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Geometric inequalities in real Banach spaces with
applications

C. E. CHIDUME 1

ABSTRACT. In this paper, new geometric inequalities are established in real Banach spaces. As an applica-
tion, a new iterative algorithm is proposed for approximating a solution of a split equality fixed point problem
(SEFPP) for a quasi-φ-nonexpansive semigroup. It is proved that the sequence generated by the algorithm con-
verges strongly to a solution of the SEFPP in p-uniformly convex and uniformly smooth real Banach spaces,
p > 1. Furthermore, the theorem proved is applied to approximate a solution of a variational inequality prob-
lem. All the theorems proved are applicable, in particular, in Lp, lp and the Sobolev spaces, Wm

p (Ω), for p such
that 2 < p <∞.

1. INTRODUCTION

In nonlinear operator theory, the study of iterative algorithms for approximating solutions
of nonlinear equations in real Banach spaces has become an area of intensive research ef-
forts and a flourishing research area for several authors. However, most of the algorithms
proposed and studied are largely confined to real Hilbert spaces. This is understandable
because, as is well known, among all infinite dimensional Banach spaces, Hilbert spaces
have the nicest geometric properties, most of which characterize inner product spaces and
make problems posed in real Hilbert spaces more manageable than those posed in more
general Banach spaces. However, as has rightly been observed by M. Hazewinkel, Series
Editor, Kluwe Publishers, ”... many, and probably most, mathematical objects and models do not
live naturally in Hilbert spaces”. It is obvious that to extend results established in Hilbert
spaces to more general Banach spaces, analogues of geometric identities that characterize
inner product spaces have to be developed in more general Banach spaces. Early results
in this direction can be found in Bynum [5], Chidume [12], [13], [14], Reich [22],. Most of
these analogues now in use have been developed between the mid 1980s and early 1990s
(see e.g., Alber [1], Xu [23], Xu and Roach[24], and the references contained in them).
Let E be a strictly convex and smooth real Banach space. For p > 1, define Jp : E → 2E

∗

by

Jp(x) = {u∗ ∈ E∗ : 〈x, u∗〉 = ‖x‖‖u∗‖, ‖u∗‖ = ‖x‖p−1}.

Jp is called the generalized duality map on E. If p = 2, J2 is called the normalized duality map
and is denoted by J . In a real Hilbert space H , J is the identity map on H . It is easy to see
from the definition that

Jp(x) = ‖x‖p−2Jx, and 〈x, Jpx〉 = ‖x‖p, ∀x ∈ E.
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It is well-known that if E is smooth, then J is single-valued and if E is strictly convex, J
is one-to-one, and J is surjective if E is reflexive. Furthermore, if E is uniformly smooth,
then J is uniformly continuous on bounded sets.

Definition 1.1. Let E be a real normed space with dimension E ≥ 2. The modulus of convexity
of E is the function δE : (0, 2]→ [0, 1] defined by

δE(ε) :=

{
1−

∣∣∣∣∣∣∣∣u+ v

2

∣∣∣∣∣∣∣∣ : ||u|| = ||v|| = 1; ε = ||u− v||
}
.

Let p > 1 be a real number and δE : (0, 2] → [0, 1] be the modulus of convexity of E. Then,
a normed space E is said to be p-uniformly convex if there exists a constant c > 0 such that
δE(ε) ≥ cεp.

It is well known that Lp, lp and the Sobolev spaces Wm
p (Ω), for 1 < p < ∞, are all p-

uniformly convex and that the following estimates hold:

δlp(ε) = δLp(ε) = δWp
m(Ω)(ε) =


p−1

8 ε2 + o(ε2) > p−1
8 ε2, 1 < p < 2;

1−
[
1−

(
ε
2

)p] 1
p

> 1
p

(
ε
2

)p
p ≥ 2.

(see, e.g., [20], see also [11], page 44).
In developing analogues of Hilbert space identities in more general Banach spaces, the
generalized duality map, J2 = J , which has become a most important tool in nonlinear
operator theory, plays a central role. Most of the geometric inequalities which have been
used involve the normalized duality map. Also, from the estimates above, we see that Lp,
lp and the Sobolev spaces Wm

p (Ω), for 1 < p ≤ 2, are all 2-uniformly convex. Consequently,
several of the extensions of Hilbert space results to more general Banach spaces have been
extensions to 2-uniformly convex spaces. These spaces do not include, for example, the im-
portant spaces Lp, lp and the Sobolev spaces Wm

p (Ω), for 2 < p <∞.
It is our purpose in Section 3 to establish new geometric inequalities in real Banach spaces
which will be useful tools for extending results in Hilbert spaces to, in particular, Lp, lp
and the Sobolev spaces, Wm

p (Ω), for p such that 2 < p <∞. In Section 4, as an application,
a new iterative algorithm is proposed for approximating a solution of a split equality fixed
point problem (SEFPP) for quasi-φ-nonexpansive semigroups. Using some of the new geo-
metric inequalities, it is proved that the sequence generated by the algorithm converges
strongly to a solution of the SEFPP in p-uniformly convex and uniformly smooth real Ba-
nach spaces, p > 1. Furthermore, in Section 5, the theorem proved in Section 4 is applied
to approximate a solution of a variational inequality problem. All the theorems proved in
this paper are applicable, in particular, in Lp, lp and the Sobolev spacesWm

p (Ω), for p such
that 2 < p <∞.

2. SOME KNOWN GEOMETRIC INEQUALITIES IN REAL BANACH SPACES

For p-uniformly convex smooth normed spaces, the following lemma is well known.

Lemma 2.1. (Xu, [23]) LetE be a p-uniformly convex and smooth normed real space. Then, there
exist constants dp > 0 and cp > 0 such that for every x, y ∈ E, there exists Jp(x) such that the
following inequalities hold:

(a) ||x+ y||p ≥ ||x||p + p〈y, Jp(x)〉+ dp||y||p,

(b) ||λx+ (1− λ)y||p ≤ λ||x||p + (1− λ)||y||p − cpWp(λ)||x− y||p,
for all λ ∈ [0, 1] and Wp(λ) := λp(1− λ) + λ(1− λ)p, and,

(c) 〈x− y, Jp(x)− Jp(y)〉 ≥ c2||x− y||p.



Geometric inequalities in real Banach spaces with applications 111

Alber [1] introduced the concept of generalized projection.

Definition 2.2. Let E be a smooth, strictly convex and reflexive Banach space and let C be a
nonempty closed and convex subset of E. The mapping ΠC : E → C defined by x∗ = ΠCx ∈ C
such that

ψ(x∗, x) = inf
y∈C

ψ(y, x)

is called the generalized projection of E onto C.

Lemma 2.2. (Alber, [1]) Let C be a nonempty closed and convex subset of a smooth and strictly
convex Banach space E. Then,

ψ(x,ΠCy) + ψ(ΠCy, y) ≤ ψ(x, y), ∀ x ∈ C, y ∈ E.

The following important and well known lemma will be used in the sequel.

Lemma 2.3. (Kamimura and Takahashi, [19]) Let E be a uniformly convex and uniformly smooth
real Banach space and {xn}, {yn} be sequences in E such that either {xn} or {yn} is bounded. If
lim
n→∞

ψ(xn, yn) = 0, then, lim
n→∞

||xn − yn|| = 0.

3. NEW GEOMETRIC INEQUALITIES IN p-UNIFORMLY CONVEX AND SMOOTH SPACES

Let E be a reflexive, strictly convex and smooth real Banach space with dual space E∗.
For p ≥ 2, we define the following new functionals: ψp : E × E → R+ by

ψp(x, y) : = ‖x‖p − p〈x, Jpy〉+ (p− 1)‖y‖|p, ∀x, y ∈ E.(3.1)

Define Vp : E × E∗ → R by

Vp(x, x
∗) : = ‖x‖p − p〈x, x∗〉+ (p− 1)‖x∗‖

p
p−1 , ∀x ∈ E, x∗ ∈ E∗.(3.2)

Observe that,

ψp(x, J
−1
p u∗) = Vp(x, u

∗), ∀x ∈ E, u∗ ∈ E∗.(3.3)

Remarks.
• ψp is the Bregman distance for the strictly convex functional f(x) = ||x||p, p > 1.

Hence,
ψp(x, y) ≥ 0, ∀ x, y ∈ E.

• Clearly, ψp(x, x) = 0, ∀ x ∈ E.
• If p = 2, we shall denote ψ2(x, y) simply as ψ(x, y), and V2(x, x∗) as V (x, x∗) so

that
ψ(x, y) = ‖x‖2 − 2〈x, j(y)〉+ ‖y‖2, ∀x, y ∈ E.

V (x, x∗) := ‖x‖2 − 2〈x, x∗〉+ ‖x∗‖2, ∀x ∈ E, x∗ ∈ E∗.
These equations were first defined by Alber, [1].

We now prove the following new lemmas that yield new geometric inequalities which are of
independent interest. Some of them will be used in the sequel. We first state the following
mathematical analysis inequalities which will be used in the proofs of the lemmas.

Proposition 3.1. (a) For a, b ∈ R+, p ≥ 2, the following inequality holds.

a
p

p−1 +
p

p− 1
a

1
p−1 b ≤ (a+ b)

p
p−1 .

(b) Let a, b ∈ R+, p ≥ 2. Then,(
ap + bp

) 1
p−1 ≤ a

p
p−1 + b

p
p−1 .(3.4)
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Proof. (a). Define fb : R+ → R by

fa(x) := (a+ x)
p

p−1 − p

p− 1
a

1
p−1x− a

p
p−1 , ∀ x ∈ R+.

Then, fa(0) = 0, and

f
′

a(x) =
p

p− 1

[
(a+ x)

1
p−1 − a

1
p−1

]
> 0,

since x > 0. So, fa is increasing which implies that fa(x) > fa(0). Take x = b and the
result follows.

(b) Define fa : R+ → R by

fa(x) := a
p

p−1 + x
p

p−1 −
(
ap + xp

) 1
p−1

.

Clearly, fa(0) = 0. Furthermore,

f
′

a(x) =
p

p− 1

[
x

1
p−1 − x(p−1)

(ap + xp)
p−2
p−1

]
> 0

since (ap + xp)
p−2
p−1 > x

p(p−2)
p−1 and a > 0.

This implies that fa is increasing. Since fa(0) = 0, it follows that for all x > 0, fa(x) >
fa(0) (= 0). This completes the proof by taking x = b. �

Remark 3.1. Proposition 3.1 (a) and (b) are used below in the proofs of Lemma 3.5 and Lemma
3.6, respectively.

Proposition 3.2. For a, b ∈ R+ p ≥ 2, the fdollowing inequality holds.

a
p

p−1 +
p

p− 1
a

1
p−1 b ≤ (a+ b)

p
p−1 .

Proof. Define fa : R+ → R by

fa(x) := (a+ x)
p

p−1 − p

p− 1
a

1
p−1x− a

p
p−1 , ∀ x ∈ R+.

Then, fa(0) = 0, and

f
′

a(x) =
p

p− 1

[
(a+ x)

1
p−1 − a

1
p−1

]
> 0,

since x > o. So, fa is increasing which implies that fa(x) > fa(0). Take x = b and the
vresult follows. �

Proposition 3.3. Let a, b ∈ R+, p ≥ 2. Then,(
ap + bp

) 1
p−1 ≤ a

p
p−1 + b

p
p−1 .

Proof. Define fa : R+ → R by

fa(x) := a
p

p−1 + x
p

p−1 −
(
ap + xp

) 1
p−1

.
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Clearly, fa(0) = 0. Furthermore,

f
′

a(x) =
p

p− 1

[
x

1
p−1 − x(p−1)

(ap + xp)
p−2
p−1

]
> 0

since (ap + xp)
p−2
p−1 > x

p(p−2)
p−1 and a > 0.

This implies that fa is increasing. Since fa(0) = 0, it follows that for all x ≥ 0, fa(x) ≥
fa(0) (= 0). This completes theb proof by setting x = b. �

Lemma 3.4. Let E be a p-uniformly convex and uniformly smooth real Banach space. For p ≥ 2,
wen have:

J−1
p u∗ = ||u∗||

−(p−2)
p−1 J−1u∗.

Proof. First, using the definition f Jp, we compute as follows:

||u∗|| = ||JpJ−1
p u∗|| = ||J−1

p u∗||p−2J(J−1
p u∗)||

= ||J−1
p u∗||p−2||.||J−1

p u∗|| = ||J−1
p u∗||p−1

⇒ ||J−1
p u∗|| = ||u∗||

1
p−1 .

Now, again using the definition of Jp, we obtain:

u∗ = Jp(J
−1
p u∗) = ||J−1

p u∗||p−2J(J−1
p u∗)

⇒ J−1u∗ = ||J−1
p u∗||p−2J−1J(J−1

p u∗)

⇒ J−1u∗ = ||J−1
p u∗||(p−2)(J−1

p u∗)

⇒ J−1u∗ = ||u∗||
(p−2)
p−1 (J−1

p u∗)

so that, J−1
p u∗ = ||u∗||

−(p−2)
p−1 J−1u∗.

�

Corollary 3.1. Let E be a p-uniformly convex and uniformly smooth real Banach space. For
p ≥ 2, wen have:

||J−1
p u∗|| = ||u∗||

1
p−1 .

Proof. This follows from Lemma 3.4 �

Lemma 3.5. Let E be a reflexive, strictly convex and smooth real Banach space. Then, for p ≥ 2,

(3.5) Vp(u, u
∗) + p〈J−1

p u∗ − u, v∗〉 ≤ Vp(u, u∗ + v∗), ∀u ∈ E, u∗, v∗ ∈ E∗.

Proof. We compute as follows:

Vp(u, u
∗) + p〈J−1

p u∗ − u, v∗〉 = ‖u‖p − p〈u, u∗〉+ (p− 1)‖u∗‖
p

p−1 + p〈J−1
p u∗, v∗〉 − p〈u, v∗〉

≤ ‖u‖p − p〈u, u∗ + v∗〉+ (p− 1)
(
‖u∗‖

p
p−1 +

p

(p− 1)
‖u∗‖

1
p−1 ‖v∗‖

)
≤ ‖u‖p − p〈u, u∗ + v∗〉+ (p− 1)‖u∗ + v∗‖

p
p−1

= Vp(u, u
∗ + v∗),

establishing the lemma. �

Lemma 3.6. Let E be a reflexive, strictly convex and smooth real Banach space. Then, for p > 1,

(3.6) ψp
(
x, J−1

p (λJpu+ (1− λ)Jpv)
)
≤ λψp(x, u) + (1− λ)ψp(x, v), ∀x, u, v ∈ E.
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Proof. Using definition of ψp and Lemma 2.1(b), we compute as follows:

ψp
(
x, J−1

p (λJpu+ (1− λ)Jpv)
)

= Vp

(
x, λJpu+ (1− λ)Jpv

)
= ||x||p − p〈x, λJpu+ (1− λ)Jpv〉

+(p− 1)||λJpu+ (1− λ)Jpv||
p

p−1

≤ ||x||p − pλ〈x, Jpu〉 − p(1− λ)〈x, Jpv〉

+(p− 1)
(
λ||Jpu||p + (1− λ)||Jpv||p

) 1
p−1

≤ λ||x||p − pλ〈x, Jpu〉+ (p− 1)λ||Jpu||
p

p−1

+(1− λ)||x||p − p(1− λ)〈x, Jpv〉
+(p− 1)(1− λ)||Jpv||

p
p−1

= λ
[
||x||p − p〈x, Jpu〉+ (p− 1)||Jpu||

p
p−1

]
+(1− λ)

[
||x||p − p〈x, Jpv〉+ (p− 1)||Jpv||

p
p−1

]
= λVp(x, Jpu) + (1− λ)Vp(x, Jpv)

= λψp(x, J
−1
p Jpu) + (1− λ)ψp(x, J

−1
p Jpv)

= λψp(x, u) + (1− λ)ψp(x, v),

establishing the lemma. �

Lemma 3.7. LetE be a p-uniformly convex and smooth real Banach space, and let {un} and {vn}
be two sequences of E. Then, ψp(un, vn)→ 0 implies ‖un − vn‖ → 0, as n→∞.

Proof. Using Lemma 2.1(b), we proceed as follows: replacing y by (x − y) and x by y in
the following inequality:

||x+ y||p ≥ ||x||p + p〈y, Jp(x)〉+ dp||y||p,

we obtain: ∀x, y ∈ E,

dp‖x− y‖p ≤ ‖x‖p − ‖y‖p − p〈x− y, Jpy〉

=
(
‖x‖p − p〈x, Jpy〉+ (p− 1)||y||p

)
= ψp(x, y).

This inequality now yields that dp‖x−y‖p ≤ ψp(x, y), from which the lemma follows. �

Lemma 3.8. Let E be a p-uniformly convex and smooth real Banach space with dual space E∗.
For p > 1, let Jp : E → E∗ be the generalized duality map. Then,

(3.7) ‖J−1
p u− J−1

p v‖ ≤ κp‖u− v‖
1

p−1 , ∀ u, v ∈ E∗,

where κp =
(

1
c2

) 1
p−1

, for some constant c2 > 0.

Proof. We first recall that sinceE is reflexive, Jp is surjective. ForE, the following inequal-
ity holds (Lemma 2.1 (c)):

(3.8) 〈x− y, Jpx− Jpy〉 ≥ c2‖x− y‖p, ∀ x, y ∈ E,

for some constant c2 > 0. This implies that

||Jpx− Jpy|| ≥ c2||x− y||p−1, ∀ x, y ∈ E.(3.9)
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This inequality implies that Jp is injective. Hence, J−1
p : E∗ → E exists. For u, v ∈ E∗,

let J−1
p u = x, J−1

p v = y. Substituting in inequality (3.9), we obtain inequality (3.7),
establishing the Lemma. �

Remark 3.2. Lemmas 3.5 and 3.6 were established for p = 2 by Alber [1]. Since for p > 1,
p-uniformly convex spaces are reflexive and strictly convex, we can use, in this paper, ψ(x, y) and
V (x, x∗) instead of ψp(x, y) and Vp(x, x∗), respectively, whenever it is convenient to do so.

Lemma 3.9. Let C be a nonempty closed and convex subset of a p-uniformly convex and smooth
real Banach space, E. Let x ∈ E be arbitrary and let PC(x) = x∗, where PC : E → C denotes the
metric projection of E onto C. Then, for arbitrary u ∈ C, the following inequality holds:

(3.10) 〈u− x∗, Jp(x− x∗)〉 ≤ 0.

Proof. Since E is p-uniformly convex and smooth, there exists a constant dp > 0 such that
the following inequality holds, (Lemma 2.1(a)):

(3.11) ||x+ y||p ≥ ||x||p + p〈y, Jp(x)〉+ dp||y||p, ∀ x, y ∈ E.
From this inequality, it follows that

(3.12) ||x+ y||p ≤ ||x||p + p〈y, Jp(x+ y)〉 − dp||y||p, ∀ x, y ∈ E.
By the convexity of C, we have that xλ := x∗ − λ(x∗ − u) ∈ C, λ ∈ (0, 1). Hence, using
inequality (3.12),

||x− x∗||p ≤ ||x− xλ||p = ||(x− x∗) + λ(x∗ − u)||p

≤ ||x− x∗||p + pλ〈x∗ − u, Jp
(
x− x∗ + λ(x∗ − u)

)
〉 − dpλp||x∗ − u||p,

so that
p〈x∗ − u, Jp(x− x∗ + λ(x∗ − u))〉 ≥ dpλp−1||x∗ − u||p.

Letting λ→ 0+, we obtain
〈u− x∗, Jp(x− x∗)〉 ≤ 0,

establishing the lemma. �

3.1. Analytical representations of generalized duality maps in Lp, lp, and W p
m, spaces,

1 < p < ∞. Using the following analytic representations of the normalized duality map,
J , in Lp, lp, and W p

m, 1 < p <∞ (see e.g., Lindenstrauss and Tzafriri [20])

Jz = y ∈ lq, y = {|z1|p−2z1, |z2|p−2z2, ...}, z = {z1, z2, ...},
J−1z = y ∈ lp, y = {|z1|q−2z1, |z2|q−2z2, ...}, z = {z1, z2, ...},
Jz = ‖z‖2−pLp

|z(s)|p−2z(s) ∈ Lq(G), s ∈ G,

J−1z = |z(s)|q−2z(s) ∈ Lp(G), s ∈ G, and

Jz =
∑
|α|≤m

(−1)|α|Dα(|Dαz(s)|p−2Dαz(s)) ∈W q
−m(G),m > 0, s ∈ G,

and the relation:

Jp(x) = ||x||(p−2)J(x), J−1
p u∗ = ||u∗||(p−2)J−1u∗,

we obtain the analytic representations of the generalized duality map, Jp, in these spaces.

Let C be a nonempty closed and convex subset of a real Banach space E, with dual space,
E∗.

For any map T : C → E, we shall denote the set of fixed points of T by F (T ) := {x ∈ C :
Tx = x}.
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Now,
1. Let E1, E2 and E3 be real normed spaces;
2. Let T : E1 → E1 and S : E2 → E2 be nonlinear maps with F (T ) 6= ∅, F (S) 6= ∅;
3. Let A : E1 → E3, B : E2 → E3 be bounded linear maps.

The split equality fixed point problem (SEFPP) is to

find x ∈ F (T ), y ∈ F (S) such that Ax = By.

We shall denote the set of solutions of SEFPP byF := {(x, y) ∈ F (T )×F (S) : Ax = By}.
The SEFPP studied by Moudafi [21], in the setting of real Hilbert spaces has recently
attracted the attention and interest of numerous researchers due to its various applica-
tions, for example, in game theory, in intensity-modulated radiation therapy preparation,
in decomposition methods for partial differential equations, in fully discretized models of
inverse problems which arise from phase retrievals and in medical image reconstruction
(see, e.g., Censor and Segal [9], Attouch et al. [3], Byrne [6, 7], and the references therein).

The SEFPP is a generalization of the split common fixed point problem (SCFPP ), which is
applicable in several important real-life problems (see, e.g. Censor and Segal [9] and the
references therein).

In 2014, Zhao [28] proposed and studied the following algorithm for approximating a
solution of SEFPP in real Hilbert spaces:

(3.13)


x0 ∈ H1, yo ∈ H2,

un = xn − γnU∗(Uxn − V yn), xn+1 = αnun + (1− αn)Tun),

vn = yn − γnV ∗(Uxn − V yn), yn+1 = βnyn + (1− βn)Svn), n ≥ 0,

where T , S are quasi-nonexpansive maps with F (T ) 6= ∅, F (S) 6= ∅, and U, V are bounded
linear maps fromH1 andH2 toH3, respectively, andH3 is an arbitrary Hilbert space, {αn}
and {βn} are sequences in [0, 1], and {γn} is a sequence of positive numbers satisfying
appropriate conditions. Assuming (I − T ) and (I − S) are demi-closed at zero, he proved
that the sequence generated by algorithm (3.13) converges weakly to a solution of SEFPP.

Chidume et al. [16] in 2015 studied the convergence of the sequence generated by follow-
ing algorithm in real Hilbert spaces:

(3.14)


x1 ∈ H1, y1 ∈ H2,

xn+1 = (1− α)(xn − γU∗(Uxn − V yn) + αT (xn − γU∗(Uxn − V yn)),

yn+1 = (1− α)(yn − γV ∗(Uxn − V yn)) + αS(yn − γV ∗(Uxn − V yn)), n ≥ 1,

where T , S are demi-contractive maps, and U, V are bounded linear maps from H1 and
H2 to H3, respectively, and H3 is an arbitrary Hilbert space, α, γ are positive constants
satisfying appropriate conditions. Assuming I−T and I−S are both demi-closed at zero
and semi-compact, they proved that the sequence generated by algorithm (3.14) converges
strongly to a solution of SEFPP.

Recently, other iterative algorithms for approximating a solution of the SEFPP in Hilbert
spaces have been proposed and studied by several authors (see, e.g. Zhao et al. [27], Giang
et al. [18], Chang et al. [10], Zhao and He [26], and the references therein).

In 2018, Zhaoli et al., [25] studied the split feasibility problem and fixed point problem
in a 2-uniformly convex and 2-uniformly smooth real Banach space. They considered the
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following algorithm:
(3.15)

x1 ∈ E1, C1 = E1,

en = J−1
1 (JE1xn − γA∗J2(PQ − I)Axn), yn = J−1

1 [(1− βn)J1en + βnJ1Sen],

Cn+1 = {v ∈ Cn : ψ(v, yn) ≤ ψ(v, xn); ψ(v, zn,t) ≤ ψ(v, xn)},
xn+1 = ΠCn+1

x1, n ≥ 1,

where S is a closed quasi-ψ-nonexpansive map, PQ is the metric projection of E2 onto
Q, ΠCn+1

is the generalized projection of E1 onto Cn+1, {βn} ⊂ [δ, 1), δ > 0 and γ is
a positive constant satisfying 0 < γ < 1/||A||2k2, k > 0 is best smoothness constant
of the underlying space. They proved strong convergence of the sequence generated by
algorithm (3.15).

Remark 3.3. A real Banach space that is 2-uniformly convex and 2-uniformly smooth is neces-
sarily a real Hilbert space. Consequently, the results of Zhaoli et al., [25] are still in real Hilbert
spaces.

In 2019, Chidume et al. [15] studied the following Krasnoselkii-type algorithm for the
SEFPP for quasi-φ-nonexpansive semigroups:

(3.16)



x1 ∈ E1, y1 ∈ E2, C1 = E1, Q1 = E2, en ∈ JE3(Axn −Byn)

un = J−1
E1

(JE1
xn − γA∗en), zn,t = J−1

E1
(βJE1

xn + (1− β)JE1
T (t)un),

vn = J−1
E2

(JE2
yn + γB∗en), wn,t = J−1

E2
(βJE2

yn + (1− β)JE2
S(t)vn),

Cn+1 = {v ∈ Cn : sup
t≥0

ψ(v, zn,t) ≤ ψ(v, xn) + ψ(z, yn), ∀ z ∈ S},

Qn+1 = {z ∈ Qn : sup
t≥0

ψ(z, wn,t) ≤ ψ(v, xn) + ψ(z, yn), ∀ v ∈ T},

xn+1 = ΠCn+1
x1, yn+1 = ΠQn+1

y1, n ≥ 1,

where E1 and E2 are 2-uniformly convex and uniformly smooth real Banach spaces, E3 is a real
Banach space, T := {T (t) : t ≥ 0} and S := {S(t) : t ≥ 0} are closed quasi-ψ-nonexpansive
semigroups, A and B are bounded linear maps, T := ∩

t≥0
F (T (t)) ; S := ∩

t≥0
F (S(t)), β ∈

(0, 1) and γ is some positive constants satisfying appropriate mild conditions.
They proved that the sequence generated by algorithm (3.16) converges strongly to some
point in the solution set of SEFPP. Furthermore, they applied this result to approximate a
solution of a split equality variational inequality problem in a 2-uniformly convex and uniformly
smooth real Banach space.

Remark 3.4. While 2-uniformly convex and uniformly smooth real Banach spaces are more gen-
eral than real Hilbert spaces, (they include Lp, lp, Wm

p (Ω) spaces, for 1 < p ≤ 2); they exclude
some very important real Banach spaces. In particular, they exclude Lp, lp, Wm

p (Ω) spaces, for
2 < p <∞.

4. APPLICATION TO SPLIT EQUALITY FIXED POINT PROBLEM FOR
QUASI-φ-NONEXPANSIVE SEMIGROUPS

As an application of our main results in Section 3, it is our purpose in this section to
introduce a new iterative algorithm for approximating a solution of the SEFPP in p-
uniformly convex and uniformly smooth real Banach spaces for quasi-φ-nonexpansive semi-
groups. These spaces include, in particular, Lp, lp, and the Sobolev spaces, Wm

p (Ω), for p
such that 2 < p <∞.

We begin with the following definitions.
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Definition 4.3. Let C be a nonempty closed and convex subset of a real Banach space E and
T : C → C be a map.

(1) T is said to be quasi-ψ-nonexpansive if F (T ) 6= ∅, ψ(p, Tx) ≤ ψ(p, x), ∀ p ∈ F (T ), x ∈ C.
(2) T is demi-closed at zero if for any sequence {xn} ⊂ C with xn ⇀ x∗ and ||xn − Txn|| → 0,
then, x∗ = Tx∗.

Definition 4.4. A one-parameter family T := {T (t) : t ≥ 0} of maps from C into itself is called
a strongly continuous semigroup of Lipschitzian maps on E if it satisfies the following conditions:
(i) T (0)x = x, for all x ∈ E;
(ii) T (s+ t) = T (s)T (t), for all s, t ≥ 0;
(iii) for each x ∈ E, the map t 7→ T (t)x is continuous;

(iv) for each t > 0, there exists a bounded measurable function T (t) : C → C such that

||T (t)x− T (t)y|| ≤ L(t)||x− y||, for all x, y ∈ C.
(v) A strongly continuous semigroup of Lipschitzian maps T is called strongly continuous non-
expansive if L(t) = 1, for each t ≥ 0.

(vi) A one parameter family T is called quasi-ψ-nonexpansive semigroup, if conditions
(i) - (iii) hold; and T := ∩

t≥0
F (T (t)) 6= ∅ and ψ(p, T (t)x) ≤ ψ(p, x), ∀ p ∈ T, x ∈ C.

In Theorem 4.1 below, the setting is as follows:
1. E1 and E2 are p-uniformly convex and uniformly smooth real Banach spaces, E3

is an arbitrary smooth real Banach space;
2. T : E1 → E1 and S : E2 → E2 are quasi-φ-nonexpansive mappings;
3. A : E1 → E3 andB : E2 → E3 are bounded linear mappings with adjointsA∗, B∗,

respectively;
4. Jp(1) , Jp(2) , Jp(3) are the generalized duality maps onE1, E2, E3, respectively, J−1

p(1)
, J−1
p(2)

, J−1
p(3)

are the generalized duality maps on E∗1 , E∗2 , E∗3 , respectively, and α ∈ (0, 1).
5. T := ∩

t≥0
F (T (t)) ; and S := ∩

t≥0
F (S(t)).

6. κp is the constant appearing in Lemma 3.8.
7. F = T×S.

The Algorithm.

(4.17)



x1 ∈ E1, y1 ∈ E2, C1 = E1, Q1 = E2, en = Jp(3)(Axn −Byn);

un = J−1
p(1)(Jp(1)xn − γA∗en), zn,t = J−1

p(1)(αJp(1)xn + (1− α)Jp(1)T (t)un);

vn = J−1
p(2)(Jp(2)yn + γB∗en), wn,t = J−1

p(2)(αJp(2)yn + (1− α)Jp(2)S(t)vn);

Cn+1 = {v ∈ Cn : sup
t≥0

ψp(v, zn,t) ≤ ψp(v, xn) + ψp(z, yn), ∀ z ∈ S};

Qn+1 = {s ∈ Qn : sup
t≥0

ψp(s, wn,t) ≤ ψp(z, xn) + ψp(s, yn), ∀ z ∈ T};

xn+1 = ΠCn+1x1, yn+1 = ΠQn+1y1, n ≥ 1.

Theorem 4.1. Let T := {T (t) : t ≥ 0} : E1 → E1 and S := {S(t) : t ≥ 0} : E2 → E2

be closed quasi-ψ-nonexpansive semigroups such that T 6= ∅ and S 6= ∅. Let {(xn, yn)} be a
sequence in E1 × E2 generated iteratively by algorithm (4.17). Assume F := {(x, y) ∈ T ×S :

Ax = By} 6= ∅, β ∈ (0, 1) and γ is such that 0 < γ <
[

1

κp

(
||A||

p
p+1 +||B||

p
p+1

)](p−1)

. Then,

{(xn, yn)} converges strongly to some point (x∗, y∗) ∈ F .
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Proof. The proof is divided into four steps.

Step 1. We prove that the sequences {xn} and {yn} are well-defined. First, we prove that
Cn and Qn are closed and convex. Clearly, C1 = E1 and Q1 = E2 are closed and convex.
Assume that Cn and Qn are closed and convex for some n ≥ 1. Then, from the definition
of Cn+1, we have that:

Cn+1 = {v ∈ Cn : sup
t≥0

ψp (v, zn,t) ≤ ψp(v, xn) + ψp(z, yn), ∀ z ∈ S}

= ∩
t≥0
{v ∈ Cn : ψp(v, zn,t) ≤ ψp(v, xn) + ψp(z, yn), ∀ z ∈ S}

= ∩
t≥0
{v ∈ Cn : p〈v, Jp(1)xn − Jp(1)zn,t〉 ≤ ||Jp(1)xn||p − ||Jp(1)zn,t||p + ψp(z, yn), ∀ z ∈ S}.

Thus, Cn+1 is closed and convex. Similarly, Qn+1 is closed and convex. Hence, Cn and
Qn are closed and convex. Therefore, {xn} and {yn} are well defined.

Next, we prove that F ⊂ Cn × Qn, ∀ n ≥ 1. Clearly, F ⊂ C1 × Q1. Assume that
F ⊂ Cn ×Qn, for some n ≥ 1. Let (p∗, q∗) ∈ F . Using Lemma 3.6, we obtain:

ψp(p
∗, zn,t) = ψp(p

∗, J−1
p(1)(αJp(1)xn + (1− α)Jp(1)T (t)un))

≤ αψp(p
∗, xn) + (1− α)ψp(p

∗, un).(4.18)

Now,

ψp(p
∗, un) = ψp(p

∗, J−1
p(1)

(
Jp(1)xn − γA∗en)

)
= V (p∗, Jp(1)xn − γA∗en)

= ||p∗||p − p〈p∗, Jp(1)xn〉+ pγ〈p∗, A∗en〉+ (p− 1)||Jp(1)xn − γA∗en||
p

p−1 .(4.19)

Replacing x by x − y in the inequality ||x + y||p ≥ ||x||p + p〈y, Jpx〉 + dp||y||p, we obtain
that

||x− y||p ≤ ||x||p − p〈y, Jp(x− y)〉.
Using this inequality in (4.19), we obtain:

ψp(p
∗, un) ≤ ||p∗||p − p〈p∗, Jp(1)xn〉+ pγ〈p∗, A∗en〉

+ (p− 1)
[
||Jp(1)xn||p − pγ〈un, A∗en〉

] 1
p−1

≤ ||p∗||p − p〈p∗, Jp(1)xn〉+ pγ〈Ap∗, en〉

+ (p− 1)
[
||Jpxn||

p
p−1 − p(p− 1)γ〈Aun, en〉

]
= Vp(p

∗, Jpxn) + γp
[
〈Ap∗, en〉 − (p− 1)〈Aun, en〉

]
= ψp(p

∗, xn) + γp
[
〈Ap∗, en〉 − (p− 1)〈Aun, en〉

]
Hence, it follows from inequality (4.18) that:

ψp(p
∗, zn,t) ≤ ψp(p

∗, xn) + γ(1− α)p〈Ap∗, en〉 − γ(1− α)p(p− 1)〈Aun, en〉.(4.20)

Similarly, using wn, yn, and B, we get that:

ψp(q
∗, wn,t) ≤ ψp(q

∗, yn)− γ(1− α)p〈Bq∗, en〉+ γ(1− α)p(p− 1)〈Bvn, en〉.(4.21)

From inequalities (4.20) and (4.21) and using the fact that Ap∗ = Bq∗, we get that:

(4.22) ψp(p∗, zn,t)+ψp(q∗, wn,t) ≤ ψp(p∗, xn)+ψp(q
∗, yn)−γ(1−α)p(p−1)〈Aun−Bvn, en〉.

Now, en = Jp(3)(Axn −Byn). Set σ := γ(1− α)p(p− 1). So, by Lemma 3.8, we have that:
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−σ〈Aun −Bvn, en〉
= − σ||Axn −Byn||p − σ〈Aun −Bvn, en〉+ σ〈Axn −Byn, en〉
= − σ||Axn −Byn||p + σ〈A(xn − un), en〉+ σ〈B(vn − yn), en〉

≤ − σ||Axn −Byn||p + σ
[
||A||.||xn − J−1

p(1)(Jp(1)xn − γA∗en||

+ ||B||.||yn − J−1
p(2)(Jp(2)yn + γB∗en)

]
||en||

≤ −σ||Axn −Byn||p + σγ
1

p−1 kp

[
||A||.||A∗en||

1
p−1 + ||B||.||B∗e||

1
p−1

]
.||en||.(4.23)

But,

||A||.||A∗en||
1

p−1 ||en|| ≤ ||A||
p

p−1 .||Axn −Byn||p,
and,

||B||.||B∗en||
1

p−1 ||en|| ≤ ||A||
p

p−1 .||Axn −Byn||p.
Substituting these inequalities in inequality (4.23), we obtain:

−σ〈Aun −Bvn, en〉 ≤ − σ||Axn −Byn||p + σγ
1

p−1 kp

[
||A||

p
p−1 + ||B||

p
p−1

]
.||Axn −Byn||p.

Substituting this inequality in inequality (4.22), we obtain:

ψp(p
∗, zn,t) + ψp(q

∗, wn,t)

≤ ψp(p
∗, xn) + ψp(q

∗, yn)− σ
[
1− γ

1
p−1 kp

(
||A||

p
p−1 + ||B||

p
p−1

)]
.||Axn −Byn||p(4.24)

≤ ψp(p
∗, xn) + ψp(q

∗, yn),

establishing that F ⊂ Cn ×Qn, ∀ n ≥ 1.

Step 2. We prove that the sequences {xn} and {yn} are convergent.
From the definition of {xn} and Lemma 2.2, we have thatψ(xn, x1) ≤ ψ(p∗, x1)−ψ

(
p∗, xn) ≤

ψ(p∗, x1), ∀ (p∗, q∗) ∈ F ⊂ Cn × Qn. This implies that {ψ(xn, x1)} is bounded. Hence,
{xn} is bounded. Since xn+1 = ΠCn+1

x1 ∈ Cn+1 ⊂ Cn and xn = ΠCn
x1, we have

that ψ(xn, x1) ≤ ψ(xn+1, x1) and this implies that {ψ(xn, x1)} is nondecreasing. Hence,
lim
n→∞

ψ(xn, x1) exists. Furthermore, for m ≥ n, we have that:

ψ(xm, xn) = ψ(ΠCm
x1,ΠCn

x1) ≤ ψ(ΠCm
x1, x1)− ψ(ΠCn

x1, x1)

= ψ(xm, x1)− ψ(xn, x1)→ 0 (as n→∞).

It follows from Lemma 2.3 that ||xn − xm|| → 0 as m,n → ∞. Hence {xn} is Cauchy.
Thus, there exists x∗ ∈ E1 such that lim

n→∞
xn = x∗. Following a similar argument, there

exists y∗ ∈ E2 such that lim
n→∞

yn = y∗.

Step 3. We prove that (x∗, y∗) ∈ F and Ax∗ = By∗.
Form ≥ n, (xm, ym) ∈ Cm×Qm.We have that sup

t≥0
ψp(xm, zn,t) ≤ ψp(xm, xn)+ψp(ym, yn)→

0 as m,n → ∞, sup
t≥0

ψp(ym, wn,t) ≤ ψp(xm, xn) + ψp(ym, yn) → 0 as m,n → ∞. Hence,

for each t ≥ 0, and by Lemma 3.7, we have that ||xm − zn,t|| → 0 as m,n → ∞ and
||ym − wn,t|| → 0 as m,n → ∞. Therefore, for each t ≥ 0, zn,t → x∗ as n → ∞ and
wn,t → y∗ as n→∞.
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Set η =: σ
[
1− γ

1
p−1 kp

(
||A||

p
p−1 + ||B||

p
p−1

)]
. Then, it follows, from inequality (4.24) that:

lim
n→∞

||Axn −Byn||p ≤ 1

η
lim
n→∞

(
ψp(p

∗, xn)− ψp(p∗, zn,t) + ψp(q
∗, yn)− ψp(q∗, wn,t)

)
=

1

η

(
ψp(p

∗, x∗)− ψp(p∗, x∗) + ψp(q
∗, y∗)− ψp(q∗, y∗)

)
= 0.(4.25)

Hence, we have: Ax∗ = Bx∗.

Step 4. Finally, we show that (x∗, y∗) ∈ T×S. From Lemma 3.8, we have that:

||un − x∗|| ≤ κp
(
||Jp(1)xn − Jp(1)x

∗||+ γ||A||.||Axn −Byn||p−1
) 1

p−1 → 0 as n→∞,

which implies that lim
n→∞

un = x∗. Furthermore,

||Jp(1)zn,t − Jp(1)x
∗|| = ||αJp(1)xn + (1− α)Jp(1)T (t)un − Jp(1)x

∗||
≥ (1− α)||Jp(1)T (t)un − Jp(1)x

∗|| − α||Jp(1)x
∗ − Jp(1)xn||.

This implies that for each t ≥ 0, lim
n→∞

||Jp(1)T (t)un − Jp(1x∗|| = 0. Since J−1
p(1) is norm-to-

norm uniformly continuous on bounded sets, it follows that for each t ≥ 0, T (t)un → x∗

as n → ∞. Since, T := {T (t) : t ≥ 0} is closed and lim
n→∞

un = x∗, we have that for each

t ≥ 0, T (t)x∗ = x∗, which implies that x∗ ∈ F (T (t)), for each t ≥ 0. Hence, x∗ ∈ T :=
∩
t≥0

F (T (t)). Following the same argument, we also have that y∗ ∈ S := ∩
t≥0

F (S(t)). These

results now imply that (x∗, y∗) ∈ F . The proof is complete. �

Remark 4.5. Theorem 4.1 is applicable in Lp, lp and the Sobolev spaces since these spaces are
p-uniformly convex and uniformly smooth for p ∈ (2, ∞). As far as we know, there is no theorem
in the literature for iteratively approximating a solution of the problem discussed in Theorem 4.1
in these real Banach spaces.

5. APPLICATION TO SPLIT EQUALITY VARIATIONAL INEQUALITY PROBLEM IN BANACH
SPACES

In this section, we suppose that C and Q are nonempty closed and convex subsets of E1

and E2, respectively, E3 is an arbitrary smooth real Banach space. A variational inequality
problem (V IP ) in a real Banach space is the problem of finding a point u∗ ∈ C such that
for some j(v − u∗) ∈ J(v − u∗),

(5.26) 〈Au∗, j(v − u∗)〉 ≥ 0, ∀ v ∈ C,

where A : C → E1 is a map. We denote the set of solutions of V IP by V I(A, C).

A map A : C → E1 is called accretive if for each u, v ∈ C, there exists j(u − v) ∈ J(u − v)
such that

(5.27) 〈Au−Av, j(u− v)〉 ≥ 0.

Let A1 : C → E1 and A2 : Q → E2 be two accretive maps, where C and Q are nonempty
closed and convex subsets of E1 and E2, respectively.
The split equality variational inequality problem is a problem of finding u∗ ∈ C, v∗ ∈ Q such
that

〈A1u
∗, j1(u− u∗)〉 ≥ 0, ∀ u ∈ C, and 〈A2v

∗, j2(v − v∗)〉 ≥ 0, ∀ v ∈ Q, Au∗ = Bv∗,
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where A : C → E3 and B : Q → E3 are bounded linear maps. We shall denote the set of
solutions of split equality variational inequality problem by:

G := {(u∗, v∗) ∈ V I(A1, C)× V I(A1, Q) : Au∗ = Bv∗}.

For r > 0, u ∈ E1 and v ∈ E2, define maps Tr : E1 → C and Sr : E2 → Q as follows:

Tr(u) := {z ∈ C : f(z, y) +
1

r
〈y − z, j1(z − u)〉 ≥ 0, ∀ y ∈ C},

and
Sr(v) := {z ∈ Q : g(z, w) +

1

r
〈w − z, j2(z − v)〉 ≥ 0, ∀ w ∈ Q}

The split equality variational inequality problem with respect to A1 and A2 is equivalent
to the following split equality fixed point problem:

find u∗ ∈ F (Tr), v
∗ ∈ F (Sr) such that Au∗ = Bv∗,

where A and B are bounded linear maps. (see e.g., [15] for details).

Now, the setting for our next theorem is as follows:

1. C and Q are nonempty closed and convex subsets of p-uniformly convex and
uniformly smooth real Banach spaces E1 and E2, respectively; E3 is an arbitrary
smooth real Banach space.

2. Ai : Ei → Ei, i = 1, 2 are continuous accretive maps;
3. A : E1 → E3 and B : E2 → E3 are bounded linear maps with adjoints, A∗ and B∗,

respectively.
4. Tr and Sr are as defined above.

We now have the following theorem.

Theorem 5.2. Let {(xn, yn)} be a sequence in E1×E2 generated iteratively by algorithm (4.17).

Assume G := {(x, y) ∈ V I(A1, C) × V I(A2, Q) : Ax = By} 6= ∅, α ∈ (0, 1) and γ is

such that, 0 < γ <
[

1

κp||A||
p

p+1 +||B||
p

p+1

]p−1

, then, {(xn, yn)} converges strongly to some point

(x∗, y∗) ∈ G.

Proof. Set Tr = T (t) and Sr = S(t). Then, Tr and Sr are quasi-ψ-nonexpansive semi-
groups. Hence, the conclusion follows directly from the proof of Theorem 4.1. �

Remark 5.6. In the proofs of our theorems in this paper, the condition on γ involves the norms,
||A|| and ||B|| of A and B, respectively. This is not a drawback on implementing the algorithm
because one does not have to know the values of these norms to use the algorithms. For computa-
tional purposes, these norms can be replaced with two constants associated with the maps A and
B, which are easy to compute, as follows. To assert thatA is a bounded linear map, one has to show
that

||Ax|| ≤ K1||x||, ∀x ∈ E,
for some constant K1 > 0. This constant K1 > 0 which is an upper bound for ||A|| is generally
easy to obtain (since it is not unique) for any bounded linear map. In fact, one has to almost
necessarily know it before one can assert that A is a bounded linear map. Similarly, to assert that
B is a bounded linear map, one has to show that

||Bx|| ≤ K2|x||, ∀x ∈ E,
and some constant K2L > 0. Again, this constant K2 > 0 is an upper bound for ||B|| and
is generally easy to obtain for any bounded linear map. From the proof of Theorem 4.1, it is clear
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that, for computational purposes, the norms ||A|| and ||B|| ofA andB, respectively, can be replaced
with K1 and K2, respectively, so that the condition

0 < γ <

[
1

κp
(
‖A‖

p
p−1 + ‖B‖

p
p−1
)]p−1

,

can be replaced with the condition

0 < γ <

[
1

κp
(
K

p
p−1

1 +K
p

p−1

2

)]p−1

,

where K1 > 0 and K2 > 0 are easily determined.

Conclusion. In this paper, new important geometric inequalities are established. These in-
equalities are of independent interest in the sense that they can be used in several prob-
lems in nonlinear operator theory. As an application, an iterative algorithm for approxi-
mating a solution of split equality fixed point problems for a quasi-φ-nonexpansive semi-
group was proposed and studied. A strong convergence theorem of the sequence generated
by the algorithm (4.17) was established without imposing any compactness-type condi-
tion on either the space or the operators. Furthermore, the theorem proved was applied to
approximate a solution of a split equality variational inequality problem in a p-uniformly
convex and uniformly smooth real Banach space, p > 2.

The results of this paper complement related recent important results in the literature
that had been proved only in the setting of 2-uniformly convex and uniformly smooth real
Banach spaces (which, in particular, do not include the important Lp, lp and the Sobolev
spaces Wm

p (Ω), for 2 < p <∞). On the other hand, the theorems proved in this paper are
applicable in Lp, lp and the Sobolev spaces, Wm

p (Ω, for p such that 2 < p <∞..
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