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ABSTRACT. This paper considers nonuniform exponential stability and nonuniform exponential instability
concepts for one-sided discrete-time random dynamical systems. These concepts are generalizations from the
deterministic case. Using this, characterizations in terms of Lyapunov functions respectively Lyapunov norms
are presented. Also, an approach in terms of considered concepts for the inverse and adjoint random discrete-
time systems is derived.

1. INTRODUCTION AND PRELIMINARY RESULTS

For time-varying linear systems the stability analysis is one of the key issues. Impor-
tant results were derived in the framework of exponential stability for infinite dimen-
sional systems (see [4], [17], [16], [20]). For an overview on their history and important
accommplishments in the variational case see [19] and the reference therein. In [9], [14],
respectively [13] we have extended these results for both exponential stability and expo-
nential instability. It is worth mentioning, in this line the paper of Aitken, i.e. [1] for
various applications. Moreover, [7], [10], [11] and [12] deal with the exponential stability
concept for linear cocycles. For exponential instability concept see for example [18]. Inter-
esting studies regarding nonuniform exponential behaviors with constant exponent have
been reported in [6]. In the stochastic framework we refer the reader to [2].

In this line, in the present work we consider random discrete-time systems which are
defined only on the semi-axes, the so-called one-sided systems. Key arguments and moti-
vation in this direction for considering such systems, that is non-invertible systems have
been presented in [21] and [15].

The purpose of the present paper is to extend various results from the determinis-
tic case of linear discrete-time skew-product over semiflows to the stochastic one-sided
discrete-time random dynamical systems. In Section 2 we introduce the concept of nonuni-
form exponential stability for a random discrete-time system and we give some neces-
sary and sufficient conditions for this property. Thus, we extend some results obtained
in [14] for nonuniform exponential stability of random one-sided discrete-time system.
Also, there is proved a characterization of nonuniform exponential stability in terms of
Lyapunov functions. In Section 3 we establish some results for nonuniform exponential
instability of a random discrete-time system in the spirit on Datko’s approach (see [13]
for deterministic aproach). The characterization of this property in terms of Lyapunov
functions is also obtained. In Section 4 we extend our study to the case of Lyapunov
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norms and finally, in Section 5, characterizations for nonuniform exponential stability and
nonuniform exponential instability of a random one-sided discrete-time system using the
inverse and the adjoint random discrete-time system are obtained.

1.1. Notations and preliminary results. Let Z+ denotes the set of positive integers. (X, ‖·
‖) denotes a Banach space. B(X) is the Banach algebra of all bounded linear operators
acting from X into X. (Ω,F,P) denotes a probability space. θ : Ω → Ω is a measurable
map preserving the probability measure P, that is P ◦ θ = P, hence P(θB) = P(B), for any
B ∈ F.

A random variable ϕ : Ω → (0,+∞) is θ−invariant if ϕ ◦ θ = ϕ, that is ϕ(θω) = ϕ(ω),
for all ω ∈ Ω. By convention we have θ0 = IΩ, where I denotes the identity. As a fast
property we have that θn ◦ θm = θn+m = θm+n = θm ◦ θn, for all m,n ∈ Z+.

The application Z+ × Ω 3 (n, z)→ θnω ∈ Ω is measurable for all n ∈ Z+. By induction
we obtain that P ◦ θn = P, i.e. P(θnB) = P(B), for all n ∈ Z+ and all B ∈ F. Also, by
induction we have that ϕ(θnω) = ϕ(ω), for all n ∈ Z+ and ω ∈ Ω.

We consider the metric semi-dynamical system (Ω,F ,P, θ),which is a probability space,
with θ : Ω → Ω, measurable. A linear random one-sided discrete-time system on X over
a measurable semi-dynamical system θ, is a measurable application φ : Z+ × Ω ∈ B(X).
For a more detailed presentation regarding these notions we can point out the references
[5] and [3]. In the following, we shall review only the properties which will be of interest
in this paper:

(a) φ(0, ω) = IX , for all ω ∈ Ω;
(b) φ(n+m,ω) = φ(n, θmω)φ(m,ω), for all n,m ∈ Z+ and ω ∈ Ω.

Obvious from relation (b) we have that

φ(n+m,ω) = φ(m, θnω)φ(n, ω), for all n,m ∈ Z+ and ω ∈ Ω.

Throughout this work the notation (θ, φ) will be used for a linear random one-sided
discrete-time system (RDTS).

2. NONUNIFORM EXPONENTIAL STABILITY

Definition 2.1. We say that a RDTS (θ, φ) is nonuniformly exponentially stable (NES) if there
exists a θ−invariant random variable α : Ω→ (0,+∞), and N : Ω→ [1,+∞) such that

(2.1) ‖φ(n, ω)x‖ ≤ N(ω)e−α(ω)n‖x‖,

for all (n, ω, x) ∈ Z+ × Ω×X.

We observe that previous definition provides us the following equivalent relations.

Proposition 2.1. The following are equivalent:
(a) the RDTS (θ, φ) is NES;
(b) there exists a θ−invariant random variable α : Ω → (0,+∞) and N : Ω → [1,+∞)

such that

(2.2) ‖φ(n+m,ω)x‖ ≤ N(ω)e−α(ω)(m+n)‖x‖,

for all m,n ∈ Z+, ω ∈ Ω and x ∈ X.
(c) there exists a θ−invariant random variable α : Ω → (0,+∞) and N : Ω → [1,+∞)

such that

(2.3) ‖φ(n+m,ω)x‖ ≤ N(θmω)e−α(ω)n‖φ(m,ω)x‖,

for all m,n ∈ Z+, ω ∈ Ω and x ∈ X.
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(d) there exists a θ−invariant random variable α : Ω → (0,+∞) and N : Ω → [1,+∞)
such that

(2.4) ‖φ(n+m,ω)x‖ ≤ N(θnω)e−α(ω)m‖φ(n, ω)x‖,
for all m,n ∈ Z+, ω ∈ Ω and x ∈ X.

Proof. The equivalence (a) ⇔ (b) is obvious. The equivalences (a) ⇔ (c) and (a) ⇔ (d),
respectively, are consequences of

α(θmω) = α(θnω) = α(ω),

for all m,n ∈ Z+ and all ω ∈ Ω. Indeed

‖φ(n+m,ω)x‖ = ‖φ(n, θmω)φ(m,ω)x‖

≤ N(θmω)e−α(θmω)n‖φ(m,ω)x‖

= N(θmω)e−α(ω)n‖φ(m,ω)x‖
for all m,n ∈ Z+, ω ∈ Ω and x ∈ X. �

Theorem 2.1. The RDTS (θ, φ) is NES if and only if there exists a θ−invariant random variable
β : Ω→ (0,+∞) and D,N : Ω→ [1,+∞) such that

(2.5)
+∞∑
k=n

eβ(ω)(k−n)N(θnω)−1‖φ(k, ω)x‖ ≤ D(ω)‖φ(n, ω)x‖

for all ω ∈ Ω, and all (n, x) ∈ Z+ ×X.

Proof. Necessity. Let α and N as in Definition 2.1. We consider 0 < β < α. Further, using
relation (2.4) from Proposition 2.1 we obtain

∞∑
k=n

eβ(ω)(k−n)N(θnω)−1‖φ(k, ω)x‖ =

∞∑
m=0

eβ(ω)mN(θnω)−1‖φ(n+m,ω)x‖

≤
∞∑
m=0

e−(α(ω)−β(ω))m‖φ(n, ω)x‖

=
1

1− e−α(ω)+β(ω)
‖φ(n, ω)x‖

=
eα(ω)

eα(ω) − eβ(ω)
‖φ(n, ω)x‖.

This will conclude that (2.5) is verified.
Sufficiency. For n = 0 relation (2.5) became

∞∑
k=0

eβ(ω)k‖φ(k, ω)x‖ ≤ N(ω)D(ω)‖x‖,

from where
‖φ(k, ω)x‖ ≤ N(ω)D(ω)e−β(ω)k‖x‖,

which conclude that the RDTS (θ, φ) is NES. �

Theorem 2.2. The RDTS (θ, φ) is NES if and only if there exists a θ−invariant random variable
β : Ω→ (0,+∞) and a function D : Ω→ [1,+∞) such that

(2.6)
+∞∑
k=0

eβ(ω)k‖φ(k, ω)x‖ ≤ D(ω)‖x‖

for all (ω, x) ∈ Ω×X.
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Proof. Necessity. We consider β : Ω→ (0,∞) satisfying 0 < β < α. We obtain
∞∑
k=0

eβ(ω)k‖φ(k, ω)x‖ ≤
∞∑
k=0

eβ(ω)kN(ω)e−α(ω)k‖x‖

= N(ω)‖x‖
∞∑
k=0

e−(α(ω)−β(ω))k

= N(ω)‖x‖ eα(ω)

eα(ω)−eβ(ω)
.

Hence, for D(ω) = N(ω) eα(ω)

eα(ω)−eβ(ω) we have that (2.6) is verified.
Sufficiency. Obviously, for all (k, ω, x) ∈ Z+ × Ω×X we have that

‖φ(k, ω)x‖ ≤ D(ω)e−β(ω)k‖x‖,
which concludes that the RDTS (θ, φ) is NES. �

We now introduce the function L : Z+ × Ω×X → R+ satisfying

(2.7) L(n, ω, x) ≤ K(ω)‖x‖,
with the function K : Ω→ [1,+∞), where ω ∈ Ω and (n, x) ∈ Z+ ×X.

Theorem 2.3. The RDTS (θ, φ) is NES if and only if there exists a functionL : Z+×Ω×X → R+

satisfying (2.7), a θ-invariant random variable η : Ω→ (0,+∞) such that

(2.8) L(0, ω, x)− L(n, ω, x)eη(ω)n ≥
n−1∑
k=0

eη(ω)k‖φ(k, ω)x‖

for all (n, ω, x) ∈ Z∗+ × Ω×X.

Proof. Necessity. Let α and N as in Definition 2.1. We set

L(n, ω, x) :=

∞∑
k=n

eβ(ω)(k−n)‖φ(k, ω)x‖,

where we have considered η = β as is Theorem 2.1. First we prove that relation (2.7) is
satisfied. Based on (b) from Proposition 2.1 we obtain

L(n, ω, x) =

∞∑
m=0

eβ(ω)m‖φ(m+ n, ω)x‖

≤
∞∑
m=0

eβ(ω)mN(ω)e−α(ω)(m+n)‖x‖

= N(ω)e−α(ω)n‖x‖ eα(ω)

eα(ω) − eβ(ω)
.

We have that eα(ω) > eα(ω) − eβ(ω) which is equivalent with eβ(ω) ≥ e0 = 1. Thus we have

obtained that K(ω) = eα(ω)N(ω)
eα(ω)−eβ(ω) ≥ 1. Hence

L(n, ω, x) ≤ K(ω)‖x‖,
This will conclude that (2.7) is verified. Further, we have that

L(0, ω, x) =

∞∑
k=0

eβ(ω)k‖φ(k, ω)x‖

= ‖x‖+ eβ(ω)‖φ(1, ω)x‖+ . . .+ eβ(ω)n‖φ(n, ω)x‖+ eβ(ω)(n+1)‖φ(n+ 1, ω)x‖+ . . .
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respectively
L(n, ω, x) = ‖φ(n, ω)x‖+ eβ(ω)‖φ(n+ 1, ω)x‖+ . . .

It follows that

L(n, ω, x)eβ(ω)n = L(0, ω, x)−
n−1∑
k=0

eβ(ω)k‖φ(k, ω)x‖,

from where

L(0, ω, x)− L(n, ω, x)eβ(ω)n =

n−1∑
k=0

eβ(ω)k‖φ(k, ω)x‖

which proves that (2.8) is verified.
Sufficiency. From (2.8) we have

K(ω)‖x‖ ≥ L(0, ω, x) ≥
n−1∑
k=0

eβ(ω)k‖φ(k, ω)x‖.

Now, taking the limit for n→∞we obtain
∞∑
k=0

eβ(ω)k‖φ(k, ω)x‖ ≤ K(ω)‖x‖,

from where we have
‖φ(k, ω)x‖ ≤ K(ω)e−β(ω)k‖x‖.

thus, we have that RDTS (θ, φ) is NES. �

Definition 2.2. We say that L1 : Z+ × Ω×X → R+ is a Lyapunov function for a RDTS (θ, φ)
if there exists a θ−invariant random variable η : Ω→ (0,+∞) such that

(2.9) L1(n, ω, x) +

n−1∑
k=0

eη(ω)k‖φ(k, ω)x‖ ≤ L1(0, ω, x)

for all (n, ω, x) ∈ Z∗+ × Ω×X.

Theorem 2.4. The RDTS (θ, φ) is NES if and only if there exists a Lyapunov function L1 :
Z+ × Ω×X → R+ and a function K : Ω→ [1,+∞) such that

(2.10) L1(0, ω, x) ≤ K(ω)‖x‖,

for all (ω, x) ∈ Ω×X.

Proof. Necessity. We suppose that the RDTS (θ, φ) is NES. Let α and N as in Definition
2.1 and β as in Theorem 2.1. Let η = β and L1 : Z+ × Ω × X → R defined for all
(n, ω, x) ∈ Z+ × Ω×X by

L1(n, ω, x) :=

∞∑
k=n

eη(ω)k‖φ(k, ω)x‖.

Let (n, ω, x) ∈ Z∗+ × Ω×X, then

L1(n, ω, x) +

n−1∑
k=0

eη(ω)k‖φ(k, ω)x‖ =

∞∑
k=n

eη(ω)k‖φ(k, ω)x‖+

n−1∑
k=0

eη(ω)k‖φ(k, ω)x‖

=

∞∑
k=0

eη(ω)k‖φ(k, ω)x‖ = L1(0, ω, x).
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Moreover

L1(0, ω, x) =

∞∑
k=0

eη(ω)k‖φ(k, ω)x‖

≤
∞∑
k=0

eη(ω)kN(ω)e−α(ω)k‖x‖

= N(ω)

∞∑
k=0

e−(α(ω)−η(ω))k‖x‖.

Hence, relation (2.10) is verified.
Sufficiency. Let (n, ω, x) ∈ Z∗+ × Ω×X. We have that

n−1∑
k=0

eη(ω)k‖φ(k, ω)x‖ ≤ L1(0, ω, x) ≤ K(ω)‖x‖,

respectively
∞∑
k=0

eη(ω)k‖φ(k, ω)x‖ ≤ K(ω)‖x‖.

Hence
‖φ(k, ω)x‖ ≤ K(ω)e−η(ω)k‖x‖

for all (k, ω, x) ∈ Z+ × Ω × X. Thus, we obtain that RDTS (θ, φ) is NES, which conclude
the proof. �

3. NONUNIFORM EXPONENTIAL INSTABILITY

Definition 3.3. We say that a RDTS (θ, φ) is nonuniformly exponentially instable (NEI) if there
exists a θ−invariant random variable α : Ω→ (0,+∞), and N : Ω→ [1,+∞) such that

(3.11) N(ω)‖φ(n, ω)x‖ ≥ eα(ω)n‖x‖,

for all (n, ω, x) ∈ Z+ × Ω×X.

We observe that previous definition can be stated as follows:

Remark 3.1. The following are equivalent:
(a) the RDTS (θ, φ) is NEI;
(b) there exists a θ−invariant random variable α : Ω → (0,+∞) and N : Ω → [1,+∞)

such that

(3.12) N(θmω)‖φ(n+m,ω)x‖ ≥ eα(ω)n‖φ(m,ω)x‖,

for all m,n ∈ Z+, ω ∈ Ω and x ∈ X.
(c) there exists a θ−invariant random variable α : Ω → (0,+∞) and N : Ω → [1,+∞)

such that

(3.13) N(θnω)‖φ(n+m,ω)x‖ ≥ eα(ω)m‖φ(n, ω)x‖,

for all m,n ∈ Z+, ω ∈ Ω and x ∈ X.
(d) there exists a θ−invariant random variable α : Ω → (0,+∞) and N : Ω → [1,+∞)

such that
N(ω)‖φ(n+m,ω)x‖ ≥ eα(ω)(n+m)‖x‖,

for all m,n ∈ Z+, ω ∈ Ω and x ∈ X.
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Theorem 3.5. The RDTS (θ, φ) is NEI if and only if there exists a θ−invariant random variable
δ : Ω→ (0,+∞) and M,N : Ω→ [1,+∞) such that

(3.14)
n∑
k=0

eδ(ω)(n−k)N(θkω)−1‖φ(k, ω)x‖ ≤M(ω)‖φ(n, ω)x‖

for all ω ∈ Ω, and all (n, x) ∈ Z+ ×X.

Proof. First we prove the implication (3.11)⇒(3.14). From

‖φ(n, ω)x‖ = ‖φ(n− k + k, ω)x‖ ≥ eα(ω)(n−k)N(θkω)−1‖φ(k, ω)x‖
it follows that

n∑
k=0

eδ(ω)(n−k)N(θkω)−1‖φ(k, ω)x‖ ≤
n∑
k=0

eδ(ω)(n−k)e−α(ω)(n−k)‖φ(n, ω)x‖

= ‖φ(n, ω)x‖
n∑
k=0

e(δ(ω)−α(ω))(n−k)

If δ : Ω→ (0,+∞) verifies the property 0 < δ(ω) < α(ω) one can check that
n∑
k=0

eδ(ω)(n−k)N(θkω)−1‖φ(k, ω)x‖ ≤ ‖φ(n, ω)x‖1− e−(α(ω)−δ(ω))(n+1)

1− e−α(ω)+δ(ω)

≤ ‖φ(n, ω)x‖ 1

1− e−α(ω)+δ(ω)
=

eα(ω)

eα(ω) − eδ(ω)
‖φ(n, ω)x‖ = M(ω)‖φ(n, ω)x‖.

To show that the converse implication holds, we consider k = 0 and we have that

eδ(ω)n‖x‖ ≤ N(ω)M(ω)‖φ(n, ω)x‖,
for all (n, ω, x) ∈ Z+ × Ω×X. Thus the proof ends. �

Definition 3.4. We say that L2 : Z+ × Ω×X → R+ is a Lyapunov function for a RDTS (θ, φ)
if there exists a θ−invariant random variable ξ : Ω→ (0,+∞) and a function N : Ω→ [1,+∞)
such that

(3.15) L2(0, ω, x) +

n−1∑
k=0

eξ(ω)(n−k)N(θkω)−1‖φ(k, ω)x‖ ≤ L2(n, ω, x)

for all (n, ω, x) ∈ Z∗+ × Ω×X.

Theorem 3.6. The RDTS (θ, φ) is NEI if and only if there exists a Lyapunov function L2 :
Z+ × Ω×X → R+ and a function K : Ω→ [1,+∞) such that

(3.16) L2(n, ω, x) ≤ K(ω)‖φ(n, ω)x‖,
for all (n, ω, x) ∈ Z+ × Ω×X.

Proof. Necessity. Suppose that the RDTS (θ, φ) is NEI. Let α andN as in Definition 3.3 and δ
as in Theorem 3.5. Let ξ = δ and L2 : Z+×Ω×X → R defined for all (n, ω, x) ∈ Z+×Ω×X
by

L2(n, ω, x) :=


n∑
k=0

eξ(ω)(n−k)N(θkω)−1‖φ(k, ω)x‖, if n > 0

0, if n = 0.

Further, we have to take into account two cases. First, we consider n = 0. In this situation
it is obvious that

L2(0, ω, x) = 0 ≤M(ω)‖φ(0, ω)x‖ = M(ω)‖x‖.
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Second, we consider (n, ω, x) ∈ Z∗+ × Ω×X. Then

L2(0, ω, x) +

n−1∑
k=0

eξ(ω)(n−k)N(θkω)−1‖φ(k, ω)x‖ =

n∑
k=0

eξ(ω)(n−k)N(θkω)−1‖φ(k, ω)x‖

= L2(n, ω, x).

Further, using Theorem 3.5 we have that

L2(n, ω, x) =

n∑
k=0

eξ(ω)(n−k)N(θkω)−1‖φ(k, ω)x‖

≤M(ω)‖φ(n, ω)x‖.

Hence (3.16) holds.
Sufficiency. Let (n, ω, x) ∈ Z+

∗ × Ω×X. Then we have
n∑
k=0

eξ(ω)(n−k)N(θkω)−1‖φ(k, ω)x‖

=

n−1∑
k=0

eξ(ω)(n−k)N(θkω)−1‖φ(k, ω)x‖+N(θnω)−1‖φ(n, ω)x‖

≤ L2(n, ω, x) + ‖φ(n, ω)x‖
≤ K(ω)‖φ(n, ω)x‖+ ‖φ(n, ω)x‖
= (K(ω) + 1)‖φ(n, ω)x‖.

This will conclude that the RDTS (θ, φ) is NEI. Thus the proof is complete. �

4. LYAPUNOV NORMS

Definition 4.5. We say that a RDTS (θ, φ) has exponential growth if there exists a θ−invariant
random variable β : Ω→ (0,+∞) and a function M : Ω→ [1,+∞) such that

‖φ(n, ω)x‖ ≤M(ω)eβ(ω)n‖x‖,

for all (n, ω, x) ∈ Z+ × Ω×X.

Definition 4.6. Let (θ, φ) be a RDTS with exponentially growth. For any ω ∈ Ω the application
‖ · ‖ω : X → R+ defined for any x ∈ X by

(4.17) ‖x‖ω = sup
n≥0

e−β(ω)n‖φ(n, ω)x‖

it is called Lyapunov norm generated by the RDTS (θ, φ).

Remark 4.2. (a) According to the Definition 4.5, one can easily seen that any RDTS (θ, φ)
which is NES has exponentially growth.

(b) Because ‖φ(0, ω)x‖ = ‖x‖ we have that

(4.18) ‖x‖ ≤ ‖x‖ω ≤M(ω)‖x‖.

(c) If the RDTS (θ, φ) is NES then we may consider M = N and β = α, in this case the
inequalities from (4.17) became

‖x‖ ≤ ‖x‖ω ≤ N(ω)‖x‖.



Stability for One-Sided Random Dynamical Systems 785

(d) The topology generated by family of norms {‖ · ‖ω : ω ∈ Ω} does not depend on the
θ−invariant random variable β : Ω→ (0,+∞). Indeed, let x ∈ X and

‖x‖ω,β = sup
n≥0

e−β(ω)n‖φ(n, ω)x‖.

If we consider β1, β2 : Ω → (0,+∞) two θ−invariant random variables such that β1 ≤
β2, then

‖x‖ω,β2
≤ ‖x‖ω,β1

.

Based on Banach’s theorem (see for example [8]) we have that the norms ‖ · ‖ω,β1
and

‖ · ‖ω,β2 are equivalent.
If we consider β1, β2 : Ω → (0,+∞) two arbitrary θ−invariant random variables,

then we can consider β3 = max{β1, β2}. From the above, both ‖ · ‖ω,β3
and ‖ · ‖ω,β1

,
respectively, ‖ · ‖ω,β3

and ‖ · ‖ω,β2
are equivalent, from where it results that the norms

‖ · ‖ω,β1
and ‖ · ‖ω,β2

are equivalent. This proves that the norms ‖ · ‖ω,β are equivalent no
matter of the θ−invariant random variable β : Ω→ (0,+∞).

Lemma 4.1. If the RDTS (θ, φ) has exponentially growth then

(4.19) ‖φ(m,ω)x‖θmω ≤ eβ(ω)m‖x‖ω,
for all (m,ω, x) ∈ Z+ × Ω×X.

Proof. By direct computation one obtains

‖φ(m,ω)x‖θmω = sup
k≥0

e−β(θmω)k‖φ(k, θmω)φ(m,ω)x‖

= sup
k≥0

e−β(ω)k‖φ(k +m,ω)x‖ = sup
j≥m

e−β(ω)(j−m)‖φ(j, ω)x‖

≤ eβ(ω)m sup
j≥0

e−β(ω)j‖φ(j, ω)x‖ = eβ(ω)m‖x‖ω.

�

Theorem 4.7. Let (θ, φ) be a RDTS with exponentially growth. Then (θ, φ) is NES if and only
if there exists a θ−invariant random variable ξ : Ω→ (0,+∞) and a function D : Ω→ [1,+∞)
such that

(4.20)
∞∑
m=0

eξ(ω)m‖φ(m,ω)x‖θmω ≤ D(ω)‖x‖ω,

for all (ω, x) ∈ Ω×X.

Proof. Necessity. Based on Definition 2.1 there exists a θ−invariant random variable α :
Ω→ (0,+∞) and a function N : Ω→ [1,+∞) such that

(4.21) ‖φ(n, ω)x‖ ≤ N(ω)e−α(ω)n‖x‖,
for all (n, ω, x) ∈ Z+×Ω×X. Further, using (4.21), (4.18), the exponential growth property
and Lemma 4.1 we have that

‖φ(m,ω)x‖θmω = sup
k≥0

e−β(θmω)k‖φ(k, θmω)φ(m,ω)x‖

= sup
k≥0

e−β(ω)k‖φ(k +m,ω)x‖ ≤ sup
k≥0

e−β(ω)kN(ω)e−α(ω)(k+m)‖x‖

= N(ω)‖x‖e−α(ω)m sup
k≥0

e−(β(ω)+α(ω))k

≤ N(ω)‖x‖e−α(ω)m ≤ N(ω)‖x‖ωe−α(ω)m.
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Now, let ξ : Ω → (0,+∞) be a θ−invariant random variable, which, without loss of
generality satisfy 0 < ξ < α. Then

∞∑
m=0

eξ(ω)m‖φ(m,ω)x‖θmω ≤
∞∑
m=0

eξ(ω)mN(ω)‖x‖ωe−α(ω)m

= N(ω)‖x‖ω
eα(ω)

eα(ω) − eξ(ω)

which for D(ω) = eα(ω)N(ω)
eα(ω)−eξ(ω) satisfy (4.20).

Sufficiency. Let (m,ω, x) ∈ Z+ × Ω×X. By direct calculations one obtains that

eξ(ω)m‖φ(m,ω)x‖ ≤ eξ(ω)m‖φ(m,ω)x‖θmω
≤ D(ω)‖x‖ω ≤ D(ω)M(ω)‖x‖,

and so
‖φ(m,ω)x‖ ≤ K(ω)e−ξ(ω)m‖x‖.

Thus the proof ends. �

5. APPLICATIONS TO THE INVERSE AND ADJOINT SYSTEMS

To any RDTS (θ, φ) we can associate in a natural way two random one-sided discrete-
time systems (θ, φ−1) and (θ, φ∗), i.e. the inverse and the adjoint one. Further, we will
review some properties for these systems. Let (n, ω) ∈ Z+ × Ω. Then φ(n, ω)−1 : X → X
satisfy

φ(n, ω)φ(n, ω)−1x = φ(n, ω)−1φ(n, ω)x = x,

for all x ∈ X. Respectively, φ(n, ω)∗ : X∗ → X∗ satisfy

φ(n, ω)∗y∗(x) = y∗(φ(n, ω)x),

for all y∗ ∈ X∗ and x ∈ X, where X∗ is the topological dual space of X.

Proposition 5.2. The RDTS (θ, φ) is NES if and only if there exists a θ−invariant random
variable α : Ω→ (0,+∞) and a function N : Ω→ [1,+∞) such that

(5.22) ‖φ(n, ω)‖ ≤ N(ω)e−α(ω)n,

for all (n, ω) ∈ Z+ × Ω.

Proof. For the necessity part, passing to supremum with ‖x‖ = 1 in (2.1) we obtain that
(5.22) is true, for all (n, ω) ∈ Z+ × X. For the sufficient part, let (n, ω, x) ∈ Z+ × Ω × X.
Then

‖φ(n, ω)x‖ ≤ ‖φ(n, ω)‖ · ‖x‖ ≤ N(ω)e−α(ω)n‖x‖,
which confirms that the RDTS (θ, φ) is NES. �

Proposition 5.3. The RDTS (θ, φ) is NES if and only if the RDTS (θ, φ∗) is NES.

Proof. Necessity. Let (n, ω, x) ∈ Z+ × Ω×X and y∗ ∈ X∗. Let α and N as in Definition 2.1
such that (2.1) is valid. Then

‖φ(n, ω)∗y∗(x)‖ = ‖y∗(φ(n, ω)x)‖ ≤ ‖y∗‖ · ‖φ(n, ω)x‖

≤ N(ω)e−α(ω)n‖y∗‖ · ‖x‖.

Passing to supremum with ‖x‖ = 1 we have that

‖φ(n, ω)∗y∗‖ ≤ N(ω)e−α(ω)n‖y∗‖.
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This allows us to conclude that the RDTS (θ, φ∗) is NES.
Sufficiency. One sees that ‖φ(n, ω)∗‖ = ‖φ(n, ω)‖. Finally, using Proposition 5.2 we get

‖φ(n, ω)‖ = ‖φ(n, ω)∗‖ ≤ N(ω)e−α(ω)n.

Hence, RDTS (θ, φ) is NES. �

Theorem 5.8. The following hold:
(a) If RDTS (θ, φ) is NES then RDTS (θ, φ−1) is NEI.
(b) If RDTS (θ, φ) is NEI then RDTS (θ, φ−1) is NES.
(c) The RDTS (θ, φ) is NES (respectively NEI) if and only if RDTS (θ, φ−1) is NEI (respec-

tively NES).

Proof. Let (n, ω) ∈ Z+×Ω. Let y ∈ X. Then there is a unique x ∈ X such that φ(n, ω)x = y
and so x = φ(n, ω)−1y.
(a). Let α and N as in Definition 2.1 such that (2.1) is valid. By direct computation one
obtains

‖y‖ = ‖φ(n, ω)x‖ ≤ N(ω)e−α(ω)n‖x‖ = N(ω)e−α(ω)n‖φ(n, ω)−1y‖,

respectively,
eα(ω)n‖y‖ ≤ N(ω)‖φ(n, ω)−1y‖.

(b). Let α and N as in Definition 3.3 such that (3.11) is valid. Then

‖y‖ = ‖φ(n, ω)x‖ ≥ N(ω)−1eα(ω)n‖x‖ = N(ω)−1eα(ω)n‖φ(n, ω)−1y‖.
Hence

‖φ(n, ω)−1y‖ ≤ N(ω)e−α(ω)n‖y‖.
(c). Necessity follows using (a) and (b), respectively. For the sufficiency part we use the
same arguments for the RDTS (θ, φ−1) using the fact that (θ, φ) = (θ, (φ−1)−1). �

Theorem 5.9. The RDTS (θ, φ) is NEI if and only if RDTS (θ, φ∗) is NEI.

Proof. We have that RDTS (θ, φ) is NEI if and only if (θ, φ−1) is NES (via Theorem 5.8). This
is equivalent with (θ, (φ−1)∗) = (θ, (φ∗)−1) is NES, respectively (θ, ((φ∗)−1)−1) = (θ, φ∗)
is NEI, which completes the proof. �

6. CONCLUSIONS

Nonuniform exponential stability and nonuniform exponential instability in the con-
text of random semi-dynamical systems have been introduced. Based on this, we have
derived a set of necessary and sufficient conditions that assure the existence of Lyapunov
functions. Thus, various results have been extended from the deterministic case of linear
cocycles over semiflows to the stochastic discrete-time one-sided dynamical systems in
the nonuniform framework.
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[12] Pötzsche, C. Geometric Theory of Discrete Nonautonomous Dynamical Systems, Lecture Notes in Mathemat-
ics, Springer-Verlag, Berlin, (2010).
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