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Positive solutions for second-order differential equations o
Kirchhoff type on the half-line

HABIBA BOULAIKI, TOUFIK MOUSSAOUI and RADU PRECUP

ABSTRACT. The aim of the present paper is to study the existence of nontrivial nonnegative solutions for a
second-order boundary value problem of Kirchhoff type on the half-line. Our approach is based on variational
methods, a monotonicity trick related to the mountain pass lemma, cut-off functional technique, and a Pohozaev
type identity.

1. INTRODUCTION

In this work, we are concerned with nontrivial nonnegative solutions to the following
problem
(1.1)

(
a+ λ

∫ +∞
0

(u′ (t)
2

+ bu(t)2)dt
)

(−u′′(t) + bu(t)) = f(u(t)) for a.e. t ∈ (0,+∞)

u(0) = u(+∞) = 0,

where a and b are positive constants, λ ≥ 0 is a parameter and f ∈ C (R+,R+) .
We assume that the following conditions are satisfied:

(H1): There exists θ > 1 and nonnegative constants α, β such that f(ξ) ≤ α + βξθ

for all ξ ∈ R+.

(H2): lim
ξ→0

f(ξ)
ξ = 0.

(H3): lim
ξ→+∞

f(ξ)
ξ = +∞.

Problem (1.1) is a nonlocal one due to the presence of the term
∫ +∞

0
(u′2 + bu2)dt. This

causes some mathematical difficulties which make its study particularly interesting.
This problem is related to the stationary Kirchhoff equation (see [14], [5] and [8]) de-

scribing the motion of a semi-infinite string

∂2u

∂t2
−

(
m0 +

∫ +∞

0

(
∂u

∂x

)2

dx

)
∂2u

∂x2
= h(t, x),

where m0 is a positive constant, h(t, x) is the external force and u(t, x) is the lateral dis-
placement at the space coordinate x and time t. This equation is an extension of the clas-
sical D’Alembert’s wave equation and takes into account the length changes of the string
produced by transverse vibrations. Notice that nonlocal problems also appear in other
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fields such as biological systems, where, for example, u is a population density whose
dynamics depends on the average of the density itself.

If we set a = 1 and λ = 0, then (1.1) reduces to the following second order semi-linear
boundary value problem on the half-line

(1.2)
{
−u′′(t) + bu(t) = f(u(t)) for a.e. t ∈ (0,+∞)
u(0) = u(+∞) = 0.

This type of problems has been extensively studied in the literature by several authors
using different methods, for example, Zima [20] considered the following problem{

−u′′(t) + k2u(t) = f(t, u(t)), t ∈ (0,+∞)
u(0) = u(+∞) = 0,

where k > 0 and f is continuous and non-negative. By using a fixed point theorem
in cones she proved the existence of at least one positive solution. The same problem
has been studied in [2] by using variational methods and critical point theory in conical
shells, where the authors established the existence and localization of at least two positive
solutions. Also Ma and Zhu [17] by employing fixed-point theorems on cones, obtained
the existence of positive solutions for the following second-order boundary value problem
on the half-line {

−u′′(t) + k2(t)u(t) + λm(t)f(t, u(t)), t ∈ (0,+∞)
u(0) = u(+∞) = 0,

where k : [0,∞) → (0,∞) and f : [0,∞) × [0,∞) → R are continuous. Gomes and
Sanchez [7], by using variational methods and critical point theory proved the existence
of solutions to the following boundary value problem{

−u′′(t) + p(t)u(t) = λq(t)f(u(t)) for a.e. t ∈ (0,+∞)
u(0) = α, u(+∞) = 0,

with α > 0 and p, q : [0,+∞) → R continuous functions. Bonanno and O’Regan [1]
by using critical point arguments established some results on the existence of multiple
solutions for a second order boundary value problem on the half-line.

In recent years the existence and multiplicity of solutions for second order problems of
Kirchhoff type have been studied by many authors, for example, in [18], employing the
Yang index and critical groups, Perera and Zhang obtained the existence of a non trivial
solution for the following second order boundary value problem of Kirchhoff type{

−
(
a+ b

∫
Ω
|∇u|2 dx

)
(∆u) = f (x, u) in Ω

u = 0 on ∂Ω

where Ω is a smooth bounded domain in RN ,N = 1, 2 or 3, a, b > 0 and f is a Carathéodory
function on Ω× R. In [15] Li, Li and Shi using variational methods and cut-off functional
techniques established the existence of at least one positive solution for the following
second-order nonlocal elliptic problem

(1.3)
(
a+ λ

∫
RN
|∇u|2 dx+ λb

∫
RN

u2dx

)
[−∆u+ bu] = f (u) in RN ,

where N ≥ 3, a, b are positive constants and λ ≥ 0 is a nonnegative parameter.
Also in [6], the authors using variational methods and iterative techniques studied the

existence of non trivial positive solutions for problem (1.3) with f(u) = K(x) |u|p−1
u,

p ∈ (2, 5) and N = 3.
To the best of our knowledge, there are few papers considering Kirchhoff type prob-

lems on the half line except [4, 9], where the authors studied second order boundary value
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problems of Kirchhoff type on the half-line with impulses by using variational methods
and critical point theory.

Inspired by [15, 6], in the present paper we study the existence of at least one nontrivial
nonnegative solution of problem(1.1) without the Ambrosetti-Rabinowitz (AR) condition
on nonlinearity f. We use a cut-off function technique, a monotonicity trick related to
the mountain pass lemma and a Pohozaev type identity, to obtain bounded Palais-Smale
sequences.

The paper is organized as follows: In Section 2 we give some notations, preliminary
concepts and results. Section 3 is devoted to proving our main result, namely the follow-
ing theorem.
Theorem 1.1. Assume that conditions (H1), (H2) and (H3) hold. Then there exists λ0 > 0 such
that for any λ ∈ [0, λ0), problem (1.1) has at least one nonzero nonnegative solution.

Notice that since the result in Theorem 1.1 holds in particular for λ = 0, under condi-
tions (H1), (H2) and (H3), we obtain that problem (1.2) has a nonzero nonnegative solu-
tion.

2. PRELIMINARIES

Denote R+ = [0,+∞) and by ‖u‖q (q ≥ 1) the Lq(R+)-norm. We consider the Sobolev
space H1

0 (R+) = {u ∈ L2(R+) : u′ ∈ L2(R+), u(0) = 0}, endowed with inner product
and norm

(u, v) =

∫ +∞

0

(u′(t)v′(t) + bu(t)v(t)) dt, ‖u‖ =

(∫ +∞

0

(
u′ (t)

2
+ bu(t)2

)
dt

)1/2

,

we denote by H−1 (R+) the dual of H1
0 (R+) and we use the symbol 〈·, ·〉 for the duality

mapping between H1
0 (R+) and H−1 (R+) .

It is clear that the embedding H1
0 (R+) ↪→ L2 (R+) is continuous and ‖u‖2 ≤ 1√

b
‖u‖,

u ∈ H1
0 (R+) . Notice that if u ∈ H1

0 (R+), then u(+∞) = 0 (see [3, Corollary 8.9]).
Since, contrary to the case of bounded intervals, the Sobolev embedding H1

0 (R+) ↪→
C(R+) is not compact, it is usually difficult to prove that a bounded Palais-Smale sequence
has a strongly convergent subsequence, if we seek solutions of (1.1) by variational meth-
ods. To overcome this difficulty we consider a continuous function p : R+ −→ (0,+∞)

with p−(θ+1) ∈ L1(R+) and

(2.4) lim
t→+∞

√
t p(t) = 0,

and the weighted Banach space Cl,p (R+) defined by

Cl,p
(
R+
)

=

{
u ∈ C

(
R+
)

: lim
t→+∞

p(t)u(t) = 0

}
,

endowed with the norm ‖u‖∞,p = supt∈R+ p(t)|u(t)|. Concerning this space we have the
following result proved in [2].

Lemma 2.1. Assume that (2.4) holds. Then
(a): H1

0 (R+) is continuously embedded inCl,p (R+) ,more precisely, for every u ∈ H1
0 (R+) ,

one has

(2.5) ‖u‖∞,p ≤ c∞,p
(∫ +∞

0

u′ (t)
2

dt

)1/2

≤ c∞,p‖u‖,

where c∞,p = sup
t∈R+

√
tp(t).

(b): The embedding H1
0 (R+) ↪→ Cl,p (R+) is compact.
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Let f̃ be the odd extension of f to the whole R, i.e., f̃ (ξ) = −f (−ξ) for ξ < 0,and
F̃ (ξ) =

∫ ξ
0
f̃ (s) ds. Note that from (H2), one has f (0) = 0, and consequently the exten-

sion f̃ is continuous on R.
We associate to problem (1.1) the energy functional Jλ : H1

0 (R+)→ R,

Jλ(u) =
a

2
‖u‖2 +

λ

4
‖u‖4 −

∫ +∞

0

F̃ (u(t))dt.

Under the assumptions on f we have the following result.

Lemma 2.2. The energy functional Jλ is of class C1 on H1
0 (R+) and for every u, v ∈ H1

0 (R+)
one has

〈J ′λ (u) , v〉 =
(
a+ λ‖u‖2

)
(u, v)−

∫ +∞

0

f̃(u(t))v(t)dt.

Proof. Step 1: The functional Jλ is well-defined. Indeed, for u ∈ H1
0 (R+) , the condition

(H1) implies that∣∣∣F̃ (u(t))
∣∣∣ ≤ ∣∣∣∣∣

∫ u(t)

0

∣∣∣f̃(ξ)
∣∣∣dξ∣∣∣∣∣ ≤

∣∣∣∣∣
∫ u(t)

0

(
α+ β|ξ|θ

)
dξ

∣∣∣∣∣ ≤ α|u(t)|+ β

θ + 1
|u(t)|θ+1.

Then∣∣∣∣∫ +∞

0

F̃ (u(t))dt

∣∣∣∣ ≤ ∫ +∞

0

(
α|u(t)|+ β

θ + 1
|u(t)|θ+1

)
dt

= α

∫ +∞

0

1

p(t)
p(t)|u(t)|dt+

β

θ + 1

∫ +∞

0

1

pθ+1(t)
p(t)θ+1|u(t)|θ+1dt

≤ α‖u‖∞,p‖p−1‖1 +
β

θ + 1
‖u‖θ+1
∞,p‖p−(θ+1)‖1.

Since H1
0 (R+) embeds continuously in Cl,p (R+) , then∣∣∣∣∫ +∞

0

F̃ (u(t))dt

∣∣∣∣ ≤
(
αc∞,p‖p−1‖1 +

βcθ+1
∞,p

θ + 1
‖p−(θ+1)‖1‖u‖θ

)
‖u‖.

This shows that Jλ is well-defined.
Step 2: The functional Jλ is Gâteaux differentiable on H1

0 (R+) . Obviously, it suffices to
prove this only for the functional

Φ (u) :=

∫ +∞

0

F̃ (u (t)) dt.

More exactly we prove that for any u, v ∈ H1
0 (R+) ,

lim
τ→0

1

τ
(Φ (u+ τv)− Φ (u)) =

∫ +∞

0

f̃(u(t))v(t)dt,

or equivalently

(2.6) lim
τ→0

∫ +∞

0

(
1

τ

(
F̃ (u (t) + τv (t))− F̃ (u (t))

)
− f̃ (u (t)) v (t)

)
dt = 0,

which shows that

(2.7) 〈Φ′(u), v〉 =

∫ +∞

0

f̃(u(t))v(t)dt.
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First, since F̃ is a primitive of f̃ , then for every t ∈ R+, one has

1

τ

(
F̃ (u (t) + τv (t))− F̃ (u (t))

)
− f̃ (u (t)) v (t)→ 0 as τ → 0.

Secondly, by the mean value theorem, for each t ∈ R+ and 0 < |τ | < 1, there exists a
number η (t, τ) with 0 ≤ η(t, τ) ≤ 1 such that

1

τ

(
F̃ (u(t) + τv(t))− F̃ (u(t))

)
− f̃ (u (t)) v (t)

=
(
f̃(u(t) + τη(t, τ)v(t))− f̃ (u (t))

)
v(t).

Then ∣∣∣∣1τ (F̃ (u(t) + τv(t))− F̃ (u(t))
)
− f̃ (u (t)) v (t)

∣∣∣∣(2.8)

≤
∣∣∣f̃(u(t) + τη(t, τ)v(t))v(t)

∣∣∣+
∣∣∣f̃ (u (t)) v(t)

∣∣∣ .
By using the growth condition (H1) again, the inequality (x+ y)

θ ≤ 2θ−1(xθ + yθ)
(x, y ∈ R+, θ ≥ 1) and 0 ≤ η(t, τ) ≤ 1, we have∣∣∣f̃(u(t) + τη(t)v(t))v(t)

∣∣∣ ≤ (α+ β|u(t) + τη(t)v(t)|θ
)
|v(t)|(2.9)

≤
(
α+ 2θ−1β

(
|u(t)|θ + |τη(t)v(t)|θ

))
|v(t)|

≤ α|v(t)|+ 2θ−1β
(
|u(t)|θ|v(t)|+ |v(t)|θ+1

)
≤ α

p(t)
‖v‖∞,p + 2θ−1 β

p(t)θ+1

(
‖u‖θ∞,p‖v‖∞,p + ‖v‖θ+1

∞,p
)
.

Similarly

(2.10)
∣∣∣f̃ (u (t)) v(t)

∣∣∣ ≤ α

p(t)
‖v‖∞,p + 2θ−1 β

p(t)θ+1

(
‖u‖θ∞,p‖v‖∞,p + ‖v‖θ+1

∞,p
)
.

Since the embedding H1
0 (R+) ↪→ Cl,p (R+) is continuous, (2.8), (2.9) and (2.10) yield∣∣∣∣1τ (F̃ (u(t) + τv(t))− F̃ (u(t))

)
− f̃ (u (t)) v (t)

∣∣∣∣
≤ 2

(
α

p(t)
‖v‖∞,p + 2θ−1 β

p(t)θ+1

(
‖u‖θ∞,p‖v‖∞,p + ‖v‖θ+1

∞,p
))

≤ 2αc∞,p‖v‖
1

p(t)
+ 2θβcθ+1

∞,p
(
‖u‖θ‖v‖+ ‖v‖θ+1

) 1

p(t)θ+1
=: g(t).

Since p−(θ+1) ∈ L1 (R+) , one also has p−1 ∈ L1 (R+) and then g ∈ L1 (R+) . So the
Lebesgue dominated convergence theorem implies that (2.6) is true. Thus, Φ is Gâteaux
differentiable and (2.7) holds.

Step 3. J ′λ is continuous. Here again, it suffices to prove this property for Φ′. Let
{un} ⊂ H1

0 (R+) be such that un → u in H1
0 (R+) as n→ +∞. Then un → u in Cl,p (R+) as

n → +∞. So un(t) → u(t) for every t ∈ R+ and there exists r > 0 such that ‖un‖∞,p ≤ r

for all n. Thus, from the continuity of f̃ ,we have f̃(un(t))→ f̃(u(t)) as n→ +∞ for every
t ∈ R+.

Furthermore, using (H1) and a similar reasoning to the above one, by the Lebesgue
dominated convergence theorem, we have∫ +∞

0

f̃(un(t))v(t)dt→
∫ +∞

0

f̃(u(t))v(t)dt as n→ +∞,
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uniformly with respect to v ∈ H1
0 (R+) with ‖v‖ ≤ 1. As a consequence, ‖Φ′(un) −

Φ′(u)‖H−1(R+) → 0 as n→ +∞, which proves the continuity of Φ′. �

It is standard to verify that the critical points of the functional Jλ are the weak solutions
of the problem
(2.11)

(
a+ λ

∫ +∞
0

(u′ (t)
2

+ bu(t)2)dt
)

(−u′′(t) + bu(t)) = f̃(u(t)) for a.e. t ∈ (0,+∞)

u(0) = u(+∞) = 0,

and if u solves (2.11), then the function |u| is a nonnegative solution of (1.1).
The main tool for establishing our existence result is the following “monotonicity trick”

theorem due to Struwe [19] and Jeanjean [10], [11].

Theorem 2.2 ([10, 11]). Let (X, ‖ · ‖X) be a Banach space and I ⊂ R+ an interval. Consider a
family of C1 functionals on X of the form

Jµ(u) = A(u)− µB(u), µ ∈ I,

with Jµ(0) = 0 for every µ ∈ I, B nonnegative, and either A(u) → +∞ or B(u) → +∞ as
‖u‖X → +∞. For any µ ∈ I, let

Γµ = {γ ∈ C([0, 1], X) : γ(0) = 0, Jµ(γ(1)) < 0}.

If for each µ ∈ I, the set Γµ is nonempty and

cµ = inf
γ∈Γµ

max
s∈[0,1]

Jµ(γ(s)) > 0,

then for almost every µ ∈ I there is a sequence {un} ⊂ X such that
(i) {un} is bounded;

(ii) Jµ(un)→ cµ as n→ +∞;
(iii) J ′µ(un)→ 0 as n→ +∞, in the dual X−1 of X.

3. PROOF OF THE MAIN RESULT

In this section, we use Theorem 2.2 to proof our main result. Since the nonlinearity f̃
may not satisfy the Ambrosetti-Rabinowitz condition, it is difficult to obtain the bounded-
ness of any Palais-Smale sequence for the functional Jλ, even if a Palais-Smale sequence
has been obtained. To overcome this difficulty, we adopt the cut-off functional technique
introduced in [12, 13] (see also [15, 16]). We use a cut-off function ψ ∈ C1 (R+, [0, 1])
satisfying

ψ(t) = 1 for t ∈ [0, 1], 0 ≤ ψ(t) ≤ 1 for t ∈ (1, 2),
ψ(t) = 0 for t ∈ [2,∞), ‖ψ′‖∞ ≤ 2,

and for any T > 0, we introduce the following truncated functional JTλ : H1
0 (R+)→ R,

JTλ (u) =
a

2
‖u‖2 +

λ

4
hT (u)‖u‖4 −

∫ +∞

0

F̃ (u(t))dt,

where hT (u) = ψ
(
‖u‖2
T 2

)
. Of course, any critical point u of JTλ with ‖u‖ ≤ T is a critical

point of Jλ. The number T will be conveniently chosen later.
In order to apply Theorem 2.2, we takeX = H1

0 (R+) , I = [δ, 1] for some fixed δ ∈ (0, 1),
and

A(u) =
1

2
a‖u‖2 +

1

4
λhT (u)‖u‖4, B(u) =

∫ +∞

0

F̃ (u(t))dt.
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So for a given λ ≥ 0, we consider the family of functionals depending on the parameter
µ ∈ I, namely

JTλ,µ(u) =
a

2
‖u‖2 +

λ

4
hT (u)‖u‖4 − µ

∫ +∞

0

F̃ (u(t))dt, u ∈ H1
0

(
R+
)
.

Since F̃ ≥ 0 on R, one has that B is nonnegative on H1
0 (R+) . Also, it is clear that A(u)→

+∞ as ‖u‖ → +∞ and JTλ,µ(0) = 0. By a similar proof to that of Lemma 2.2, we can see
that JTλ,µ is of class C1 on H1

0 (R+) and for every u, v ∈ H1
0 (R+) ,

〈(JTλ,µ)′(u), v〉 =

(
a+ λhT (u)‖u‖2 +

λ

2T 2
ψ′(
‖u‖2

T 2
)‖u‖4

)
(u, v)(3.12)

−µ
∫ +∞

0

f̃(u(t))v(t)dt.

Next we show that the other assumptions of Theorem 2.2 are fulfilled by the functionals
JTλ,µ.

Denote
Γλ,µ = {γ ∈ C

(
[0, 1], H1

0 (R+)
)

: γ(0) = 0, JTλ,µ(γ(1)) < 0},
cλ,µ = inf

γ∈Γλ,µ
max
s∈[0,1]

JTλ,µ(γ(s)).

Lemma 3.3. For every λ ≥ 0 and µ ∈ I, one has Γλ,µ 6= ∅.

Proof. Let us consider a fixed φ ∈ C∞0 (R+) with φ ≥ 0, ‖φ‖ = 1, and assume that
supp(φ) ⊂ [0, R] for some R > 0. By (H3), we have that for any M > 0 with

(3.13) Mδ

∫ R

0

φ2(t)dt >
a

2

there exists a constant C(M) > 0 such that F̃ (ξ) ≥Mξ2−C(M) for all ξ ∈ R. Then, for
s > 0 with s2 ≥ 2T 2, one has

JTλ,µ(sφ) =
a

2
s2‖φ‖2 +

λ

4
ψ

(
s2‖φ‖2

T 2

)
s4‖φ‖4 − µ

∫ +∞

0

F̃ (sφ(t))dt

=
a

2
s2 − µ

∫ +∞

0

F̃ (sφ(t))dt

≤ a

2
s2 − δ

∫ R

0

(
Ms2φ2(t)− C(M)

)
dt

≤

(
a

2
−Mδ

∫ R

0

φ2(t)dt

)
s2 + C(M)Rδ.

Then in view of (3.13) we can choose s0 > 0 large enough that JTλ,µ(s0φ) < 0. Conse-
quently, the path γ(s) = ss0φ (s ∈ [0, 1]) belongs to Γλ,µ and thus Γλ,µ 6= ∅. �

Lemma 3.4. There exists a positive constant c such that cλ,µ ≥ c for all λ ≥ 0 and µ ∈ I.

Proof. By (H1) and (H2), we see that for any ε > 0 (let it be < ab/2), there exists a constant
Cε > 0 such that

(3.14)
∣∣∣f̃(ξ)

∣∣∣ ≤ ε |ξ|+ Cε|ξ|θ for all ξ ∈ R.

Then

(3.15)
∣∣∣F̃ (ξ)

∣∣∣ ≤ ε

2
ξ2 +

Cε
θ + 1

|ξ|θ+1 for all ξ ∈ R.



332 H. Boulaiki, T. Moussaoui and R. Precup

Hence for any u ∈ H1
0 (R+), (3.15) implies∫ +∞

0

F̃ (u(t))dt ≤
∫ +∞

0

(
ε

2
|u(t)|2 +

Cε
θ + 1

|u(t)|θ+1

)
dt

≤ ε

2

∫ +∞

0

|u(t)|2dt+
Cε
θ + 1

∫ +∞

0

1

p (t)
θ+1

p(t)θ+1|u(t)|θ+1dt

≤ ε

2
‖u‖22 +

Cε
θ + 1

‖p−(θ+1)‖1‖u‖θ+1
∞,p.

Furthermore, using the fact thatH1
0 (R+) embeds continuously inL2 (R+) and inCl,p (R+)

one has ∫ +∞

0

F̃ (u(t))dt ≤ ε

2b
‖u‖2 +

Cε
θ + 1

cθ+1
∞,p‖p−(θ+1)‖1‖u‖θ+1.

Then for every λ ≥ 0 and µ ∈ I, we have

JTλ,µ(u) =
a

2
‖u‖2 +

λ

4
hT (u)‖u‖4 − µ

∫ +∞

0

F̃ (u(t))dt

≥ a

2
‖u‖2 −

∫ +∞

0

F̃ (u(t))dt

≥ a

2
‖u‖2 − ε

2b
‖u‖2 − Cε

θ + 1
cθ+1
∞,p‖p−(θ+1)‖1‖u‖θ+1

=

[(a
2
− ε

2b

)
− Cε
θ + 1

cθ+1
∞,p‖p−(θ+1)‖1‖u‖θ−1

]
‖u‖2.

Since θ > 1, there exists ρ > 0 such that if ‖u‖ ≤ ρ, then

Cε
θ + 1

cθ+1
∞,p‖p−(θ+1)‖1‖u‖θ−1 ≤ a

8
.

Thus, since ε < ab
2 , one has a

2 −
ε
2b ≥

a
4 , and then for all λ ≥ 0, µ ∈ I and u ∈ H1

0 (R+)
with 0 < ‖u‖ ≤ ρ, we have

JTλ,µ(u) ≥ a

8
‖u‖2.

In particular, for ‖u‖ = ρ, we have

JTλ,µ(u) ≥ a

8
ρ2 =: c > 0.

Now fix λ ≥ 0 and µ ∈ I and take any γ ∈ Γλ,µ. Since by the definition of Γλ,µ one has
JTλ,µ(γ(1)) < 0, we must have ‖γ(1)‖ > ρ. Since γ(0) = 0, then there exists sγ ∈ (0, 1) such
that ‖γ(sγ)‖ = ρ. Therefore JTλ,µ(γ(sγ)) ≥ c. Now

cλ,µ = inf
γ∈Γλ,µ

max
s∈[0,1]

JTλ,µ(γ(s)) ≥ inf
γ∈Γλ,µ

JTλ,µ(γ(sγ)) ≥ c,

which finishes the proof. �

Next we prove that if λ is small enough, then for any µ ∈ I, every bounded Palais-
Smale sequence of the functional JTλ,µ at level cλ,µ has a convergent subsequence.

Lemma 3.5. Assume that 4λT 2 < a. Then for any µ ∈ I, every bounded Palais-Smale sequence
of JTλ,µ at level cλ,µ has a convergent subsequence.
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Proof. Let µ ∈ I and let {vn} be a bounded Palais-Smale sequence of JTλ,µ. Assume that
‖vn‖ ≤ C for every n. Then

{vn} and {JTλ,µ(vn)} are bounded,

(JTλ,µ)′(vn)→ 0 in H−1(R+) as n→ +∞.

Since the embedding H1
0 (R+) ↪→ Cl,p (R+) is compact (see Lemma 2.1 (b)), up to a subse-

quence, there exists v ∈ H1
0 (R+) such that

(3.16) vn ⇀ v weakly in H1
0 (R+) and vn → v strongly in Cl,p

(
R+
)
.

Using (H1), the continuity of the embedding H1
0 (R+) ↪→ Cl,p (R+) and the boundedness

of {vn} , we obtain∣∣∣∣∫ +∞

0

f̃(vn(t))(vn(t)− v(t))dt

∣∣∣∣ ≤ ∫ +∞

0

∣∣∣f̃(vn(t))
∣∣∣ |vn(t)− v(t)|dt

≤
∫ +∞

0

α|vn(t)− v(t)|dt+ β

∫ +∞

0

|vn(t)|θ|vn(t)− v(t)|dt

≤ α
∥∥p−1

∥∥
1
‖vn − v‖∞,p + β

∥∥∥p−(θ+1)
∥∥∥

1
‖vn‖θ∞,p‖vn − v‖∞,p

≤ α
∥∥p−1

∥∥
1
‖vn − v‖∞,p + βcθ∞,pC

θ
∥∥∥p−(θ+1)

∥∥∥
1
‖vn − v‖∞,p.

Then, by (3.16) we have∫ +∞

0

f̃(vn(t))(vn(t)− v(t))dt→ 0 as n→ +∞.

Moreover, since (JTλ,µ)′(vn)→ 0 and vn ⇀ v weakly in H1
0 (R+), one has

〈(JTλ,µ)′(vn), vn − v〉 → 0 as n→ +∞.

Hence, using the expression of (JTλ,µ)′ we obtain[
a+ λhT (vn)‖vn‖2 +

λ

2T 2
ψ′
(
‖vn‖2

T 2

)
‖vn‖4

]
(vn, vn − v)(3.17)

= 〈(JTλ,µ)′(vn), vn − v〉+ µ

∫ +∞

0

f̃(v(t))(vn(t)− v(t))dt→ 0 as n→ +∞.

Now we show that

(3.18) (vn, vn − v)→ 0 as n→ +∞.

If for some index n one has ‖vn‖2 > 2T 2, then

(3.19) hT (vn) = 0 and ψ′

(
‖vn‖2

T 2

)
= 0.

Consequently

(3.20)
∣∣∣∣a+ λhT (vn)‖vn‖2 +

λ

2T 2
ψ′
(
‖vn‖2

T 2

)
‖vn‖4

∣∣∣∣ = a.

If for an index n one has ‖vn‖2 ≤ 2T 2, then

(3.21) 0 ≤ hT (vn) ≤ 1,

∣∣∣∣ψ′(‖vn‖2T 2

)∣∣∣∣ ≤ ‖ψ′‖∞ ≤ 2,
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and so ∣∣∣∣ψ′(‖vn‖2T 2

)
‖vn‖4

∣∣∣∣ ≤ 8T 4 and 0 ≤ hT (vn)‖vn‖2 ≤ 2T 2.

Then since 4λT 2 < a, we have∣∣∣∣a+ λhT (vn)‖vn‖2 +
λ

2T 2
ψ′
(
‖vn‖2

T 2

)
‖vn‖4

∣∣∣∣(3.22)

≥ a+ λhT (vn)‖vn‖2 −
λ

2T 2

∣∣∣∣ψ′(‖vn‖2T 2

)
‖vn‖4

∣∣∣∣
≥ a− λ

2T 2
8T 4 = a− 4λT 2 > 0.

Thus, in view of (3.20) and (3.22), if 4λT 2 < a, then for every n,

(3.23)
∣∣∣∣a+ λhT (vn)‖vn‖2 +

λ

2T 2
ψ′
(
‖vn‖2

T 2

)
‖vn‖4

∣∣∣∣ ≥ a− 4λT 2 > 0.

This together with (3.17) yields (3.18).
On the other hand, since vn ⇀ v weakly in H1

0 (R+), we have (v, vn − v) → 0. This
together with (3.18) implies that ‖vn − v‖ → 0, that is vn → v strongly in H1

0 (R+), as
desired. �

Remark 3.1. (a) The discussion leading to (3.19) and (3.21) shows that for any u ∈ H1
0 (R+),

one has
hT (u) ‖u‖4 ≤ 4T 4 and

∣∣∣∣ψ′(‖vn‖2T 2

)∣∣∣∣ ‖u‖6 ≤ 16T 6.

(b) If 8λT 2 ≤ a, then a − 4λT 2 ≥ a
2 and estimate (3.23) implies that for every u ∈

H1
0 (R+), one has ∣∣∣∣a+ λhT (u)‖u‖2 +

λ

2T 2
ψ′
(
‖u‖2

T 2

)
‖u‖4

∣∣∣∣ ≥ a

2
.

Using the above lemmas, from Theorem 2.2 we obtain the following result.

Lemma 3.6. Assume that 4λT 2 < a. For almost every µ ∈ I, there exists vµ ∈ H1
0 (R+) \ {0}

such that

(3.24) (JTλ,µ)′ (vµ) = 0 and JTλ,µ(vµ) = cλ,µ.

Proof. The above lemmas guarantee that for each λ ≥ 0, Theorem 2.2 applies to the family
of functionals

{
JTλ,µ

}
. Hence, for almost every µ ∈ I, we can find a bounded sequence

{vµn} ⊂ H1
0 (R+) satisfying

(3.25) JTλ,µ(vµn)→ cλ,µ and (JTλ,µ)′(vµn)→ 0 as n→ +∞.

Now, if 4λT 2 < a, then according to Lemma 3.5, there exists vµ ∈ H1
0 (R+) such that up to

a subsequence vµn → vµ in H1
0 (R+). So (3.25) and the continuity of JTλ,µ and (JTλ,µ)′ implies

(3.24). Finally, from cλ,µ ≥ c > 0 it follows that vµ 6= 0. �

Our next result is a Pohozaev type identity.

Lemma 3.7. If u ∈ H1
0 (R+) is a critical point of JTλ,µ, i.e., u is a weak solution of the problem

(3.26){(
a+ λhT (u)‖u‖2 + λ

2T 2ψ
′
(
‖u‖2
T 2

)
‖u‖4

)
(−u′′(t) + bu(t)) = µf̃(u(t)) for a.e. t ∈ (0,+∞),

u(0) = u(+∞) = 0,
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then (
1

2

∫ +∞

0

(−u′(t)2 + bu(t)2)dt

)(
a+ λhT (u)‖u‖2 +

λ

2T 2
ψ′
(
‖u‖2

T 2

)
‖u‖4

)
(3.27)

= µ

∫ +∞

0

F̃ (u(t))dt.

Proof. Let S(s) : H1
0 (R+) −→ H1

0 (R+) be the family of transformations S(s)u(t) = u
(
t
s

)
,

s > 0. Clearly, for any u ∈ H1
0 (R+) one has

JTλ,µ (S(s)u) =
a

2

(∫ +∞

0

(
1

s
u′ (t)

2
+ bsu(t)2)dt

)
+
λ

4
ψ

(∫ +∞
0

( 1
su
′ (t)

2
+ bsu(t)2)dt

T 2

)

×
(∫ +∞

0

(
1

s
u′ (t)

2
+ bsu(t)2)dt

)2

− µ
∫ +∞

0

sF̃ (u(t))dt.(3.28)

If u is a critical point of JTλ,µ, then since S (1) = id, we have

d

ds
JTλ,µ (S(s)u)

∣∣
s=1

= 0,

which by (3.28) gives

a

2

(∫ +∞

0

(−u′ (t)2
+ bu(t)2)dt

)
+

λ

4T 2

(∫ +∞

0

(−u′ (t)2
+ bu(t)2)dt

)
ψ′
(
‖u‖2

T 2

)
‖u‖4

+
λ

2

(∫ +∞

0

(−u′ (t)2
+ bu(t)2)dt

)
ψ

(
‖u‖2

T 2

)
‖u‖2 − µ

∫ +∞

0

F̃ (u(t))dt = 0,

that is (3.27). �

The next lemma will help us to come back to the untruncated functional Jλ.

Lemma 3.8. For T > 0 sufficiently large, there exists λ0 > 0 such that for every λ ∈ [0, λ0) and
µ ∈ I, any critical point u of the functional JTλ,µ at level cλ,µ is such that ‖u‖ ≤ T.

Proof. Let u be any critical point of JTλ,µn at level cλ,µ. From Lemma 3.7 we have
(3.29)

µ

∫ +∞

0

F̃ (u(t))dt=

(
1

2
int+∞0 (−u′(t)2+bu(t)2)dt

)
×
(
a+λhT (u)‖u‖2+

λ

2T 2
ψ′
(
‖u‖2

T 2

)
‖u‖4

)
This combined with JTλ,µ (u) = cλ,µ yields(∫ +∞

0

u′ (t)
2

dt

)
×
(
a+ λhT (u)‖u‖2 +

λ

2T 2
ψ′
(
‖u‖2

T 2

)
‖u‖4

)
(3.30)

= cλ,µ +
λ

4
hT (u)‖u‖4 +

λ

4T 2
ψ′
(
‖u‖2

T 2

)
‖u‖6.

Now from Remark 3.1 (a) we have

0 ≤ λ

4
hT (u)‖u‖4 ≤ λT 4 and

λ

4T 2

∣∣∣∣ψ′(‖u‖2T 2

)∣∣∣∣ ‖u‖6 ≤ 4λT 4,

which if 8λT 2 ≤ a, in view of Remark 3.1 (b) implies

a

2

∫ +∞

0

u′ (t)
2

dt ≤
∣∣∣∣a+ λhT (u)‖u‖2 +

λ

2T 2
ψ′
(
‖u‖2

T 2

)
‖u‖4

∣∣∣∣ (∫ +∞

0

u′ (t)
2

dt

)
=

∣∣∣∣cλ,µ +
λ

4
hT (u)‖u‖4 +

λ

4T 2
ψ′
(
‖u‖2

T 2

)
‖u‖6

∣∣∣∣ ≤ cλ,µ + 5λT 4.(3.31)
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Next we also need to estimate cλ,µ. From the definition of cλ,µ and the proof of Lemma
3.3, we have

cλ,µ ≤ max
s≥0

JTλ,µ(sφ)

≤ max
s≥0

{
a

2
s2 +

λ

4
ψ

(
s2

T 2

)
s4 − µ

∫ +∞

0

F̃ (sφ)dt

}
= max

s≥0

{
a

2
s2 − µ

∫ +∞

0

F̃ (sφ)dt

}
+ max

s≥0

{
λ

4
ψ

(
s2

T 2

)
s4

}
(3.32)

≤ max
s≥0

{(
a

2
−Mδ

∫ R

0

φ2(t)dt

)
s2 + C(M)R

}
+ λT 4

= C(M)R+ λT 4.

Hence (3.31), yields

(3.33)
a

2

∫ +∞

0

u′ (t)
2

dt ≤ C(M)R+ 6λT 4.

By using (3.14), (2.5) and the fact that
(
JTλ,µ

)′
(u) = 0, we obtain

a‖u‖2 + λhT (u)‖u‖4 +
λ

2T 2
ψ′
(
‖u‖2

T 2

)
‖u‖6

= µ

∫ +∞

0

f̃(un(t))un(t)dt ≤
∫ +∞

0

(
ε|u(t)|+ Cε|u(t)|θ

)
|u(t)|dt

= ε

∫ +∞

0

u(t)2dt+ Cε

∫ +∞

0

|u(t)|θ+1dt ≤ ε‖u‖22 + Cε

∫ +∞

0

1

p (t)
θ+1

pθ+1(t)|u(t)|θ+1dt

≤ ε

b
‖u‖2 + Cε

∥∥∥p−(θ+1)
∥∥∥

1
‖u‖θ+1
∞,p

≤ ε

b
‖u‖2 + Cεc

θ+1
∞,p

∥∥∥p−(θ+1)
∥∥∥

1

(∫ +∞

0

u′ (t)
2

dt

)(θ+1)/2

.

Hence by (3.33) we obtain(
a− ε

b

)
‖u‖2 ≤ Cεc

θ+1
∞,p

∥∥∥p−(θ+1)
∥∥∥

1

(∫ +∞

0

u′ (t)
2

dt

)(θ+1)/2

− λ

2T 2
ψ′
(
‖u‖2

T 2

)
‖u‖6

≤ Cεc
θ+1
∞,p

∥∥∥p−(θ+1)
∥∥∥

1

(
2

a

)(θ+1)/2 (
C (M)R+ 6λT 4

)(θ+1)/2
+ 8λT 4.(3.34)

Now choose T > 0 large enough that(
a− ε

b

)
T 2 > Cεc

θ+1
∞,p

∥∥∥p−(θ+1)
∥∥∥

1

(
2

a

)(θ+1)/2

(C (M)R)
(θ+1)/2

.

Then there exists λ0 > 0 small enough such that for any λ ∈ [0, λ0), the following inequal-
ity holds

(3.35)
(
a− ε

b

)
T 2 ≥ Cεcθ+1

∞,p

∥∥∥p−(θ+1)
∥∥∥

1

(
2

a

)(θ+1)/2 (
C (M)R+ 6λT 4

)(θ+1)/2
+ 8λT 4.

Clearly, from (3.34) and (3.35) we have ‖u‖ ≤ T as we wished. �
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Proof of Theorem 1.1. Let T and λ0 be fixed according to Lemma 3.8. From Lemma 3.6,
there is a sequence {µn} ⊂ I with µn → 1− such that for each n ≥ 1, functional JTλ,µn has
a critical point un at level cλ,µn , i.e., un ∈ H1

0 (R+) \ {0} and

JTλ,µn(un) = cλ,µn , (JTλ,µn)′(un) = 0.

By Lemma 3.8 and inequality (3.32), one has ‖un‖ ≤ T for every n and the sequence
{cλ,µn} is bounded. Then hT (un) = 1 and

JTλ,µn(un) =
a

2
‖un‖2 +

λ

4
‖un‖4 − µn

∫ +∞

0

F̃ (un(t))dt.

We claim that {un} is a Palais-Smale sequence of Jλ. Indeed, by using (3.14) and (3.15)
one has

(3.36)
∫ +∞

0

f̃(un(t))un(t)dt ≤ ε

b
‖un‖2 + Cεc

θ+1
∞,p‖p−(θ+1)‖1‖un‖θ+1,

(3.37)
∫ +∞

0

F̃ (un(t))dt ≤ a

2
‖un‖2 +

ε

2b
‖un‖2 +

Cε
θ + 1

cθ+1
∞,p‖p−(θ+1)‖1)‖un‖θ+1.

Furthermore, we have

Jλ(un) = JTλ,µn(un) + (µn − 1)

∫ +∞

0

F̃ (un(t))dt = cλ,µn + (µn − 1)

∫ +∞

0

F̃ (un(t))dt,

〈J ′λ(un), v〉=
〈
(JTλ,µn)′(un), v

〉
+(µn−1)

∫ +∞

0

f̃(un(t))v (t) dt=(µn−1)

∫ +∞

0

f̃(un(t))v (t) dt.

From (3.36) and (3.37), the boundedness of {un} and cλ,µn , imply that
∫ +∞

0
f̃(un(t))v (t) dt

and
∫ +∞

0
F̃ (un(t))dt are bounded. Thus, when µn → 1, we have that {Jλ(un)} is

bounded and J ′λ(un) → 0. Therefore {un} is a bounded Palais-Smale sequence of Jλ.

Since for ‖u‖ ≤ T one has Jλ (u) = JTλ,1 (u) and J ′λ (u) =
(
JTλ,1

)′
(u) , Lemma 3.5 ap-

plies and guarantees that {un} has a convergent subsequence. Thus we may assume that
un → u in H1

0 (R+). Then J ′λ(u) = 0 and according to Lemma 3.4, we have that

Jλ(u) = lim
n→+∞

Jλ(un) = lim
n→+∞

JTλ,µn(un) = lim
n→+∞

cλ,µn ≥ c > 0.

Consequently, u is a nontrivial solution of (2.11) and |u| is a nontrivial nonnegative solu-
tion of (1.1). The proof is thus complete. �

Now we present two examples of nonlinearity f which satisfies the hypotheses (H1)-(H3)
but not the Ambrosetti-Rabinowitz condition (AR). Note that, since the term λ

4 ‖u‖
4 in the

expression of the functional Jλ associated to our problem (1.1) is homogeneous of degree
4, the corresponding (AR) condition on f is the following 4-superlinear growth condition
(AR) : there existe ν > 4 and R > 0, such that

0 < νF (t) ≤ tf (t) , for all t > R.

Example 3.1. Let f : R+ → R+ be defined by f (t) = 4t3 arctan (t) +
t4

1 + t2
. A simple

computation shows that F (t) = t4 arctan (t). It is easy to check that f satisfies all the
conditions (H1)-(H3) of Theorem 1.1, but not the (AR)-condition, because

tf(t)− νF = (4− ν) t4 arctan (t) +
t5

1 + t2
− νt4 arctan (t)

= t4
[
(4− ν) arctan (t) +

t

1 + t2

]
→ −∞, as t→ +∞,
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for any ν > 4.

Example 3.2. An other example is given by the function f(t) = 4t3 ln (1 + t) +
t4

1 + t
, for

t ∈ [0,+∞) , with F (t) = t4 ln (t+ 1) .
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