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Positive solutions for second-order differential equations o
Kirchhoff type on the half-line

HABIBA BOULAIKI, TOUFIK MOUSSAOUI and RADU PRECUP

ABSTRACT. The aim of the present paper is to study the existence of nontrivial nonnegative solutions for a
second-order boundary value problem of Kirchhoff type on the half-line. Our approach is based on variational
methods, a monotonicity trick related to the mountain pass lemma, cut-off functional technique, and a Pohozaev
type identity.

1. INTRODUCTION

In this work, we are concerned with nontrivial nonnegative solutions to the following
problem
(1.1)

(a+ AL (W (1) + but) )dt) (—u"(t) + bu(t)) = f(u(t)) forae. t € (0,-+o0)
u(0) = u(+oo) =0,

where a and b are positive constants, A > 0 is a parameter and f € C (RT,R").
We assume that the following conditions are satisfied:

(H1): There exists § > 1 and nonnegative constants «, 3 such that f(¢) < a + 3¢?
forall ¢ € RT.
(H2): hH(l) £ — .

(H3): lim % = +o00.
£—+oo
Problem (1.1) is a nonlocal one due to the presence of the term [ 2 (w2 + bu?)dt. This
causes some mathematical difficulties which make its study partlcularly interesting.
This problem is related to the stationary Kirchhoff equation (see [14], [5] and [8]) de-
scribing the motion of a semi-infinite string

0?u oo ou\? 0%u
— g + — | dx | = = h(t, ),
o ( 0 /0 dx gz~ M)
where my is a positive constant, h(¢, z) is the external force and u(t, ) is the lateral dis-
placement at the space coordinate = and time ¢. This equation is an extension of the clas-

sical D’ Alembert’s wave equation and takes into account the length changes of the string
produced by transverse vibrations. Notice that nonlocal problems also appear in other
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fields such as biological systems, where, for example, u is a population density whose
dynamics depends on the average of the density itself.

If we set @ = 1 and A = 0, then (1.1) reduces to the following second order semi-linear
boundary value problem on the half-line

{ —u"(t) + bu(t) = f(u(t)) fora.e.t € (0,+00)
u(0) = u(4o00) = 0.

This type of problems has been extensively studied in the literature by several authors
using different methods, for example, Zima [20] considered the following problem

{ —u'"(t) + k?u(t) = f(t,u(t)), te (0,+00)
u(0) = u(4o00) = 0,

where k£ > 0 and f is continuous and non-negative. By using a fixed point theorem
in cones she proved the existence of at least one positive solution. The same problem
has been studied in [2] by using variational methods and critical point theory in conical
shells, where the authors established the existence and localization of at least two positive
solutions. Also Ma and Zhu [17] by employing fixed-point theorems on cones, obtained
the existence of positive solutions for the following second-order boundary value problem
on the half-line

1.2)

{ —u"(t) + K2 (t)u(t) + dm(t) f(t,u(t)), t € (0,+00)
u(0) = u(4o00) = 0,

where k : [0,00) = (0,00) and f : [0,00) x [0,00) — R are continuous. Gomes and
Sanchez [7], by using variational methods and critical point theory proved the existence
of solutions to the following boundary value problem

{ —u" (t) + p(t)u(t) = Ag(t) f(u(t)) fora.e. t € (0,+00)
u(0) = a, u(4o00) =0,

with @ > 0 and p, ¢ : [0,400) — R continuous functions. Bonanno and O'Regan [1]
by using critical point arguments established some results on the existence of multiple
solutions for a second order boundary value problem on the half-line.

In recent years the existence and multiplicity of solutions for second order problems of
Kirchhoff type have been studied by many authors, for example, in [18], employing the
Yang index and critical groups, Perera and Zhang obtained the existence of a non trivial
solution for the following second order boundary value problem of Kirchhoff type

— (a—|—bfQ |Vu|2da:> (Au) = f(z,u) inQ
u=0 on 00

where Q is a smooth bounded domaininRY, N = 1,20r3,a,b > 0and fisa Carathéodory
function on © x R. In [15] Li, Li and Shi using variational methods and cut-off functional
techniques established the existence of at least one positive solution for the following
second-order nonlocal elliptic problem

(1.3) (aJr)\/ |Vu\2dyc+>\b/ u2dx> [—Au+bu] = f(u) in RV,
RN RN

where N > 3, a, b are positive constants and A > 0 is a nonnegative parameter.

Also in [6], the authors using variational methods and iterative techniques studied the
existence of non trivial positive solutions for problem (1.3) with f(u) = K(z)|ul” “lu,
p € (2,5)and N = 3.

To the best of our knowledge, there are few papers considering Kirchhoff type prob-
lems on the half line except [4, 9], where the authors studied second order boundary value
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problems of Kirchhoff type on the half-line with impulses by using variational methods
and critical point theory.

Inspired by [15, 6], in the present paper we study the existence of at least one nontrivial
nonnegative solution of problem(1.1) without the Ambrosetti-Rabinowitz (AR) condition
on nonlinearity f. We use a cut-off function technique, a monotonicity trick related to
the mountain pass lemma and a Pohozaev type identity, to obtain bounded Palais-Smale
sequences.

The paper is organized as follows: In Section 2 we give some notations, preliminary
concepts and results. Section 3 is devoted to proving our main result, namely the follow-
ing theorem.

Theorem 1.1. Assume that conditions (H1), (H2) and (H3) hold. Then there exists Ao > 0 such
that for any A € [0, Ao), problem (1.1) has at least one nonzero nonnegative solution.

Notice that since the result in Theorem 1.1 holds in particular for A = 0, under condi-
tions (H1), (H2) and (H3), we obtain that problem (1.2) has a nonzero nonnegative solu-
tion.

2. PRELIMINARIES

Denote R* = [0, +00) and by [ul|, (¢ > 1) the L/(R*)-norm. We consider the Sobolev
space H}(RT) = {u € L*(R") : ' € L3*(R"), u(0) = 0}, endowed with inner product
and norm

0o 1/2
(u,v)z[ (W ()0 () + bu(t)o(t)) dt, ||u|:</0 (u’(t)2+bu(t)2)dt) ,

we denote by H~! (RT) the dual of H}(R™) and we use the symbol (-, -) for the duality
mapping between H} (RT) and H~! (RT).

It is clear that the embedding Hj (RT) < L? (RT) is continuous and |[Jul]z < % llul|,
u € Hi (RT). Notice that if u € H (RT), then u(+o00) = 0 (see [3, Corollary 8.9]).

Since, contrary to the case of bounded intervals, the Sobolev embedding H} (RT) <
C(R™) is not compact, it is usually difficult to prove that a bounded Palais-Smale sequence
has a strongly convergent subsequence, if we seek solutions of (1.1) by variational meth-
ods. To overcome this difficulty we consider a continuous function p : R* — (0, +00)

with p~(+1) ¢ L}(R*) and
(2.4) Jim Vip(t) =0,
and the weighted Banach space C; , (R*) defined by

Cip (RY) = {u e C(RT): lim p(t)u(t) = O} ,

t——+oo

—+o0

endowed with the norm ||u||o0,p = sup,cp+ p(t)|u(t)|. Concerning this space we have the
following result proved in [2].

Lemma 2.1. Assume that (2.4) holds. Then
(@: H}(RT)is continuously embedded in C , (R™) , more precisely, for everyu € H (RT),

one has
too 1/2
2.5) ltll < Coop </O y (t)th> < coopllull;
where coop = sup Vip(t).

teR+
(b): The embedding H} (R') < C;, (RT) is compact.
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Let fbe the odd extension of f to the whole R, i.e., jN’(f) = —f(=¢) for £ < 0,and
fo s)ds. Note that from (H2), one has f (0) = 0, and consequently the exten-

sion f is contmuous onR.
We associate to problem (1.1) the energy functional Jy : H} (R*) — R,

a 9, A 4 oo
Ia() = Slull + ol - F(u(t))dt.
0

Under the assumptions on f we have the following result.

Lemma 2.2. The energy functional Jy is of class C* on H} (R™) and for every u,v € H} (RT)
one has

+o00
(/3 (u),v) = (a+ Aul®) (u,v) —/O fu(®))o(t)dt.

Proof. Step 1: The functional J, is well-defined. Indeed, for u € H} (RT), the condition

(H1) implies that
JRNIGIESE
0

+oo 1 +o00
_ a/o bl |dt+0+1/ a+1 (5" u(t) "+ dt

0 0
[l aanel ¥

u(t)

(o + BEI°) e b

[Fu(t)| < g

< afu(t)| +

Then
+oo

F(u(t))dt‘

IN

0

IA

allullocpllp™ 11 + 1

Since H} (R™) embeds continuously in C; , (R*), then

e 1 Belly 6+1 0
[ Pt < (acwlo I+ G2l ) .
0

This shows that J, is well-defined.
Step 2: The functional J, is Gateaux differentiable on Hj (RT). Obviously, it suffices to
prove this only for the functional

+oo
D (u) := /0 F (u(t))dt.

More exactly we prove that for any u, v € Hj (RT),

T7—=0 T

+oo
lim 1 (®(u+7v)—P(u) = /0 fu(t))v(t)dt,

or equivalently

RS
2.6) lny | ( (F (u(t) + 70 () - F (u (t))) ~ Flu()v (t)) dt = 0,

T7—0

which shows that

oo
@7) (@' (u), v) = / Flu(t)o(tyar.
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First, since F is a primitive of f, then for every t € RT, one has

% (ﬁ (u(t) + 70 () - F (u (t))) —F@)v) =0 asT — 0.

Secondly, by the mean value theorem, for each t € Rt and 0 < || < 1, there exists a
number 7 (¢, 7) with 0 < (¢, 7) < 1 such that

(Bt + o)) - (())) F () (1
= () + (o) ~ F (1) o).
Then
8) ~ (Ftutt) + roto) = Feutt) - Fu(0) o 0)

[Flut) + T, Dyo@)®)| + |T @) o)

By using the growth condition (H1) again, the inequality (z+y)’ < 20=1(zf + ¢9)
(z,y € RT, 0 >1)and 0 < n(t,7) < 1, we have

2.9) |f(u(t) +Tn(t)v(t))v(t)‘ < (a+ Blu(t) + o) ()|?) |v(t)]

< (a+ 2778 (Ju@®)|® + [rnt)v()]?)) [o(t)|

< afu(t)] + 2718 (Ju(t )I ()] + [o()[*+1)
(

7||U||oo p 27

p(t)

0+1 S pllvlloe.p + 101185,) -

Similarly

@10 |Fu®)el)] < v, +2 ()6+1 (lull% plolloo + 10125 -

Since the embedding H (RT) < C;, (RT) is continuous, (2.8), (2.9) and (2.10) yield

2 (Flato + 7o) - o)) - Fa @)oo

!
< z(“||v||oo,p+29—1 D (e e + 01253
(t) p(t)
1
< 2ol + 285 (ol o] + 101P) s =+ 00,

p(t)

Since p~(+1) ¢ L'(RT), one also has p~' € L' (R") and then g € L' (R™T). So the
Lebesgue dominated convergence theorem implies that (2.6) is true. Thus, ® is Gateaux
differentiable and (2.7) holds.

Step 3. Jj is continuous. Here again, it suffices to prove this property for ®’. Let
{un} C H} (R") be such that u,, — uwin H} (RT) asn — +oc. Then u,, — uin C;, (RT) as
n — 400. S0 u, (t) — u(t) for every t € R* and there exists r > 0 such that ||up /oo, < 7
for all n. Thus, from the continuity of f.wehave f(un(t)) — f(u(t))asn — +oo for every
t e RY.

Furthermore, using (H1) and a similar reasoning to the above one, by the Lebesgue
dominated convergence theorem, we have

+oo +oo~
/ f(uy dt—>/ t)dt as n — o0,
0
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uniformly with respect to v € H} (R") with [|v]| < 1. As a consequence, ||®'(u,) —
®"(u)|| -1 @m+) — 0 as n — +oo, which proves the continuity of ¢'. O

It is standard to verify that the critical points of the functional .J are the weak solutions
of the problem
(2.11)

(a FA LT (1) + bu(t)Q)dt) (—u"(t) + bu(t)) = f(u(t)) fora.e. t € (0,+o0)
u(0) = u(+o00) =0,

and if u solves (2.11), then the function |u| is a nonnegative solution of (1.1).
The main tool for establishing our existence result is the following “monotonicity trick”
theorem due to Struwe [19] and Jeanjean [10], [11].

Theorem 2.2 ([10, 11]). Let (X, || - ||x) be a Banach space and I C R an interval. Consider a
family of C* functionals on X of the form
Julw) = A(u) — pB(u), pel,
with J,(0) = 0 for every u € I, B nonnegative, and either A(u) — +oo or B(u) — +00 as
|lu||x — +o0. Forany p € I, let
I,={yeC(0,1],X) : v(0) =0, J,(v(1)) <0}
If for each i € I, the set T, is nonempty and

= q,iélrf“ srél[gﬁ] Ju(y(s)) >0,

then for almost every p € I there is a sequence {u,} C X such that
(i) {un} is bounded;
(i) J,(un) = cuasn — 400;
(iti) J;,(un) = 0asn — 4oo, in the dual X" of X.

3. PROOF OF THE MAIN RESULT

In this section, we use Theorem 2.2 to proof our main result. Since the nonlinearity 7
may not satisfy the Ambrosetti-Rabinowitz condition, it is difficult to obtain the bounded-
ness of any Palais-Smale sequence for the functional J, even if a Palais-Smale sequence
has been obtained. To overcome this difficulty, we adopt the cut-off functional technique
introduced in [12, 13] (see also [15, 16]). We use a cut-off function ¢» € C*' (R*,[0,1])
satisfying

P(t) =1 fort€0,1], 0<(t) <1 forte(1,2),
(t) = 0 fort € 2,00), [/l < 2,

and for any T' > 0, we introduce the following truncated functional J{ : H} (RT) — R,
T ay o2 A 4 =
In(w) = slul™+ Fhrful”= | Flu@)d,

where hr(u) =1 (”;{—‘f) . Of course, any critical point u of J{ with |lu| < T is a critical

point of Jy. The number T" will be conveniently chosen later.
In order to apply Theorem 2.2, we take X = Hj (R*), I = [§,1] for some fixed § € (0,1),
and

+oo
Afw) = gallul + br()ul’, B = [ Futo)ar



Positive solutions for second-order differential equations of Kirchhoff type 331

So for a given A > 0, we consider the family of functionals depending on the parameter
w € I, namely

a A too
Tut) = Gl + hrtlul = [ Fatoa. we i ).

Since F > 0 on R, one has that B is nonnegative on H} (R™). Also, it is clear that A(u) —
+00 as |Ju|| = 400 and J}:M(O) = 0. By a similar proof to that of Lemma 2.2, we can see
that JY , is of class C* on Hjj (R*) and for every u, v € Hj (RT),

A u|?
612 (LY@ = (oM@l + g D) o)
+oo
[ Rt
0
Next we show that the other assumptions of Theorem 2.2 are fulfilled by the functionals
IL
Denote

Iap= {7 eC ([07 1}’H&(R+)) : '7(0) =0, J){N('Y(l)) < 0},

= inf max Jy :
O = nf  max Ju(0(5)

Lemma 3.3. Forevery A > 0and p € I, one has Ty, # 0.

Proof. Let us consider a fixed ¢ € C§°(RT) with ¢ > 0, ||¢|| = 1, and assume that
supp(¢) C [0, R] for some R > 0. By (H3), we have that for any M > 0 with

(3.13) M§ / " P2 (t)dt > g
0

there exists a constant C'(M) > 0 such that F(¢£) > M¢2— C(M) forall ¢ € R. Then, for
s > 0 with s2 > 272, one has

A 20 4112 +oo
Ta(o0) = 5210+ 30 (gl ) stlolt - [ Flsotoar
+oo
=5t [ Flo)ar
R
< 352 - 5/0 (Ms2g2(t) — C(M)) dt
<

R
<; - M(S/ ¢2(t)dt> 2+ C(M)RS.
0
Then in view of (3.13) we can choose sy > 0 large enough that J{ u(808) < 0. Conse-
quently, the path v(s) = sso¢ (s € [0,1]) belongstoTI'y , and thus Ty , # 0. O
Lemma 3.4. There exists a positive constant ¢ such that ¢y, > cforall A\ > 0and p € I.

Proof. By (H1) and (H2), we see that for any ¢ > 0 (letitbe < ab/2), there exists a constant
C. > 0 such that

(3.14) ‘f(&)\ <ele|+Cl¢lf forall¢ € R.
Then
(3.15) ﬁ(g)' < %52 + %W“ forall £ € R.
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Hence for any u € Hj (RT), (3.15) implies

/O+O° Flu(t)dt < /0+°o <;|u(t)|2 + 0%1|u(t)|9+1> at

<6/+m<n B +w—4i—mwﬂﬂmwﬁ“w
< Sl + 5o IOl

Furthermore, using the fact that Hj (R™) embeds continuously in L? (R*) and in C; ,, (R™)
one has

—(6+1) ”1 ||u||0+1'

B 24 c 6+1
< £ €
| Pty < P + 555 40l

Then for every A > 0 and i € I, we have

a A oo
Tut) = Gl + heful = [ Futoar

—+oo

a ~
> - [ Pt
0
a ;
> Sul? — Sl — o e
a € Ce _
=K2—%) e R N

Since 6 > 1, there exists p > 0 such that if |ju|| < p, then

Ce L= (0+1) 0— a
Sl Ol < 5.
Thus, since ¢ < %, one has 4 — & > % and then forall A > 0, 4 € [ and u € H} (RT)

with 0 < |Ju|| < p, we have
ORI

In particular, for ||u|| = p, we have
Tinu) 2

Now fix A > 0 and ¢ € I and take any v € I'y ,. Since by the definition of I'y ,, one has
J/{H(v(l)) < 0, we must have ||y(1)|| > p. Since v(0) = 0, then there exists s, € (0,1) such
that [|y(sy)|| = p. Therefore J{ ,(v(s,)) > ¢. Now

gp2 =:c>0.

oo

> >
Cap = velrrlfusrél[gf]Jx,M(v(S))_Welgf I (0(s9) > ¢,

which finishes the proof. O

Next we prove that if A is small enough, then for any ;. € I, every bounded Palais-
Smale sequence of the functional J:{ . atlevel ¢, , has a convergent subsequence.

Lemma 3.5. Assume that 4A\T? < a. Then for any u € I, every bounded Palais-Smale sequence
of Ji ., at level ¢y, has a convergent subsequence.
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Proof. Let i € I and let {v,} be a bounded Palais-Smale sequence of J§ .- Assume that
|lun|| < C for every n. Then

{vn} and {J{ ,(vn)} are bounded,
(J5,) (vn) =0 in H ' (RT) asn — +oo.

Since the embedding H} (R*) — C;, (RT) is compact (see Lemma 2.1 (b)), up to a subse-
quence, there exists v € Hg(RT) such that

(3.16) v, = v weaklyin Hj(RT) and v, »v stronglyin Cy, (R").

Using (H1), the continuity of the embedding Hj (R*) < C;, (RT) and the boundedness
of {v,}, we obtain

0+§§(vn(t))(vn( ) — ot dt‘ /E‘vn ’\vn —o(t)| dt
g/o alvn (t) — v( \dt+ﬁ/ v (8)] % |vn (8) — v(t)|de

< allp™ [, llon = vllocsp + B 57| ol pllon = vloc,s
Sa ||p_1H1 [vn = vlloo,p + ﬁCZo,pce Hp_(G'H)Hl [vn = vl|oc,p-
Then, by (3.16) we have
+oo
/ Fon(®)(va(t) —v(t))dt — 0 asn — +oo.
0

Moreover, since (.J ,\T,M)/(vn) — 0 and v, — v weakly in Hj(R"), one has
<(J§:,u,)l(fv’n)7vn - U> — 0 asn — +oo.

Hence, using the expression of (JAT )" we obtain

A (Il
2 4
617 Ja+ el + g’ (L) ol | v = 0

“+00
= <(J§“)’(vn),vn —v) + u/ F()) (v, (t) —v(t))dt - 0 asn — +oo.
0
Now we show that
(3.18) (vp,vp, —v) =0 asn — +oo.

If for some index n one has ||v,||* > 272, then

2
Un
(3.19) hr(v,) =0 and o/ <”T2 ) =0.
Consequently
A [vn 2
(3.20) a+ A (o) [[vn|* + QTQW( 72 )| a-

If for an index n one has ||v,[|? < 2772, then

Jou?
(Bl < <2

(3.21) 0 < hy(va) <1,
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o (Ivnll )

Then since 4\T? < a, we have

A [[on 12
a"‘)‘hT(Un)anHz"_ oT2 ( T2 ”vnH4

A Nk
Z//<|1£F2|| >|v

272
> q-— LST‘* =a—4\T?>0
= 272 '

Thus, in view of (3.20) and (3.22), if 4\T? < a, then for every n,

and so

<8T* and 0 < hy(v,)|va|* < 272

(3.22)

Y

a + M () Jon|* —

—4T? > 0.

A Un |I?
62 ot ool + g (Lol ) e

This together with (3.17) yields (3.18).

On the other hand, since v,, — v weakly in H}(R™T), we have (v,v, —v) — 0. This
together with (3.18) implies that |jv, — v|| — 0, that is v,, — v strongly in Hj(R"), a
desired. O

Remark 3.1. (a) The discussion leading to (3.19) and (3.21) shows that forany u € H{ (R™),

o (1) e < r67°.

(b) If 8XT? < a, then a — 4XT? > £ and estimate (3.23) implies that for every u €
H}(R"), one has

a+ M (u)|ull® + 2T2 <|u”2>

Using the above lemmas, from Theorem 2.2 we obtain the following result.

one has
7 () ||lul|* <AT* and

Lemma 3.6. Assume that ANT? < a. For almost every p € I, there exists v* € HE(RT) \ {0}
such that

(3.24) (Jo,) (W) =0 and JY,(0")=crp

Proof. The above lemmas guarantee that for each A > 0, Theorem 2.2 applies to the family
of functionals {JAT #} . Hence, for almost every p € I, we can find a bounded sequence
{vl} C H}(RT) satisfying

(3.25) Ji W) = exny and (JY,) () — 0 as n— +oo.

Now, if 4\T? < a, then according to Lemma 3.5, there exists v* € Hg(R™) such that up to
a subsequence vfi — v/ in Hj(R"). So (3.25) and the continuity of J{ , and (J{ ,)’ implies
(3.24). Finally, from ¢, > ¢ > 0 it follows that v* # 0. |

Our next result is a Pohozaev type identity.

Lemma 3.7. Ifu € H}(R") is a critical point of JAT#, i.e., u is a weak solution of the problem
(3.26)
(a+ Az )lul? + 20" (L) lull*) (—u” () + bu(t)) = uf(u(t) for ae. t € (0, +2),
u(0) = u(4o00) =0,
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then

0 (5[ o ouoar) (o wnaiu® + g (L) i)

+oo
= u /O F(u(t))dt.

Proof. Let S(s) : Hj(RT) — Hj(RT) be the family of transformations S(s)u(t) = u (%),
s > 0. Clearly, for any u € H¢(R") one has

a I e % 1 bsu(t)?
Tau (S(s)u) = 2(/0 (EU’(t)Qﬁ—bsu(t)) ) qp( (Su (t)T2+b (t) )dt>

s
+oo 1 5 2 +oo
(3.28) X ( / (=u' (t)° + bsu(t)Q)dt> — / sF(u(t))dt.
0 8 0
If w is a critical point of J/\T7 ,.» then since S (1) =id, we have
d
% )T,H (S(S)U/)’szl = Oa

which by (3.28) gives

: (/O+Oo(—u' () + bu(t)Q)dt) + % </+oo(—u/ )? +bu(t)2)dt> W (;"f) ]
(] v putea) o (L) pur? " Flutyar=o,

that is (3.27). (]

The next lemma will help us to come back to the untruncated functional .Jy.

Lemma 3.8. For T > 0 sufficiently large, there exists Ao > 0 such that for every X € [0, \o) and
w € I, any critical point u of the functional Jf\F,M at level cy ,, is such that ||ul| < T.

Proof. Let u be any critical point of J_ ., atlevelcy . From Lemma 3.7 we have
(3.29)

u[wﬁ(u(t))dt:<;infgo‘(—u’(t)2+bu(t)2)dt)><(a +Ahr (u)|u H2+2;2 /<”;22)u||4>

This combined with J , (u) = ¢y, yields

(3.30) (/OHO o (t)th) X (a+/\hT(u)||u|2 + 2;21/1 (u”2> llu |4>

A 4 A [ 6
— ot ghr@lul+ v’ () e
A

Now from Remark 3.1 (a) we have
472

which if 8\T? < q, in view of Remark 3.1 (b) implies
( / u' (t)? dt)

+oo A 2
%/ u' (1) dt a+ Mg (u)||ul]? + == <”u| )
0
6 SC)\,#+5)\T4.

272
[[ul
(3.31) = |t hT( )u ||4 4T2 (TQ

A
0< ZhT(u)HuH‘l < A\T* and

IN
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Next we also need to estimate c, ,. From the definition of c, , and the proof of Lemma
3.3, we have

eap < max JI’M(S(b)

2 +oo
<r§l§8{{s + w(s )34—u/0 F(s¢)dt}

A 2\ 4
(3.32) { 52— ,u (sgb)dt} + In>aa( {41/1 (T2> s }
<r£1>aéc{<—M5/ P2 (t) dt> s+ C(M)R }+)\T4
+ AT
Hence (3.31), yields
a oo 2
(3.33) 5 / u' (t)°dt < C(M)R + 6AT*.
0

By using (3.14), (2.5) and the fact that (J/\T,u)/ (u) = 0, we obtain
[
alllP + Mzl + 50 (- )
+oo +oo
— [ fun@undr< [T (u®]+ Clu®)]) ule)
0 0

+o0 +oo +oo 1
= e/ u(t)th—&-Ce/ lu(t)|?F1dt < 6||uH§—|—C'e/ ") |u(t) " dt
0 0 o p(t)

POl

IN

llul?

. oo (6+1)/2
< 5||u||2+050§j1 Hp 9“)H (/ u/(t)th) ,
0

Hence by (3.33) we obtain

“+o00 (9+1)/2

- A HUII
_ € 2 0+1 (9+1)H 1\ 2 _ 6

(a=p)l® = ceety om0 () w0 a =3 Jul

(0+1)/2

2
(3.34) < ¢ “’*,;Hp”“)Hl(a) (C (M) R +6AT*) D2 4 AT,

Now choose T" > 0 large enough that

(a— %) T2 > C’ecz:;;

2\ (0 +/2 (6+1)/2
p—(¢9+1)H1 (a) (C (M) R) /2

Then there exists Ao > 0 small enough such that for any A € [0, \g), the following inequal-
ity holds

(6+1)/2

2

(3.35) (a - g) T2 > C i Hp—<9+1> H () (C (M) R+ 6xT*) "*D/2 gt
’ 1 a

Clearly, from (3.34) and (3.35) we have ||u|| < T as we wished. O
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Proof of Theorem 1.1. Let T and A be fixed according to Lemma 3.8. From Lemma 3.6,
there is a sequence {x, } C I with p,, — 17 such that for each n > 1, functional J/\T, ., has
a critical point u,, atlevel ¢y, , i.e., u, € Hj(RT) \ {0} and
T8 (Un) = cxpns (I3 ) (un) = 0.

By Lemma 3.8 and inequality (3.32), one has |ju,|| < T for every n and the sequence
{ea,u, } is bounded. Then hr(u,) = 1 and

T a 9 A 4 e
Tngin (Un) = S llunll” + Fllun] = pn ; F(uy,(t))dt.

We claim that {u,,} is a Palais-Smale sequence of Jy. Indeed, by using (3.14) and (3.15)
one has

+oo € 3
(3.36) /0 f(un(t))un(t)dt < gl\unH2 + C ™ O |

“OED )

oo a 2 € 2 Ce 911
(3.37) / F(u,(t))dt < §HunH + %HUHH + Ip
0

0+ 10"

Furthermore, we have

+oo +oo
Jk(un) = J/\T,m, (un) + (Mn - 1) o F(un(t))dt = Cxp, T (Un - 1) o F(“Tt(t))dt>
+oo +oo
(T3 (un),0) = ((JX ) (), 0) 4 (pn —1) ; flun () (t) dt = (pun—1) ; f(un(t))v (t) dt.

From (3.36) and (3.37), the boundedness of {w,, } and ¢y ,,,, , imply that f0+oo Flun(®)v (t) dt

and f0+°° F(un(t))dt are bounded. Thus, when u, — 1, we have that {Jx(u,)} is

bounded and J{(u,) — 0. Therefore {u,} is a bounded Palais-Smale sequence of Jy.
!

Since for [jul| < T one has Jx (u) = J{, (u) and J§ (u) = (J/\TJ) (u), Lemma 3.5 ap-

plies and guarantees that {u,,} has a convergent subsequence. Thus we may assume that

u, — uin Hi(RT). Then J;(u) = 0 and according to Lemma 3.4, we have that

lim ¢y, > c¢>0.
n—+oo

Ta(w) = lim Jy(un) = lim JT, (un) =
Consequently, u is a nontrivial solution of (2.11) and |u| is a nontrivial nonnegative solu-
tion of (1.1). The proof is thus complete. O
Now we present two examples of nonlinearity f which satisfies the hypotheses (H1)-(H3)
but not the Ambrosetti-Rabinowitz condition (AR). Note that, since the term % |u|* in the
expression of the functional J associated to our problem (1.1) is homogeneous of degree
4, the corresponding (AR) condition on f is the following 4-superlinear growth condition
(AR) : there existe v > 4 and R > 0, such that

0<vF(t)<tf(t), forall ¢>R.

4
Example 3.1. Let f : Rt — R™ be defined by f (t) = 4¢3 arctan (¢) + 117 A simple

computation shows that F (t) = t*arctan (t). It is easy to check that f satisfies all the
conditions (H1)-(H3) of Theorem 1.1, but not the (AR)-condition, because
5

1+ 2
= t*|(4 —v)arctan (t) +

tf(t)—vF = (4—v)t*arctan(t) + — vtt arctan (t)

ﬁ — —0Q, ast — +OO,



338 H. Boulaiki, T. Moussaoui and R. Precup

for any v > 4. .

Example 3.2. An other example is given by the function f(¢) = 4t In (1 +t) + lt—H, for
t €[0,4+00), with F(t) =t*In(t +1).
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