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ABSTRACT. We modify the classical concept of an evolution semigroup associated to an evolution family on
the half-line to fit to the general case when linear flows may not agree with the restricted hypothesis of uniform
exponential growth. We study the connections between spectral properties of the corresponding generator and
a wide class of behavior of the evolution family. As a consequence, we prove that the generalized exponential
dichotomy of possible non-invertible evolution families persists under sufficiently small linear perturbations.

1. INTRODUCTION

The non-autonomous linear differential equation

ẋ = A(t)x, t ≥ 0,

in a Banach space X , is well-posed if the existence, uniqueness and continuous dependence
on initial data of its solutions are assumed [23]. Under such hypotheses, one can define
an evolution family {U(t, s)}t≥s≥0 on X such that

x(t) = U(t, s)x(s), for all t ≥ s ≥ 0.

Thus, the study of non-autonomous linear differential equations extended to the study of
evolution families. Recall that an evolution family on X is a collection U = {U(t, s)}t≥s≥0

of bounded linear operators acting on X such that the following properties hold:
• U(t, t) = Id, t ≥ 0;
• U(t, τ)U(τ, t0) = U(t, t0), t ≥ τ ≥ t0 ≥ 0;
• for each x ∈ X , the mapping (t, s) 7→ U(t, s)x is continuous on

∆ =
{
(t, s) ∈ R2 : t ≥ s ≥ 0

}
.

In the asymptotic theory of non-autonomous linear differential equations, a central
problem is to find conditions for detecting stability, instability, dichotomy or trichotomy of
corresponding evolution families. A significant approach is represented by the so-called
input-output technique or admissibility method. More precisely, the study of asymptotic
behavior of an evolution family U reduces to the analysis of the solvability of the integral
equation

(1.1) u(t) = U(t, s)u(s) +

∫ t

s

U(t, ξ)f(ξ) dξ, for t ≥ s ≥ 0,

in a wide class of pairs of function spaces, called admissible pairs for U . The contribution
of Megan and his collaborators (A.L. Sasu and B. Sasu) to this topic is remarkable and
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provided new classes of methods in approaching the asymptotic behavior of evolution
families by means of various admissibility conditions, both in uniform [20, 21, 28] and
nonuniform setting [19, 27].

A notable step in this framework was made by Van Minh, Räbiger, and Schnaubelt in
[29]. Their approach is based on a connection between the integral equation (1.1) and
the generator of the so-called evolution semigroup associated to U . It is known that if
U = {U(t, s)}t≥s≥0 is an exponentially bounded evolution family on X , then one can define
a C0-semigroup S = {St}t≥0 on certain super-space E(X) of functions u : R+ → X , by
setting

Stu(s) =

{
U(s, s− t)u(s− t), s ≥ t,

U(s, 0)u(0), 0 ≤ s < t,

called the evolution semigroup associated to U . For evolution families on the real line,
Räbiger and Schnaubelt extended this concept to a large class of X-valued function spaces,
including in particular C0(R, X) and Lp(R, X) [25].

Let us remark that even if the underlying Banach space X is finite-dimensional, the
space E(X) where the C0-semigroup S acts has infinite dimension. It follows that the
arguments and techniques needed for such endeavour are specific to functional analysis.
On the other hand, one may notice that this type of analysis reduces in fact the study
of a non-autonomous differential equation to the study of an autonomous one, such as
dy/dt = Gy, where G is the (infinitesimal) generator of S. More precisely, some spectral
properties of the generator G has been proved to characterize the exponential behavior
of the evolution family U (see [6, Section 3.3] or [7, 26, 29]). Similar techniques were
developed by Latushkin, Randolph, and Schnaubelt for evolution families on the real line
[14]. More recently, the concept of an evolution semigroup was extended to nonuniform
behavior [1, 15, 16].

In our paper we investigate a more general type of exponential behavior, replacing the
standard growth or decay rates t 7→ νt by some well-chosen mappings t 7→ Ω(t), t ≥ 0.
These types of asymptotic behavior can occur naturally when all Lyapunov exponents
are infinite or they are all zero (see [2]). In particular, if Ω(t) = ln(t + 1), then one steps
over the so-called polynomial behavior, introduced independently by Barreira and Valls
[3] and Bento and Silva [5] in the context of nonuniform behavior.

The tool we make use of can be considered as an intersection between the theory of
evolution semigroups and input-output methods. Let us point out that we replaced the
restricted hypothesis of uniform exponential growth imposed to evolution families with
the general condition (2.2) below, which is satisfied by any evolution family generated by
a differential equation.

For our purpose, we introduce and analyze a new concept of C0-semigroup, called the
generalized evolution semigroup, that generalizes the usual evolution semigroup. We prove
that this type of evolution semigroup is similar to a classical one and thus all the known
basic properties, such as the spectral mapping theorem, still hold. In Section 3 we study a
general exponential behavior on the half-line, using the generalized evolution semigroup
previously constructed. The last section is dedicated to the analysis of the persistence of
the generalized exponential dichotomy with respect to small linear perturbations. The
main result of this section is given by Theorem 4.2. We point out that its proof only uses
generalized evolution semigroups (and not a direct method as in [4] or [24] for example).

We believe that the present constructions and techniques may apply as well in the case
of a generalized nonuniform behavior. We refer the reader to papers [1, 16] for a better
understanding. Hopefully our ideas might inspire potential researches in investigating
other more general concepts of exponential behavior.
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2. GENERALIZED EVOLUTION SEMIGROUPS

Let X = (X, ∥ · ∥) be a Banach space and let B(X) be the Banach algebra of all bounded
linear operators acting on X . We also consider the following Banach function spaces:

C0(R+, X) =
{
u : R+ → X : u is continuous and lim

t→∞
u(t) = 0

}
,

C00(R+, X) = {u ∈ C0(R+, X) : u(0) = 0} ,
endowed with the sup-norm ∥u∥∞ = supt≥0 ∥u(t)∥, where R+ = [0,∞).

Throughout this paper, we always assume that ω : R+ → R+ is a continuous function with
ω(t) > 0 for every t > 0 such that

∫ t

0
ω(τ)dτ → ∞ as t → ∞.

Definition 2.1. We say that an evolution family U = {U(t, s)}t≥s≥0 is ω-exponentially
bounded if there exist constants α ∈ R and K ≥ 1 such that

(2.2) ∥U(t, s)∥ ≤ Keα
∫ t
s
ω(τ)dτ , for all t ≥ s ≥ 0.

The above condition is in fact the hypothesis of ω-bounded growth assumed in [22]. In
particular, if ω is bounded, we step over the classical concept of an exponentially bounded
evolution family.

Notice that any evolution family generated by a differential equation ẋ = A(t)x, where
R+ ∋ t 7→ A(t) ∈ B(X) is continuous in uniform operator topology, is ω-exponentially
bounded with ω(t) = ∥A(t)∥, provided that

∫ t

0
∥A(τ)∥dτ → ∞ as t → ∞ (see, for instance,

[8, p. 101]).
On the other hand, if an evolution family U = {U(t, s)}t≥s≥0 (not necessarily generated

by a differential equation) is exponentially bounded with constants α > 0 and K ≥ 1, then
it is also ω-exponentially bounded for any non-decreasing function ω satisfying our above
assumption, precisely

∥U(t, s)∥ ≤ Keαt0e
α

ω(t0)

∫ t
s
ω(τ)dτ

, for any fixed t0 > 0 and for all t ≥ s ≥ 0.

This is a simple consequence of the following inequality:

(2.3)
∫ t

s

ω(τ)dτ ≥ ω(t0)(t− s)− ω(t0)t0, for any fixed t0 > 0 and for all t ≥ s ≥ 0.

Indeed, pick t0 > 0 and let t ≥ s ≥ 0. If t0 ≤ s, then ω(τ) ≥ ω(t0) for every τ ≥ s, thus∫ t

s

ω(τ)dτ − ω(t0)(t− s) =

∫ t

s

ω(τ)− ω(t0)dτ ≥ 0 ≥ −ω(t0)t0.

For t0 ∈ (s, t) we get∫ t

s

ω(τ)dτ − ω(t0)(t− s) ≥
∫ t0

s

ω(τ)− ω(t0)dτ ≥ −ω(t0)(t0 − s) ≥ −ω(t0)t0.

Finally, if t0 ≥ t, then
∫ t

s
ω(τ)dτ − ω(t0)(t − s) ≥ −ω(t0)(t − s) ≥ −ω(t0)t0. Hence, (2.3)

holds.

In the next result, we define a C0-semigroup associated to an ω-exponentially bounded
evolution family, which may not necessarily be exponentially bounded. For instance, the
evolution family U(t, s) = et

2−s2Id, t ≥ s ≥ 0, is ω-exponentially bounded with ω(t) = 2t
(or, more generally, ω(t) = at for any fixed a ∈ R, a ̸= 0), but it is not exponentially
bounded.

Set

Ω(t) =

∫ t

0

ω(τ)dτ, for t ≥ 0.
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One may easily observe that Ω is a continuously differentiable, strictly increasing and
invertible function with Ω(0) = 0 and lim

t→∞
Ω(t) = ∞. Furthermore, (2.2) is equivalent to

(2.4) ∥U(t, s)∥ ≤ Keα(Ω(t)−Ω(s)), for all t ≥ s ≥ 0.

Theorem 2.1. Assume that U = {U(t, s)}t≥s≥0 is an evolution family on X such that (2.2) holds
for some α ∈ R and K ≥ 1, that is U is ω-exponentially bounded. The family {Tt}t≥0, given by

(2.5) Ttu(s) =

{
U(s,Ω−1(Ω(s)− t))u(Ω−1(Ω(s)− t)), s ≥ Ω−1(t),

U(s, 0)u(0), 0 ≤ s < Ω−1(t),

is a C0-semigroup on E(X), where E(X) is one of the spaces C0(R+, X) or C00(R+, X). In fact,
{Tt}t≥0 is similar to a classical evolution semigroup on E(X). Furthermore, we have

(2.6) ∥Tt∥ ≤ Keαt, for every t ≥ 0.

Proof. Set

(2.7) V (t, s) = U(Ω−1(t),Ω−1(s)), for t ≥ s ≥ 0.

One can easily check that V = {V (t, s)}t≥s≥0 is an evolution family on X satisfying

∥V (t, s)∥ ≤ Keα(t−s), for all t ≥ s ≥ 0,

and hence V is exponentially bounded. Let us define the evolution semigroup {St}t≥0 on
E(X) associated to the evolution family V , that is

Stv(s) =

{
V (s, s− t)v(s− t), s ≥ t,

V (s, 0)v(0), 0 ≤ s < t,

for t ≥ 0 and v ∈ E(X). Then, we have

Stv(s) =

{
U(Ω−1(s),Ω−1(s− t))v(s− t), s ≥ t,

U(Ω−1(s), 0)v(0), 0 ≤ s < t,

and thus

Stv(Ω(s)) =

{
U(s,Ω−1(Ω(s)− t))v(Ω(s)− t), Ω(s) ≥ t,

U(s, 0)v(0), Ω(s) ∈ [0, t).

Letting v = u◦Ω−1 ∈ E(X) for u ∈ E(X), we get (St(u◦Ω−1))(Ω(s)) = Ttu(s). This yields

(2.8) (St(u ◦ Ω−1)) ◦ Ω = Ttu, for all t ≥ 0 and u ∈ E(X).

Notice that the mapping

F : E(X) → E(X), Fu = u ◦ Ω−1

is a linear isomorphism of the Banach space E(X), with inverse

F−1v = v ◦ Ω.

From (2.8) we have

Ttu = (St(Fu)) ◦ Ω = F−1(St(Fu)), for all t ≥ 0 and u ∈ E(X),

and thus

(2.9) Tt = F−1St F , for every t ≥ 0.

The above relation shows that {St}t≥0 and {Tt}t≥0 are similar semigroups (see [9, p. 59])
and in particular {Tt}t≥0 is a C0-semigroup on E(X).
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It remains to prove inequality (2.6). Let u ∈ E(X) and t ≥ 0. If s ≥ Ω−1(t), then (2.4)
implies

∥Ttu(s)∥ = ∥U(s,Ω−1(Ω(s)−t))u(Ω−1(Ω(s)−t))∥ ≤ Keαt∥u(Ω−1(Ω(s)−t))∥ ≤ Keαt∥u∥∞.

On the other hand, for s ∈ [0,Ω−1(t)) we have

∥Ttu(s)∥ = ∥U(s, 0)u(0)∥ ≤ KeαΩ(s)∥u(0)∥ ≤ Keαt∥u∥∞,

and thus (2.6) holds. □

Throughout this paper, we call the C0-semigroup in (2.5) as the generalized evolution
semigroup on E(X) associated to the ω-exponentially bounded evolution family U .

For each fixed t0 ≥ 0 we set

C0(t0) =
{
u : [t0,∞) → X : u is continuous and lim

t→∞
u(t) = 0

}
.

Lemma 2.1. Let U = {U(t, s)}t≥s≥0 be an evolution family on X and let V = {V (t, s)}t≥s≥0

be the evolution family defined by (2.7). The following statements are equivalent:
(i) for every t0 ≥ 0 and for every f ∈ C0(t0) there exists u ∈ C0(t0) such that

u(t) = U(t, s)u(s) +

∫ t

s

ω(ξ)U(t, ξ)f(ξ) dξ, for t ≥ s ≥ t0;

(ii) for every t0 ≥ 0 and for every f ∈ C0(t0) there exists v ∈ C0(t0) such that

v(t) = V (t, s)v(s) +

∫ t

s

V (t, ξ)f(ξ) dξ, for t ≥ s ≥ t0.

Proof. We only prove (i) ⇒ (ii) as the converse implication can be proved similarly. Let
t0 ≥ 0 and f ∈ C0(t0). Then f ◦ Ω ∈ C0(Ω

−1(t0)) and by (i) there exists u ∈ C0(Ω
−1(t0))

such that

u(t) = U(t, s)u(s) +

∫ t

s

ω(ξ)U(t, ξ)f(Ω(ξ)) dξ, for all t ≥ s ≥ Ω−1(t0).

For t ≥ s ≥ t0 one has

u(Ω−1(t)) = U(Ω−1(t),Ω−1(s))u(Ω−1(s)) +

∫ Ω−1(t)

Ω−1(s)

Ω′(ξ)U(Ω−1(t), ξ)f(Ω(ξ)) dξ

= V (t, s)u(Ω−1(s)) +

∫ t

s

V (t, τ)f(τ) dτ,

therefore (ii) holds for v = u ◦ Ω−1 ∈ C0(t0). □

Remark 2.1. Relation (2.9) is of a significant importance because it gives the connection
between the generator (G,D(G)) of the generalized evolution semigroup on E(X) and
the generator (A,D(A)) of the corresponding classical evolution semigroup associated to
the evolution family V defined by (2.7). Indeed, we have

(2.10) G = F−1AF , with domain D(G) =
{
u ∈ E(X) : u ◦ Ω−1 ∈ D(A)

}
,

consequently σ(G) = σ(A).

Let us remark that the above similarity property permits to directly deduce the spectral
mapping theorem for generalized evolution semigroups on C00(R+, X) from [7, Theorem
2.1] or [29, Corollary 2.4] (see also [26] for some important spectral symmetry properties).

We recall that s(B) = sup{Reλ : λ ∈ σ(B)} is the spectral bound of a linear operator
B : D(B) ⊆ X → X and r(B) = sup{|λ| : λ ∈ σ(B)} is the spectral radius of B.
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Corollary 2.1. Let {Tt}t≥0 be the generalized evolution semigroup on C00(R+, X) associated to
an ω-exponentially bounded evolution family U and let G00 denote its generator. The spectra of the
operators Tt and G00 have some important symmetry properties: σ(Tt) is rotationally invariant
for each t > 0, that is

λσ(Tt) = σ(Tt), for every λ ∈ C with |λ| = 1,

and σ(G00) is invariant under translations along the imaginary axis, i.e. σ(G00) = σ(G00)+ iR.
Moreover, σ(Tt) = {λ ∈ C : |λ| ≤ r(Tt)} is a disc centered at the origin for each t > 0,
σ(G00) = {λ ∈ C : Reλ ≤ s(G00)} is a left half-plane, and the spectral mapping theorem holds
for the generalized evolution semigroup, that is

(2.11) σ (Tt) \ {0} = etσ(G00), for every t > 0.

Remark 2.2. An important consequence of identity (2.11) is that the growth bound

ω(T ) = inf{α ∈ R : there exists K ≥ 1 such that (2.6) holds}
of the generalized evolution semigroup T = {Tt}t≥0 on C00(R+, X) coincides with the
spectral bound s(G00) of the corresponding generator, i.e. ω(T ) = s(G00).

Let G0 and G00 be the generators of the generalized evolution semigroups {Tt}t≥0 on
C0(R+, X) and C00(R+, X), respectively. Notice that D(G00) = D(G0) ∩ C00(R+, X) and
G00u = G0u for u ∈ D(G00). Furthermore, if u ∈ D(G0), then G0u(0) = 0, therefore
Range(G0) ⊆ C00(R+, X).

Lemma 2.2. (a) Let u ∈ C0(R+, X) and f ∈ C00(R+, X). Then u ∈ D(G0) and G0u = −f if
and only if

(2.12) u(t) = U(t, s)u(s) +

∫ t

s

ω(ξ)U(t, ξ)f(ξ) dξ, for t ≥ s ≥ 0.

(b) Let u, f ∈ C00(R+, X). Then u ∈ D(G00) and G00u = −f if and only if

u(t) =

∫ t

0

ω(ξ)U(t, ξ)f(ξ) dξ, for t ≥ 0.

Proof. We only prove (a). Let u ∈ D(G0) and f ∈ C00(R+, X) such that G0u = −f . Using
(2.10) and the expression of the operator F in the proof of Theorem 2.1, we have

v = u ◦ Ω−1 ∈ D(A0) and A0v = −f ◦ Ω−1,

where (A0, D(A0)) stands for the generator (A,D(A)) whenever E(X) = C0(R+, X).
Then, Lemma 1.1 in [29] implies

v(t) = V (t, s)v(s) +

∫ t

s

V (t, τ)f(Ω−1(τ))dτ, t ≥ s ≥ 0,

which is equivalent to

u(Ω−1(t)) = U(Ω−1(t),Ω−1(s))u(Ω−1(s)) +

∫ t

s

U(Ω−1(t),Ω−1(τ))f(Ω−1(τ))dτ, t ≥ s ≥ 0.

Let t ≥ s ≥ 0. Replacing in the above relation t and s by Ω(t) and Ω(s), respectively, we
get

u(t) = U(t, s)u(s) +

∫ Ω(t)

Ω(s)

U(t,Ω−1(τ))f(Ω−1(τ))dτ

= U(t, s)u(s) +

∫ t

s

Ω′(ξ)U(t, ξ)f(ξ)dξ,
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and thus formula (2.12) holds. The converse can be proved by reversing all the above
arguments. □

3. GENERALIZED EXPONENTIAL BEHAVIOR ON THE HALF-LINE

For non-autonomous differential equations, the classical theory of exponential stability
may look as too restrictive, therefore it is important to search for more general behavior.

Definition 3.2. An evolution family U = {U(t, s)}t≥s≥0 is called:
• ω-exponentially stable if there exist constants ν > 0 and N ≥ 1 such that

(3.13) ∥U(t, s)∥ ≤ Ne−ν
∫ t
s
ω(τ)dτ , t ≥ s ≥ 0;

• ω-exponentially expansive if the operators U(t, s) are invertible for t ≥ s ≥ 0 and
there exist constants ν > 0 and N ≥ 1 such that

∥U(s, t)∥ ≤ Ne−ν
∫ t
s
ω(τ)dτ , t ≥ s ≥ 0,

where U(s, t) = U(t, s)−1.

Furthermore, we say that U has an ω-exponential dichotomy if:
(a) there exist projections P (t) : X → X , and write Q(t) = Id − P (t), for t ≥ 0, such

that
P (t)U(t, s) = U(t, s)P (s)

and the restriction UQ(t, s) : Range(Q(s)) → Range(Q(t)) of U(t, s) is invertible
for all t ≥ s ≥ 0;

(b) there exist constants ν > 0 and N ≥ 1 such that

∥U(t, s)P (s)∥ ≤ Ne−ν
∫ t
s
ω(ξ) dξ and ∥UQ(s, t)Q(t)∥ ≤ Ne−ν

∫ t
s
ω(ξ) dξ,

where UQ(s, t) = UQ(t, s)
−1, for t ≥ s ≥ 0.

To the best of our knowledge this type of behavior has been introduced by Martin in
[17] (see also [12, 13, 22]).

The above concepts generalize the usual exponential behavior considering for instance
ω(t) = 1 for t ≥ 0. On the other hand, setting

ω(t) =
1

t+ 1
, t ≥ 0,

one may step over the polynomial behavior (see [10, 11, 18]). Furthermore, (2.3) shows
that if in particular the function ω : R+ → R+ is non-decreasing, then any ω-exponentially
stable, ω-exponentially expansive or ω-exponentially dichotomic evolution family, with
constants ν > 0 and N ≥ 1, admits the corresponding uniform exponential behavior with
new constants Neνω(t0)t0 and νω(t0) for any fixed t0 > 0.

Remark 3.3. One may easily check that if U is an evolution family on X and V is the
evolution family given by (2.7), then the following statements hold:

(i) U is ω-exponentially stable if and only if V is exponentially stable;
(ii) U is ω-exponentially expansive if and only if V is exponentially expansive;

(iii) U has an ω-exponential dichotomy with respect to projections P (t) if and only if V
has an exponential dichotomy with projections P̃ (t) = P (Ω−1(t)), t ≥ 0.

Next claim offers a simple characterization of ω-exponential stability.

Proposition 3.1. An evolution family U = {U(t, s)}t≥s≥0 is ω-exponentially stable if and only
if it is ω-exponentially bounded and the growth bound ω(T ) of the induced generalized evolution
semigroup T = {Tt}t≥0 on C00(R+, X) is negative, that is T is exponentially stable.
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Proof. Assume that U is ω-exponentially stable, that is there exist ν > 0 and N ≥ 1 such
that (3.13) holds, which in particular means that U is ω-exponentially bounded. From (2.6)
we have

∥Tt∥ ≤ Ne−νt, for every t ≥ 0,

and this yields that ω(T ) < 0. Conversely, assume that U is ω-exponentially bounded and
(2.6) holds for some α < 0 and K ≥ 1. Let x ∈ X with ∥x∥ = 1. For t ≥ s ≥ 0 choose
u ∈ C00(R+, X) such that ∥u∥∞ = 1 and u(s) = x. Then

∥U(t, s)x∥ = ∥U(t, s)u(s)∥ = ∥TΩ(t)−Ω(s)u(t)∥ ≤ ∥TΩ(t)−Ω(s)u∥∞ ≤ Keα(Ω(t)−Ω(s)),

which proves that U is ω-exponentially stable. □

An immediate consequence of the above result and Remark 2.2 is that an ω-exponentially
bounded evolution family is ω-exponentially stable if and only if the spectral bound s(G00) is
negative.

In the following we assume U = {U(t, s)}t≥s≥0 to be an ω-exponentially bounded evolution
family on X . Let G0 and G00 be the generators of the generalized evolution semigroups
T = {Tt}t≥0 on C0(R+, X) and C00(R+, X), respectively. Using the results due to Van
Minh, Räbiger, and Schnaubelt in [29], we completely characterize ω-exponential stability,
ω-exponential expansiveness, and ω-exponential dichotomy of U in terms of some spectral
or admissibility conditions.

Using Remark 3.3, [29, Theorem 2.2], Remark 2.1, and Lemma 2.2 (b), a characterization
of ω-exponential stability is present in the next result.

Corollary 3.2. The following statements are pairwise equivalent:
(i) U is ω-exponentially stable;
(ii) G00 is invertible;
(iii) For every f ∈ C00(R+, X) the function t 7→ (Gf)(t) =

∫ t

0
ω(ξ)U(t, ξ)f(ξ)dξ belongs to

C00(R+, X).

Notice that if the evolution family U = {U(t, s)}t≥s≥0 is ω-exponentially stable, then G
is a linear operator acting on C00(R+, X). Explicitly

(Gf)(t) =
∫ Ω(t)

0

U(t,Ω−1(Ω(t)− τ))f(Ω−1(Ω(t)− τ))dτ =

∫ ∞

0

Tτf(t)dτ, t ≥ 0,

and, using standard arguments from the theory of C0-semigroups, we get that G = −G−1
00

(see, for instance, [9, Theorem II.1.10]).
On the other hand, using the uniform boundedness principle one may easily prove that

condition (iii) of Corollary 3.2 is equivalent to the boundedness of G on C00(R+, X).

From Remark 3.3, Lemma 2.1, and [29, Theorem 2.5] we get a complete characterization
of ω-exponential expansiveness.

Corollary 3.3. U is ω-exponentially expansive if and only if for all t0 ≥ 0 and f ∈ C0(t0) there
exists a unique u ∈ C0(t0) such that

(3.14) u(t) = U(t, s)u(s) +

∫ t

s

ω(ξ)U(t, ξ)f(ξ) dξ, for t ≥ s ≥ t0.

For fixed t0 ≥ 0 we define the mapping It0 : D(It0) ⊆ C0(t0) → C0(t0) by It0u = f if
u and f satisfy the integral equation (3.14). Then the above result shows in fact that U is
ω-exponentially expansive if and only if It0 is invertible for every t0 ≥ 0.

Remark 2.1 implies Range(G0) = Range(F−1A0), where A0 is the generator of the
classical evolution semigroup on C0(R+, X) associated to the evolution family V defined
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by (2.7). Using Remark 3.3, Lemma 2.1 for t0 = 0, and [29, Theorem 4.3 ], we deduce the
following characterization of ω-exponential dichotomy.

Corollary 3.4. The following statements are pairwise equivalent:
(i) U has an ω-exponential dichotomy;
(ii) Range(G0) = C00(R+, X) and the stable subspace of initial data

Xs(0) = {x ∈ X : sup
t≥0

∥U(t, 0)x∥ < ∞}

is complemented in X ;
(iii) I0 is surjective and Xs(0) is complemented in X .

4. ROUGHNESS OF ω-EXPONENTIAL DICHOTOMY

The goal of this section is to establish a roughness result for ω-exponential dichotomies
of possible non-invertible evolution families using Corollary 3.4, that is the persistence of
ω-exponential dichotomy under sufficiently small linear perturbations.

To the best of our knowledge such technique is new, even for the classical concept of
exponential dichotomy. For a completely different proof we refer the reader to [4].

Assume that U = {U(t, s)}t≥s≥0 is an ω-exponentially bounded evolution family on
X with constants α ∈ R and K ≥ 1, and let E be the space of all strongly continuous
operator-valued function B : R+ → B(X) such that

∥B∥∗ = sup
t>0

∥B(t)∥
ω(t)

< ∞.

Evidently, E is a Banach space endowed with the norm ∥ · ∥∗. On the other hand, for
each fixed B ∈ E the linear Volterra integral equation

(4.15) UB(t, s)x = U(t, s)x+

∫ t

s

U(t, ξ)B(ξ)UB(ξ, s)xdξ, x ∈ X,

has a unique solution, which defines an evolution family UB = {UB(t, s)}t≥s≥0 on X (see
[24] and references therein).

We prove the following preliminary result:

Lemma 4.3. For each fixed B ∈ E the perturbed evolution family UB remains ω-exponentially
bounded, precisely

(4.16) ∥UB(t, s)∥ ≤ Ke(α+K∥B∥∗)
∫ t
s
ω(ξ)dξ, t ≥ s ≥ 0.

Proof. Using (2.2) and (4.15), one gets

∥UB(t, s)x∥ ≤ Keα
∫ t
s
ω(ξ)dξ∥x∥+K∥B∥∗

∫ t

s

ω(ξ)eα
∫ t
ξ
ω(τ)dτ∥UB(ξ, s)x∥dξ.

For any fixed x ̸= 0 and s ≥ 0, we set x(t) = ∥UB(t,s)x∥
∥x∥ for t ≥ s. Then

x(t) ≤ Keα
∫ t
s
ω(ξ)dξ +K∥B∥∗

∫ t

s

ω(ξ)eα
∫ t
ξ
ω(τ)dτx(ξ)dξ,

which when multiplied by e−α
∫ t
s
ω(ξ)dξ becomes

x(t)e−α
∫ t
s
ω(ξ)dξ ≤ K +K∥B∥∗

∫ t

s

ω(ξ)e−α
∫ ξ
s
ω(τ)dτx(ξ)dξ.
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Putting y(t) = x(t)e−α
∫ t
s
ω(ξ)dξ we obtain

y(t) ≤ K +K∥B∥∗
∫ t

s

ω(ξ)y(ξ)dξ.

Grönwall’s inequality in [8, Corollary 2.1] implies

y(t) ≤ KeK∥B∥∗
∫ t
s
ω(ξ)dξ,

therefore (4.16) is a direct consequence of the above inequality. □

Theorem 4.2. If the evolution family U has an ω-exponential dichotomy and the perturbation
operator B in E is sufficiently small, that is ∥B∥∗ ≤ δ for sufficiently small δ > 0, then the
perturbed evolution family UB still exhibits an ω-exponential dichotomy.

Proof. Notice that for

φ(t) = N

∫ t

0

ω(ξ)e−ν
∫ t
ξ
ω(τ)dτdξ +N

∫ ∞

t

ω(ξ)e−ν
∫ ξ
t
ω(τ)dτdξ, t ≥ 0,

one has

φ(t) ≤ 2N

ν
, for every t ≥ 0,

where ν > 0 and N ≥ 1 are given by Definition 3.2. For the sake of convenience, we
divide the proof into several steps.

Step 1. If

(4.17)
2Nδ

ν
< 1,

then for any fixed f ∈ C00(R+, X) there exists a unique function uf ∈ C0(R+, X) with

uf (t) =

∫ ∞

0

Γ(t, ξ)B(ξ)uf (ξ)dξ +

∫ ∞

0

ω(ξ)Γ(t, ξ)f(ξ)dξ, t ≥ 0.

Here

Γ(t, s) =

{
U(t, s)P (s), t > s ≥ 0,

−UQ(t, s)Q(s), 0 ≤ t < s,

stands for the Green function corresponding to the ω-exponential dichotomous evolution
family U .

Proof. For any fixed f ∈ C00(R+, X), we define the operator K : C0(R+, X) → C0(R+, X)
by

(Ku)(t) =

∫ ∞

0

Γ(t, ξ)B(ξ)u(ξ)dξ +

∫ ∞

0

ω(ξ)Γ(t, ξ)f(ξ)dξ, u ∈ C0(R+, X), t ≥ 0.

Clearly

∥(Ku)(t)∥ ≤ δφ(t)∥u∥∞ +
2N

ν
∥f∥∞ ≤ 2Nδ

ν
∥u∥∞ +

2N

ν
∥f∥∞,

thus K is well-defined. If the estimation (4.17) is satisfied, from

∥Ku−Kv∥∞ ≤ 2Nδ

ν
∥u− v∥∞, for all u, v ∈ C0(R+, X),

we conclude that K is a contraction, with a unique fixed point uf ∈ C0(R+, X). □

Step 2. Range(GB
0 ) = C00(R+, X).
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Proof. Let f ∈ C00(R+, X). We prove that GB
0 u = −f for u ∈ D(GB

0 ) satisfying the integral
equation

u(t) =

∫ ∞

0

Γ(t, ξ)B(ξ)u(ξ)dξ +

∫ ∞

0

ω(ξ)Γ(t, ξ)f(ξ)dξ

or, equivalently,

u(t) =

∫ t

0

U(t, ξ)P (ξ)B(ξ)u(ξ)dξ −
∫ ∞

t

UQ(t, ξ)Q(ξ)B(ξ)u(ξ)dξ(4.18)

+

∫ t

0

ω(ξ)U(t, ξ)P (ξ)f(ξ)dξ −
∫ ∞

t

ω(ξ)UQ(t, ξ)Q(ξ)f(ξ)dξ, t ≥ 0.

We first remark that under the assumption of the first step, the above integral equation
has a unique solution u ∈ C0(R+, X). Since UB is ω-exponentially bounded (see Lemma
4.3), by Lemma 2.2 (a) it suffices to prove that

u(t) = UB(t, s)u(s) +

∫ t

s

ω(ξ)UB(t, ξ)f(ξ)dξ, for t ≥ s ≥ 0.

Identities (4.15) and (4.18) yield

UB(t, s)u(s) +

∫ t

s

ω(ξ)UB(t, ξ)f(ξ)dξ

= U(t, s)u(s) +

∫ t

s

U(t, ξ)B(ξ)UB(ξ, s)u(s)dξ +

∫ t

s

ω(ξ)UB(t, ξ)f(ξ)dξ

=

∫ s

0

U(t, ξ)P (ξ)B(ξ)u(ξ)dξ −
∫ t

s

U(t, ξ)Q(ξ)B(ξ)u(ξ)dξ −
∫ ∞

t

UQ(t, ξ)Q(ξ)B(ξ)u(ξ)dξ

+

∫ s

0

ω(ξ)U(t, ξ)P (ξ)f(ξ)dξ −
∫ t

s

ω(ξ)U(t, ξ)Q(ξ)f(ξ)dξ −
∫ ∞

t

ω(ξ)UQ(t, ξ)Q(ξ)f(ξ)dξ

+

∫ t

s

U(t, ξ)B(ξ)UB(ξ, s)u(s)dξ +

∫ t

s

ω(ξ)U(t, ξ)f(ξ)dξ

+

∫ t

s

ω(ξ)

(∫ t

ξ

U(t, η)B(η)UB(η, ξ)f(ξ)dη

)
dξ.

According to Fubini’s theorem, one gets

UB(t, s)u(s) +

∫ t

s

ω(ξ)UB(t, ξ)f(ξ)dξ

= u(t)−
∫ t

s

U(t, ξ)P (ξ)B(ξ)u(ξ)dξ −
∫ t

s

U(t, ξ)Q(ξ)B(ξ)u(ξ)dξ

−
∫ t

s

ω(ξ)U(t, ξ)P (ξ)f(ξ)dξ −
∫ t

s

ω(ξ)U(t, ξ)Q(ξ)f(ξ)dξ

+

∫ t

s

U(t, ξ)B(ξ)UB(ξ, s)u(s)dξ +

∫ t

s

ω(ξ)U(t, ξ)f(ξ)dξ

+

∫ t

s

U(t, ξ)B(ξ)

(∫ ξ

s

ω(η)UB(ξ, η)f(η)dη

)
dξ

= u(t) +

∫ t

s

U(t, ξ)B(ξ)

(
UB(ξ, s)u(s) +

∫ ξ

s

ω(η)UB(ξ, η)f(η)dη − u(ξ)

)
dξ.
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If we set

x(t) = UB(t, s)u(s) +

∫ t

s

ω(ξ)UB(t, ξ)f(ξ)dξ − u(t), for t ≥ s ≥ 0,

then the above arguments imply

x(t) =

∫ t

s

U(t, ξ)B(ξ)x(ξ)dξ, t ≥ s ≥ 0.

The uniqueness of the solution of the above Volterra-type equation results in x(t) = 0 for
all t ≥ s ≥ 0, which proves our claim. □

We show that XB
s (0) is complemented. For each x ∈ X we consider the operator

J : C0(R+, X) → C0(R+, X), defined by

(4.19) (J u)(t) = U(t, 0)P (0)x+

∫ ∞

0

Γ(t, ξ)B(ξ)u(ξ)dξ.

As

∥J u− J v∥∞ = ∥Ku−Kv∥∞ ≤ 2Nδ

ν
∥u− v∥∞, u, v ∈ C0(R+, X),

whenever 2Nδ
ν < 1, J is a contraction, with a unique fixed point ux ∈ C0(R+, X). Observe

that the operator x 7→ ux is linear and bounded. Put

P̃ x = ux(0).

Identity (4.19) yields

P̃ x = P (0)x−
∫ ∞

0

UQ(0, ξ)Q(ξ)B(ξ)ux(ξ)dξ.

Then P (0)P̃ = P (0). The uniqueness of the fixed-point ux−P (0)x also implies P̃P (0) = P̃ ,
thus

P̃ = P̃P (0) = P̃P (0)P̃ = P̃ P̃ ,

that is P̃ is a bounded projection on X .
Step 3. XB

s (0) = Range(P̃ ), hence XB
s (0) is complemented.

Proof. Clearly, for any x ∈ X one has

ux(t) = U(t, 0)ux(0) +

∫ t

0

U(t, ξ)B(ξ)ux(ξ)dξ, for every t ≥ 0.

The uniqueness of the solution of the integral equation (4.15) at s = 0 implies

ux(t) = UB(t, 0)ux(0) = UB(t, 0)P̃ x,

and consequently Range(P̃ ) ⊆ XB
s (0).

We prove the converse inclusion. Assume that there exists x0 ∈ XB
s (0) \ Range(P̃ ).

Evidently x0 ̸= 0, and let x̂0 be the one-dimensional subspace generated by x0. Since
x0 ∈ Range(Q(0)), we can write

Range(Q(0)) = x̂0 ⊕ Z (direct sum)

and set P0 be the bounded projection with Range(P0) = x̂0. We also set

P̂ = P0 + P̃ .
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As P0P̃ = P̃P0 = 0, we get that P̂ is a bounded projection on X . Multiplying at left the
identity

UB(τ, 0)P̂ x = U(τ, 0)P̂ x+

∫ τ

0

U(τ, ξ)B(ξ)UB(ξ, 0)P̂ xdξ, τ ≥ 0, x ∈ X,

by UQ(t, τ), 0 ≤ t ≤ τ , we obtain

U(t, 0)Q(0)P̂ x = UQ(t, τ)Q(τ)UB(τ, 0)P̂ x−
∫ t

0

U(t, ξ)Q(ξ)B(ξ)UB(ξ, 0)P̂ xdξ

−
∫ τ

t

UQ(t, ξ)Q(ξ)B(ξ)UB(ξ, 0)P̂ xdξ.

Since ∥UQ(t, τ)Q(τ)∥ ≤ Ne−ν
∫ τ
t

ω(ξ)dξ → 0 as τ → ∞ and the mapping τ 7→ UB(τ, 0)P̂ x is
bounded (as P̂ x ∈ XB

s (0)), for τ → ∞ we get

U(t, 0)Q(0)P̂ x = −
∫ t

0

U(t, ξ)Q(ξ)B(ξ)UB(ξ, 0)P̂ xdξ

−
∫ ∞

t

UQ(t, ξ)Q(ξ)B(ξ)UB(ξ, 0)P̂ xdξ.

Successively one has

U(t, 0)P (0)P̂ x+

∫ ∞

0

Γ(t, ξ)B(ξ)UB(ξ, 0)P̂ xdξ

= U(t, 0)P (0)P̂ x+

∫ t

0

U(t, ξ)P (ξ)B(ξ)UB(ξ, 0)P̂ xdξ

−
∫ ∞

t

UQ(t, ξ)Q(ξ)B(ξ)UB(ξ, 0)P̂ xdξ

= U(t, 0)P (0)P̂ x+

∫ t

0

U(t, ξ)P (ξ)B(ξ)UB(ξ, 0)P̂ xdξ

+ U(t, 0)Q(0)P̂ x+

∫ t

0

U(t, ξ)Q(ξ)B(ξ)UB(ξ, 0)P̂ xdξ

= U(t, 0)P̂ x+

∫ t

0

U(t, ξ)B(ξ)UB(ξ, 0)P̂ xdξ = UB(t, 0)P̂ x.

Since P (0)P̂ x = P (0)x, the above considerations imply that vx(t) = UB(t, 0)P̂ x is a fixed
point of the operator J . Thus P̃ = P̂ and consequently x0 = 0, which is false. This yields
that XB

s (0) ⊆ Range(P̃ ). □

Using Lemma 4.3, Step 2 and Step 3, the final conclusion is a direct consequence of
Corollary 3.4. □
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PIAŢA VICTORIEI 2, 300006 TIMIŞOARA, ROMANIA
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