if e+BC(0, 1) ·u ⊂ K (with u ∈ Y ) implies u = 0. The
space Y is called strictly c-convex, if and only if every point of its unit sphere is complex
extremal for the closed unit ball. Since these notions were introduced by [12], various
Banach spaces have been investigated for characterizing the complex extreme points of
the closed unit ball or for strict c-convexity (weaker than the usual strict convexity) or
uniform c-convexity. For domain Ω ⊂ C and arbitrary complex Banach space Y , the
MMP from [12, Th. 3.1] was generalized by Globevnik [6] through a complete character-
ization of the functions f ∈ H(Ω, Y ) with constant norm ‖f(·)‖. Several other results on
operator-valued holomorphic functions with constant norm can be found in Globevnik
and Vidav [7], Daniluk [2], and Rovnyak [10]. For matrix-valued holomorphic functions
including a spectral version of MMP we refer the reader to Condori [1]. All results from
the cited papers hold for holomorphic functions on a domain Ω ⊂ C.

The following straightforward version of MMP for a domain Ω ⊂ Cn and a strictly
c-convex Banach space Y seems to be new (we found no reference for such a result; since
it is obvious, we assume it to be ”folklore”):
Theorem. If f ∈ H(Ω, Y ) and ‖f(·)‖ has a local maximum, then f is constant.
Indeed, if the local maximum is attained at a ∈ Ω, then for a sufficiently small open ball
B ⊂ Ω centered at a the restriction ‖f(·)|B‖ has a maximum, and so, according to the cited
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result from [12], f |B∩L ≡ f(a) for every complex one-dimensional linear variety L ⊂ Cn
containing a. Hence f |B ≡ f(a) and the conclusion follows by the identity theorem.

In this paper we prove a maximum norm principle for vector-valued Gâteaux holomor-
phic functions on polygonally connected 2-open sets in arbitrary complex vector spaces;
this setting includes all versions of holomorphy in infinite dimension. In order to ac-
complish this, we first prove a needed identity theorem which is of independent interest,
as it will be a key ingredient in the proof of the Hartogs extension theorem for Gâteaux
holomorphic functions on finitely open sets in arbitrary dimension (forthcoming paper).

2. LINEAR CUTS AND THE IDENTITY THEOREM

Setting. From now on we consider a complex vector space X and a complex Hausdorff
locally convex space Y 6= {0}.

Let us first define or recall some needed notions; these derive from the vector space
structure of X and will allow us to state our results in full generality.

On complex linear varieties of finite dimension we always consider the (unique) Eu-
clidean topology.

Definition 2.1. A set A ⊂ X is called
(a): d-open (with d ∈ {1, 2}), if and only if for every linear variety L ⊂ X of complex

dimension at most d, the set A ∩ L is open in L.
(b): sufficiently bounded, if and only if for every a ∈ Ω, there exists a complex one-

dimensional linear variety La ⊂ X , such that a ∈ La and Ω ∩ La is bounded in La.
(c): polygonally connected, if and only if any to points fromA can be joined by a polygonal

chain Λ ⊂ A.
(d): real-absorbing, if and only if for every x ∈ X , there exists ε > 0, such that [0, ε]·x ⊂ A

(this condition holds in particular for 1-open sets containing the origin of X).

The above notions (among which the first two are new) do not require any topological
structure on X . Nonetheless, let us note that a subset A ⊂ X is d-open, if and only if A is
open in the translation invariant topology τ(d) defined by all d-open subsets of X .

Remark 2.1. Both topologies τ(1) ≥ τ(2) are stronger than any linear topology on X . For open
sets in topological vector spaces, connectedness is equivalent to polygonal connectedness.

Even in normed spaces of finite dimension, d-open sets may not be open:

Example 2.1 (d-open sets which are not open).
(a): For arbitrary set A ⊂ C, let

KA = {(z, z2, z3) ∈ C3 | z ∈ A} ⊂ C3.

Then C3 \KA is 2-open. For A = Q, the set C3 \KQ is not open.
(b): For arbitrary infinite set T , let us consider the direct sum vector space

C(T ) = {u : T → C |u−1(C \ {0}) is finite}
equipped with the supremum norm, a function ρ : T → ]0,∞[, and the set

Ωρ = {u ∈ C(T ) | |u| < ρ pointwise} ⊂ C(T ).

Then Ωρ is 2-open. If inf ρ(T ) = 0, then Ω̊ρ = ∅, and so Ωρ is not open.

The usual definition of Gâteaux holomorphy requires the domain of the function to be a
finitely open set (that is, every intersection with a linear variety L ⊂ X of finite dimension
is open in L; see [3, Def. 2.2, p.54], [4, Def. 3.1, p.144], [8, Def. 2.3.1, p.35]). Since our results
hold in a more general setting, we next slightly modify this definition as follows:
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Definition 2.2 (Gâteaux holomorphy).
(a): A function f : Ω→ Y defined on a 1-open set Ω ⊂ X is called Gâteaux holomorphic,

if and only if for all a ∈ Ω, v ∈ X , and ϕ ∈ Y ∗ (the continuous dual of Y ), there exists
r > 0, such that the function

BC(0, r) 3 λ 7→ (ϕ ◦ f)(a+ λv) ∈ C
is holomorphic. Let HG(Ω, Y ) denote the complex vector space consisting of all such Y -
valued functions on Ω. SetHG(Ω) := HG(Ω,C). Obviously,

f ∈ HG(Ω, Y ) ⇐⇒ ϕ ◦ f ∈ HG(Ω) for every ϕ ∈ Y ∗.
(b): If Ω is an open subset of a Hausdorff complex locally convex space, we may consider the

vector spaces of all holomorphic functions (Fréchet)

H(Ω, Y ) := {f ∈ HG(Ω, Y ) | f is continuous}, H(Ω) := H(Ω,C).

(c): For linear variety of finite dimension L ⊂ X (which is a translated vector subspace)
and 1-open subset D ⊂ L, we define in the natural way the vector spaces HG(D,Y ) and
HG(D). For open subset D ⊂ L, we may write these spaces asH(D,Y ) andH(D).

Let us note that every function f ∈ HG(Ω, Y ) is Gâteaux differentiable, that is, the limit
limC3λ→0

f(a+λv)−f(a)
λ exists in the completion of Y , for all a ∈ Ω and v ∈ X (this follows

at once from Dineen [4, Lemma 3.3, p.149]).

A widely-known identity theorem (see for instance Scheidemann [11, p.10]) states that
if f ∈ H(Ω) vanishes on an open subset of the domain Ω ⊂ Cn, then f ≡ 0. Our maximum
norm principle (Theorem 3.2 below) requires a much more general identity theorem. Since
every topology τ(d) on X contains at least all open sets from all possible linear topologies
on X , the requirement on a set Ω ⊂ X to be 2-open is very convenient.

Theorem 2.1 (identity). Let a polygonally connected 2-open set Ω ⊂ X and a subset C ⊂ Ω,
such that C − c is real-absorbing for some c ∈ C. Then

f(Ω)− f(c) ⊂ Sp(f(C)− f(c)), for every f ∈ HG(Ω, Y )

(in particular, f ≡ 0 if and only if f |C ≡ 0).

Proof. Let us first prove the last equivalence. Assume f |C ≡ 0. For c ∈ C as in the theorem,
let us consider a linear segment [c, a] ⊂ Ω. We claim that f |A ≡ 0 for some 1-open subset
A ⊂ Ω, such that a ∈ A (then A− a is real-absorbing). Set

A := {x ∈ X | [c, x] ⊂ Ω}.
Hence a ∈ A ⊂ Ω. Suppose there exists a complex one-dimensional linear variety L ⊂ X ,
such that A ∩ L is not open in L. Consequently, there exists a sequence (xn)n∈N ⊂ L \ A,
which converges in L to some a0 ∈ A ∩ L. Hence [c, a0] ⊂ Ω. For every n ∈ N we
have xn /∈ A, that is, ξn := (1 − tn)c + tnxn /∈ Ω for some tn ∈ [0, 1]. By taking a
convergent subsequence, we may assume that limn→∞ tn = s ∈ [0, 1]. Clearly, L∪{c} ⊂ L′
for some complex two-dimensional linear variety L′ ⊂ X . As Ω ∩ L′ is open in L′ and
(ξn)n∈N ⊂ L′\Ω, a passage to the limit in L′ yields (1−s)c+sa0 ∈ L′\Ω, which contradicts
[c, a0] ⊂ Ω. We conclude that A is 1-open, and hence that A − a is a real-absorbing set.
In order to show that f |A ≡ 0, let us fix x ∈ A and θ ∈ Y ∗R (the continuous dual of Y
considered as a real normed space). Thus [c, x] ⊂ Ω and the function

g : [0, 1]→ R, g(t) = (θ ◦ f)((1− t)c+ tx),

is real-analytic. As C − c is a real-absorbing set, we have [0, ε] · (x − c) ⊂ C − c for some
ε ∈ ]0, 1], and so g|[0,ε] ≡ 0. By the identity theorem for real-analytic functions we get
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g|[0,1] ≡ 0. It follows that θ(f(x)) = 0 for every θ ∈ Y ∗R , which yields f(x) = 0. Our
claim is proved. Since Ω is polygonally connected, an easy induction (on the number of
linear segments from a polygonal chain in Ω joining c to other points x ∈ Ω) based on the
above claim shows that f ≡ 0. We thus have proved the equivalence. In order to show the
inclusion for f(Ω), let the function g := f − f(c) ∈ HG(Ω, Y ), the closed vector subspace
Y0 := Sp(g(C)) ⊂ Y , the quotient Hausdorff locally convex space Y/Y0 = {ŷ | y ∈ Y }, and
the standard continuous linear surjection s : Y → Y/Y0. Since s ◦ g ∈ HG(Ω, Y/Y0) and
(s ◦ g)|C ≡ 0̂, by the already proved equivalence we get s ◦ g ≡ 0̂, that is, g(Ω) ⊂ Y0. This
yields f(Ω)− f(c) ⊂ Sp(f(C)− f(c)). �

3. THE MAXIMUM NORM AND MAX-MIN SEMINORM PRINCIPLES.

The identity theorem yields a maximum norm principle for Gâteaux holomorphic func-
tions on polygonally connected 2-open sets.

Theorem 3.2 (maximum norm principle). Assume (Y, ‖ ‖) is a strictly c-convex Banach space.
Let a polygonally connected 2-open set Ω ⊂ X and f ∈ HG(Ω, Y ). If ‖f(·)‖ has a τ(1)-local
maximum, then f is constant.

Proof. Assume ‖f(·)‖ has a τ(1)-local maximum at c ∈ Ω. Let Γc denote the set of all
complex one-dimensional linear varieties L ⊂ X , such that c ∈ L. For every L ∈ Γc, by the
τ(1)-local maximum hypothesis there exists a connected open neighborhood CL ⊂ Ω ∩ L
of c in L, such that ‖f(c)‖ = maxx∈CL

‖f(x)‖. As f |CL
∈ H(CL, Y ), by [12, Th. 3.1] we see

that f |CL
≡ f(c). Set C :=

⋃
L∈Γc

CL ⊂ Ω. Since C − c is an absorbing set (hence also
real-absorbing) and f |C ≡ f(c), by Theorem 2.1 we conclude that f ≡ f(c). �

For Ω ⊂ C and strictly convex Banach space Y , a direct proof (not using the theorem
from [12]) of the maximum norm principle can be found in [9, Th 1].

Corollary 3.1 (minimum modulus principle). Let a polygonally connected 2-open set Ω ⊂ X
and f ∈ HG(Ω). If |f | has a τ(1)-local minimum at c ∈ Ω and f(c) 6= 0, then f is constant.

Proof. Let us consider Γc as in the proof of Theorem 3.2. For every L ∈ Γc, by the τ(1)-local
minimum hypothesis there is a connected open neighborhood CL ⊂ Ω ∩ L of c in L, such
that minx∈CL

|f(x)| = |f(c)| > 0. As g := 1
f |CL

∈ H(CL) and |g| has a maximum at c, the
classical maximum modulus principle yields g ≡ g(c), that is, f |CL

≡ f(c). As in the proof
of Theorem 3.2 we conclude that f ≡ f(c). �

Without the strict c-convexity of Y , we still can show that if ‖f(·)‖ has a τ(1)-local max-
imum at c ∈ Ω, then c is also a global minimum point and f(Ω) has empty interior (and
therefore is not a domain), and if f(c) 6= 0, then f vanishes nowhere on Ω. A similar result
holds with the norm replaced by a continuous sublinear functional p : Y → R (subad-
ditive and positively homogeneous), and in particular by a continuous seminorm on Y ,
which is assumed to be a locally convex space.

Theorem 3.3 (sublinear max-min principle). Let a polygonally connected 2-open set Ω ⊂ X , a
function f ∈ HG(Ω, Y ), and a continuous sublinear functional p 6≡ 0 on Y . If p◦f has a τ(1)-local

maximum at c ∈ Ω, then p ◦ f also has a global minimum at c and ˚
f(Ω) = ∅. In particular, if

p(f(c)) > 0, then 0 /∈ f(Ω).

Proof. As p 6≡ 0, according to the Hahn-Banach theorem, there exists ϕ ∈ Y ∗R \ {0} (Y ∗R
denotes the continuous dual of the real locally convex space YR), such that ϕ(f(c)) =
p(f(c)) and ϕ ≤ p on Y . For the associated C-linear functional ϕ̃ ∈ Y ∗ defined by ϕ̃(y) =
ϕ(y) − iϕ(iy), we claim that g := ϕ̃ ◦ f ∈ HG(Ω) is constant. For Γc as in the proof
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of Theorem 3.2, let us fix L ∈ Γc. By the τ(1)-local maximum hypothesis there exists a
connected open neighborhood CL ⊂ Ω∩L of c in L, such that p(f(c)) = maxx∈CL

p(f(x)).
For every x ∈ CL, we have

ϕ(f(x)) ≤ p(f(x)) ≤ p(f(c)) = ϕ(f(c)).

By the open mapping theorem it follows that g|CL
∈ H(CL) is constant (its real part ϕ ◦

f |CL
has a maximum at c, and so g(CL) is not a neighborhood of g(c)). Hence g|CL

≡ g(c).
Set C :=

⋃
L∈Γc

CL ⊂ Ω. Since C − c is an absorbing set and g|C ≡ g(c), by Theorem 3.2
we deduce that g ≡ g(c). Our claim is proved. It follows that f(Ω) ⊂ f(c) + ker ϕ̃, which

yields ˚
f(Ω) = ∅. For every x ∈ Ω we have

p(f(x)) ≥ ϕ(f(x)) = ϕ(f(c)) = p(f(c)).

Hence p ◦ f has a global minimum at c. If p(f(c)) > 0, then 0 /∈ p(f(Ω)), and so 0 /∈
f(Ω). �

There is a bijective correspondence between the set of all nonnegative continuous sub-
linear functionals on Y and the set of all convex open neighborhoods of the origin in Y .
This leeds us to the following interpretation of Theorem 3.3.

Corollary 3.2 (convex max-min principle). Let a polygonally connected 2-open set Ω ⊂ X , a
function f ∈ HG(Ω, Y ), and a convex open set V ⊂ Y .

(a): Let a τ(1)-open set C ⊂ Ω, such that f(C) ⊂ V and f(C) 6⊂ V (both conditions on
f(C) hold in particular if C 6= ∅ and f(C) ⊂ ∂V ). Then f(Ω) ∩ V = ∅.

(b): We have the equivalence

f(Ω) ⊂ V , f(Ω) ∩ ∂V 6= ∅ ⇐⇒ f(Ω) ⊂ ∂V.

Proof. (a). Since f(C) ⊂ V and f(C) 6⊂ V yield ∅ 6= V 6= Y , we may assume 0 ∈ V . The
gauge pV 6≡ 0 of V is sublinear and continuous, and

V = p−1
V ([0, 1[), V = p−1

V ([0, 1]), ∂V = p−1
V ({1}).

There exists c ∈ C, such that f(c) ∈ V \ V = ∂V . Hence pV ◦ f |C ≤ 1 = pV (f(c)). By
Theorem 3.3 we deduce that pV ◦ f ≥ 1, and the conclusion follows.
(b). Clearly, we only need to prove the implication “⇒”. Assume f(Ω) ⊂ V and f(Ω) ∩
∂V 6= ∅. Applying the already proved part (a) for C = Ω yields f(Ω) ∩ V = ∅. Hence
f(Ω) ⊂ V \ V = ∂V . �

A well-known version of the maximum modulus principle states for a bounded do-
main Ω ⊂ C and for f ∈ H(Ω) ∩ C(Ω), that maxx∈Ω |f(x)| = maxx∈∂Ω |f(x)|. For un-
bounded domains this is no longer true (e.g. for Ω = C, since ∂Ω = ∅). We next show
that a similar version of the principle still holds for vector-valued functions on sufficiently
bounded domains in topological vector spaces.

Theorem 3.4 (boundary sublinear maximum principle). AssumeX is a Hausdorff topological
vector space. Let a sufficiently bounded 1-open set Ω ⊂ X , a function f ∈ HG(Ω, Y ) ∩ C(Ω, Y ),
and a continuous sublinear p : Y → R. Then

sup
x∈Ω

p(f(x)) = sup
x∈∂Ω

p(f(x)).

Proof. As p ◦ f is continuous, we have sup p(f(Ω)) = sup p(f(Ω)) ≥ sup p(f(∂Ω)). In order
to prove the converse inequality, let us fix a ∈ Ω. Since Ω is sufficiently bounded, there
exists a complex one-dimensional linear variety L ⊂ X , such that a ∈ L and D := Ω ∩ L
is bounded in L. Hence in L the set D is open, D is compact, ∂D ⊂ ∂Ω ∩ L, and f |D ∈
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H(D,Y ) ∩ C(D,Y ). Thus p(f(a)) ≤ sup p(f(D)) = p(f(c)) for some c ∈ D = D ∪ ∂D. We
next analyze two cases.
Case 1. If c ∈ ∂D ⊂ ∂Ω, then p(f(a)) ≤ sup p(f(∂Ω)).
Case 2. If c ∈ D, let C denote the connected component of c in D. Since p ◦ f |C has a
global maximum at c, by Theorem 3.3 p ◦ f |C also has a global minimum at c, and so
p ◦ f |C ≡ p(f(c)). Hence p(f(a)) ≤ p(f(c)) = sup p(f(∂C)) ≤ sup p(f(∂Ω)).
As in both cases we obtained p(f(a)) ≤ sup p(f(∂Ω)) and a was arbitrary, we conclude
that sup p(f(Ω)) ≤ sup p(f(∂Ω)). �

Example 3.2. Let n ≥ 2 and a nonzero linear functional ϕ : Cn → C. Then the unbounded open
set Ω := {x ∈ Cn | ‖x‖ < |ϕ(x)|2} is sufficiently bounded, and so

sup
x∈Ω
|f(x)| = sup

x∈∂Ω
|f(x)| for every f ∈ H(Ω) ∩ C(Ω).

Indeed, for every a ∈ Ω we have Ω ∩ (a + kerϕ) ⊂ BCn(0, |ϕ(a)|2). Since for a complex
one-dimensional linear variety La ⊂ Cn such that a ∈ La ⊂ a + kerϕ, the set Ω ∩ La =
BCn(0, |ϕ(a)|2) ∩ La is bounded, Ω is sufficiently bounded.

Let us finally note that all results of this paper apply in particular to vector-valued
functions which are holomorphic in any sense (for instance Mackey/Silva, hypoanalytic,
Fréchet, or locally bounded) that implies Gâteaux holomorphy.
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