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Some applications of idempotent elements in MV algebras

CRISTINA FLAUT

ABSTRACT. In this paper we provide some properties and applications of MV-algebras. We prove that a
Fibonacci stationary sequence in an MV-algebra gives us an idempotent element. Moreover, taking into account
of the representation of a finite MV-algebra, by using Boolean elements of this algebra, we prove that a Fibonacci
sequence in an MV-algebra is always stationary. This result is interesting comparing with the behavior of such a
sequence on the group (Zn,+), where the Fibonacci sequences are periodic, with the period given by the Pisano
period. We also give some examples of finite MV-algebras and the number of their idempotent elements. As an
application in Coding Theory, to a Boolean algebra it is attached a binary block code and it is proved that, under
some conditions, the converse is also true.

1. INTRODUCTION

C. C. Chang, in the paper [2], introduced MV-algebras as a generalization of Boolean
algebras. In the last decades, numerous papers have been devoted to the study of the
properties and the applications of MV-algebras, Wajsberg algebras and Boolean algebras.
Some applications of these algebras were provided in [5], where was presented an algo-
rithm which can built Wajsberg algebras starting from a binary block codes.

In this paper, some new properties and applications of MV-algebras are given.
In [9] was defined a Fibonacci sequence on an MV-algebra and some examples and

properties of this notion were given. Starting from these ideas, in the present paper,
we improved some of the above mentioned results and we give other new ones. We
proved that a Fibonacci stationary sequence on MV-algebras gives us an idempotent el-
ement. Moreover, taking into account of the representation of a finite MV-algebra, by
using Boolean elements of this algebra, we prove that such a sequence is always station-
ary. This result is interesting, since in the group (Zn,+), the group of integers modulo n,
the Fibonacci sequences are periodic, with period given by the Pisano period. From here,
we can remark that the representation of a finite MV-algebra can gives us a method for
finding new interesting results.

In Section 3, some examples of finite MV-algebras and the number of their idempotent
elements are given. In Section 4, starting from a Boolean algebra of order two, it was pro-
vided an algorithm to build a Boolean algebra of order 2k+1. Moreover, as an application
in Coding Theory, to a Boolean algebra it is attached a binary block code. Under some
conditions, the converse of this statement is also true.

Definition 1.1. The following ordered set (L,≤) is called lattice if for all elements x, y ∈ L
there are their supremum and infimum elements, sup{x, y} and inf{x, y}, denoted by

sup{x, y} = x ∨ y and inf{x, y} = x ∧ y.
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The lattice (L,≤) is called a distributive lattice if for each elements x, y, z, we have the
following relations:

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z),

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).
A lattice (L,≤) is called a bounded lattice if there are an element 0 being the least element

in L and an element 1 being the greatest element in L.
In a lattice (L,≤) an element x ∈ L has a complement if there is an element y ∈ L

satisfying the following relations:

x ∨ y = 1 and x ∧ y = 0.

An element having a complement is called complemented. We remark that a complement
of an element is not unique. If (L,≤) is distributive, then each element has at most a
complement.

A lattice (L,≤) is called a complemented lattice if it is a bounded lattice and each element
x ∈ L has a complement.

Definition 1.2. ([2]) We consider an abelian monoid (X,⊕, 0) equipped with an unary
operation ”d”, such that the following conditions are satisfied:

i) x⊕ d0 = d0;
ii) d(dx) = x;
iii) d(dx⊕ y)⊕y = d(dy ⊕ x)⊕x, for all elements x, y ∈ X . This abelian monoid is called

an MV-algebra and we denote it by (X,⊕, d, 0) .

Remark 1.1. 1) ([11]) With the above notations, in an MV-algebra we denote the constant
element d0 with 1, therefore

1 = d0.
Considering the following multiplications

x� y = d(dx⊕ dy)

and

x	 y = x� dy = d(dx⊕ y) ,

we have that
x⊕ y = d(dx� dy).

2) ([3], Lemma 1.1.3) For each x ∈ X , the relations x ⊕ dx = 1 and x � dx = 0 are
satisfied.

Proposition 1.1. ([11]) For the MV-algebra (X,⊕, d, 0) and x, y ∈ X , the following conditions
are equivalent:

a) x� dy = 0;
b) dx⊕ y = d0 = 1;
c) y = x⊕ (y 	 x) = x⊕ d(dy ⊕ x) ;
d) An element w ∈ X such that x⊕ w = y can be found.

Definition 1.3. ([11]) We consider MV-algebra (X,⊕, d, 0). For x, y ∈ X , the following
order relation are defined on X :

x ≤ y if dx⊕ y = d0 = 1.
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Remark 1.2. i) From the above, we have that the definition of the order relation on the
MV-algebra (X,⊕, d, 0) can be done by using one of the equivalent conditions a)-d) from
the above proposition.

ii) ([3], Proposition 1.1.5) The order relation defined above gives us a lattice structure
on an MV-algebra:
a) x ∨ y = (x� dy)⊕ y = (x	 y)⊕ y = d(dx⊕ y)⊕ y;
b) x ∧ y = d(dx ∨ dy) = x� (dx⊕ y). We will denote this lattice with L (X) .

Definition 1.4. ([2]) We consider an algebra (W, ∗, , 1) equipped with a binary operation
” ∗ ” and a unary operation ” ” satisfying the following conditions, for every x, y, z ∈W :

i) (x ∗ y) ∗ [(y ∗ z) ∗ (x ∗ z)] = 1;
ii) (x ∗ y) ∗ y = (y ∗ x) ∗ x;
iii) (x ∗ y) ∗ (y ∗ x) = 1;
iv) 1 ∗ x = x.
This algebra is called a Wajsberg algebra.

Remark 1.3. ([3], Lemma 4.2.2 and Theorem 4.2.5)
a) For a Wajsberg algebra (W, ∗, , 1), if we define the following multiplications

x� y = (x ∗ y)

and
x⊕ y = x ∗ y,

for all x, y ∈W , the obtained algebra (W,⊕,�, , 0, 1) is an MV-algebra with 0 = 1.
b) If on the MV-algebra (X,⊕,�, d, 0, 1) we define the operation

x ∗ y = dx⊕ y,
it results that (X, ∗, d, 1) is a Wajsberg algebra.

Definition 1.5. For the finite MV-algebras (X, ∗, , 01) and (Y, ·,′ , 02) , we define on their
Cartesian product Z = X × Y the following multiplication ”∆”,

(1.1.) (x1, y1) ∆ (x2, y2) = (x1 ∗ x2, y1 · y2) ,

The complement of the element (x1, y1) is c (x1, y1) = (x1, x
′
2) and 0 = (01, 02). Therefore,

by straightforward calculation, we obtain that (Z,∆, c, 0) is also an MV-algebra.

Definition 1.6. The algebra (B,∨∧, e, 0, 1), equipped with two binary operations ∨ and
∧ and a unary operation e, is called a Boolean algebra if (B,∨∧) is a distributive and a
complemented lattice with

b∨eb = 1,

b∧eb = 0,

for all elements b ∈ B. The elements 0 and 1 are the least and the greatest elements from
the algebra B.

Remark 1.4. Boolean algebras represent a particular case of MV-algebras. Indeed, if
(B,∨∧, e, 0, 1) is a Boolean algebra, then can be easily checked that (B,∨, e, 0) is an MV-
algebra.

Remark 1.5. ([3], p.25 )
1) With the above notations, for each MV-algebra (X,⊕, d, 0), we have that L (X) is

a distributive lattice. For the algebra X we will denote B (X) or B(L (X)) the set of all
complemented elements in X . The elements from B (X) are called Boolean or idempotent
elements.

2) Let (X,⊕, d, 0) be an MV-algebra. Therefore x ∈ B (X) if x⊕ y = x ∨ y, for all y ∈ X .
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Definition 1.7. Let (L,∨∧) be a lattice with 0 and 1, the least and the greatest elements
from L. A nonempty subset I ⊆ L is called an ideal of the lattice L if the following
conditions are satisfied:

a) 0 ∈ I;
b) If x ∈ I and y ≤ x, then y ∈ I;
c) If x, y ∈ I, therefore x ∨ y ∈ I.
If x ∈ L,the set

{z ∈ L / z ≤ x}
is called the principal ideal generated by x and will be denoted by (−∞, x].

Remark 1.6. i) ([3], Theorem 6.4.1) We consider (X,⊕, d, 0) an MV-algebra. For an element
β ∈ B (X), we have that

(
(−∞, β],⊕, dβ , 0

)
is an MV-algebra, where dβx = β ∧ dx.

ii) ([3], Lemma 6.4.5) For the MV-algebra (X,⊕, d, 0) ,we consider the elements x1, x2, ..., x k ∈
B (X)− {0, e}, k ≥ 2, such that

a) x1 ∨ x2 ∨ ... ∨ xk = 1;
b) For i 6= j, we have xi ∧ xj = 0, i, j ∈ {1, 2, ..., k}.
Therefore, we have that

X ' (−∞, x1]× (−∞, x2]× ...× (−∞, xk].

iii) If x1, x2, ..., x k ∈ B (X)− {0, e}, the above decomposition is proper.

2. CONNECTIONS BETWEEN FIBONACCI SEQUENCES AND INDEMPOTENT ELEMENTS IN
AN MV-ALGEBRA

In the last decades, a lot of papers have been devoted to the study of the properties
and applications of Fibonacci sequences in various algebraic structure, as for example [7],
[9], [10], [12], etc. In the following, we will prove that a Fibonacci sequence defined on
a finite MV-algebra is stationary and is not periodic. This result is interesting comparing
with the behavior of such a sequence on the group (Zn,+), the group of integers modulo
n, where the Fibonacci sequences are periodic, with period given by the Pisano period.

Let X = {x0 ≤ x1 ≤ ... ≤ xn} be a finite totally ordered set, with x0 the minimum
element and xn the maximum element. The following multiplication ” ∗ ” is defined on
X :

(2.1.)

 xi ∗ xj = 1, if xi ≤ xj ;
xi ∗ xj = xn−i+j , otherwise;
x0 = 0, xn = 1, x ◦ 0 =cx.

It results that (X, ∗, c, 1) is a Wajsberg algebra. As was remarked in [6], Theorem 19, rela-
tion (2.1) gives us the only modality in which a Wajsberg algebra structure can be defined
on a finite totally ordered set, such that, on this algebra, the induced order relation is given
by (2.1). Moreover, the relation cxi = xn−i is fulfilled.

Remark 2.7. 1) Theorem 5.2, p. 43, from [8] tells us that an MV-algebra is finite if and only
if it is isomorphic to a finite product of finite totally ordered MV-algebras. Using connec-
tions between MV-algebras and Wajsberg algebras, it results that if M = (X,⊕,�, d, 0, 1)
is a totally ordered MV-algebra, then the obtained Wajsberg algebra, W = (X, ∗, d, 1), is
also totally ordered. The converse of this statement is also true, since x∗y = dx⊕y implies
that x ≤M y if and only x ≤W y.

If the number of elements in a finite MV-algebra or in a finite Wajsberg algebra is a
prime number, therefore these algebras are totally ordered algebras. Remark 1.6, ii) gives
us a similar result and, additionally, we obtain that the sets (−∞, xi], i ∈ {1, 2, ..., k}, from
that decomposition are totally ordered.
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Example 2.1. ([13], Example 3.3) We consider the following MV-algebra (X,⊕, d, 0), with
the multiplication ⊕ and the operation ”d” given in the below tables:

⊕ 0 α β γ δ ε
0 0 α β γ δ ε
α α γ δ γ ε ε
β β δ β ε δ ε
γ γ γ ε γ ε ε
δ δ ε δ ε ε ε
ε ε ε ε ε ε ε

d θ α β γ δ ε
ε δ γ β α 0

.

We remark that β ⊕ β = β and γ ⊕ γ = γ. We have
β ∨ γ = d(γ ⊕ γ)⊕ γ = β ⊕ γ = ε and
β ∧ γ = d(dβ ∨ dγ) = d(γ ∨ β) = dε = 0. Now, we compute (−∞, β] and (−∞, γ]. By
using Remark 1.6, ii), it results: (−∞, β] = {0, β}, (−∞, γ] = {0, α, γ}. Therefore, X '
(−∞, β]× (−∞, γ].

Definition 2.8. We consider (X,⊕, d, 0) an MV-algebra. For x, y ∈ X , the following se-
quence

< x, y >= {x, y, x⊕ y, y ⊕ (x⊕ y) , ..., un, un+1, un+2, ...}
are defined, where u0 = x, u1 = y and un+2 = un ⊕ un+1, for n ∈ N. This sequence is
called the Fibonacci sequence attached to the elements x, y, (see [9], Definition 3.1). If there is
a number k ∈ N such that un = a, for all n ≥ k, a ∈ X,then the sequence < x, y > is called
k-stationary.

Proposition 2.2. For the MV-algebra (X,⊕, d, 0) we consider x, y ∈ X . If the sequence< x, y >
is k-stationary then uk is idempotent.

Proof. Let k ∈ N be a natural number such that the sequence < x, y > is k-stationary.
Therefore, uk = uk+1 = uk+2 = .... We have u2 = x ⊕ y, u3 = y ⊕ (x⊕ y) = x ⊕ 2y, 2y =
y ⊕ y, u4 = 2x⊕ 3y, etc. It results that

un = fn−1x⊕ fny,
where (fn)n∈N is the Fibonacci sequence

f0 = 0, f1 = 1, fn+1 = fn + fn−1, n ∈ N, n ≥ 1.

Since u = uk = uk+1 = uk+2 = ..., we have
u = fk−1x⊕ fky = fkx⊕ fk+1y = fk+1x⊕ fk+2y.
Therefore, u = uk+2 = fk+1x⊕ fk+2y = (fk−1x⊕ fky)⊕ (fkx⊕ fk+1y) = u⊕ u. It results
that u = uk is an idempotent (Boolean) element. �

Proposition 2.3. Let (X,⊕, d, 0) be an MV-algebra and x, y ∈ X . If the sequence < x, y > is
2-stationary for all x, y ∈ X , therefore X is a Boolean algebra.

Proof. We have that x⊕y is idempotent, therefore x⊕y = (x⊕y)⊕(x⊕y), for all x, y ∈ X . If
we take y = 0, therefore x = x⊕x, for all x ∈ X . It results that X is a Boolean algebra. �

The above proposition is a kind of generalization of the Proposition 4.18 from [9] with
a proof included.

Proposition 2.4. Let (X,⊕, d, 0) be a finite MV-algebra and x, y ∈ X . Therefore the sequence
< x, y > is stationary for all x, y ∈ X .

Proof. Since a finite MV-algebra is isomorphic to a finite product of finite totally ordered
MV-algebras, it is enough to prove this result in the case of the finite totally ordered alge-
bras. Let X = {x0, x1, ..., xn} be a finite totally ordered MV-algebra. We denote x0 = 0
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and xn = 1. From relation (2.1) and since dxi = xn−i, we have that the multiplication
”⊕ ” is given by the following formulae: xi ⊕ xj = 1, if i+ j > n;

xi ⊕ xj = xi+j , if i+ j ≤ n;
x0 = 0, xn = 1, x⊕ 0 = x.

.

Case 1. Let x, y ∈ X,x 6= 0, y 6= 0, and the sequence

< x, y >= {x, y, x⊕ y, y ⊕ (x⊕ y) , ..., un, un+1, un+2, ...},
where u0 = x, u1 = y and un+2 = un ⊕ un+1, for k ∈ N. It is clear that u2 = x ⊕ y > x
and u2 = x ⊕ y > y. If x ⊕ y = x or x ⊕ y = y, therefore y = 0 or x = 0, false. Assuming
u2 = x⊕ y > x, we have that
u3 = y ⊕ (x⊕ y) = (x⊕ y)⊕ y > x⊕ y = u2,
u4 = (x⊕ y)⊕ (y ⊕ (x⊕ y)) > y ⊕ (x⊕ y) = u3,
u5 = (x⊕ y) ⊕ ((x⊕ y)⊕ (y ⊕ (x⊕ y))) > ((x⊕ y)⊕ (y ⊕ (x⊕ y))) = u4, etc. It results
that the obtained increased sequence is stationary, since the setX is finite. Therefore, there
is k ∈ N such that uk = 1 = uk+1 = uk+2 = .... We get

< x, y >= {x, y, x⊕ y, y ⊕ (x⊕ y) , ..., uk−1, 1, 1, 1, 1, ...}.
Case 2. Let x, y ∈ X, y = 0. We obtain the sequence < x, y > with u0 = x, u1 = 0, u2 =

x, u3 = x, u4 = x ⊕ x > x. We apply the Case 1, obtaining a stationary sequence, that
means a number k ∈ N such that uk = 1 = uk+1 = uk+2 = ....

Now, by using Definition 1.5, it is clear that in a finite MV-algebra the sequence< x, y >
is stationary for all x, y ∈ X . �

Remark 2.8. 1) The above result is not true for infinite MV-algebras, as can be easily seen
by using the famous Chang’s MV-algebra.

2) Let (X,⊕, d, 0) be a finite MV-algebra and x, y ∈ X . From the above, it results that
the algebra X is k-stationary and we have that un = a, for all n ≥ k. We consider the
following map

λ : X ×X → X,λ (x, y) = uk.

In MV-algebra (X,⊕, d, 0) , given by the Example 2.1, we have that λ (γ, 0) = γ, λ (γ, δ) =
ε, λ (α, β) = ε. Indeed,
-the sequence [γ, 0] = γ, 0, γ, γ, ... is 2-stationary;
-the sequence [γ, δ] = γ, δ, ε, ε, ... is 2-stationary;
-the sequence [α, β] = α, β, δ, δ, ε, ε, ... is 4-stationary.

Remark 2.9. We consider (X,⊕, d, 0) a finite MV-algebra such that X ' (−∞, x1] ×
(−∞, x2] × ... × (−∞, xk], with the sets (−∞, xi] = {0, xi}, for all i ∈ {1, 2, ..., k}. It
results that X is a Boolean algebra. Indeed, using above results, we have that all elements
in X have the form (α1, α2, ..., αk), where αi ∈ (−∞, xi]. From here, we get the known
result that a finite Boolean algebra has 2k elements.

3. EXAMPLES

In [1], [4] was presented classification of MV-algebras by using different algorithms. In
[5] was presented an application of these algebras in Coding Theory. In the following,
by using examples from [4], Sections 4.1-4.3 and the above Remark 1.6, ii), which give an
alternative method to characterize MV-algebras and, as a consequence, Boolean algebras,
we will give some examples of MV-algebras and Boolean algebras.
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Example 3.2. We consider W = {0 ≤ α ≤ β ≤ ε}, a totally ordered set on which we
define two multiplications ∆4

0 and ⊕4
0, given in the below tables. Multiplication ∆4

0, with
α = β and β = α, gives us a Wajsberg algebra structure on W . The associated MV-
algebra is obtained with multiplication ⊕4

0. Therefore, in the obtained MV-algebra the
only idempotent elements are 0 and ε.

∆4
0 0 α β ε

0 ε ε ε ε
α β ε ε ε
β α β ε ε
ε 0 α β ε

⊕4
0 0 α β ε

0 0 α β ε
α α β ε ε
β β ε ε ε
ε ε ε ε ε

.

We consider now partially ordered set W = {0, α, β, ε}. On W we define two multi-
plications ∆4

11 and ⊕4
11, given in the below tables. With multiplication ∆4

11, W becomes a
Wajsberg algebra and, with multiplication ⊕4

11, an MV-algebra structure is obtained.

(3.1.)

∆4
11 0 α β ε

0 ε ε ε ε
α β ε β ε
β α α ε ε
ε 0 α β ε

⊕4
11 0 α β ε

0 0 α β ε
α α α ε ε
β β ε β ε
ε ε ε ε ε

.

In this algebra all elements are idempotent. We have that α ∨ β = ε and α ∧ β = 0.
Therefore, as MV-algebra,W ' (−∞, α]×(−∞, β], where (−∞, α] = {0, α} and (−∞, β] =
{0, β}. From here, we obtain that there exist only two non-isomorphic MV-algebras of
order 4. Thus, we can remark that in an MV-algebra of order 4 we can have only 0 or 2
proper idempotents. The MV-algebra

(
W,⊕4

11

)
is the only Boolean algebra of order 4. We

denote this algebra with B4.

Example 3.3. We consider W = {0 ≤ α ≤ β ≤ γ ≤ δ ≤ ε}, a totally ordered set on which
we define two multiplications ∆6

0 and ⊕6
0, given in the below tables. With multiplication

∆6
0, with α = δ, β = γ, γ = β, δ = α, W becomes a Wajsberg algebra and with multiplica-

tion ⊕6
0an MV-algebra is obtained. We can see that, in this structure, the only idempotent

elements are 0 and ε.

∆6
0 0 α β γ δ ε

0 ε ε ε ε ε ε
α δ ε ε ε ε ε
β γ δ ε ε ε ε
γ β γ δ ε ε ε
δ α β γ δ ε ε
ε 0 α β γ δ ε

⊕6
0 0 α β γ δ ε

0 0 α β γ δ ε
α α β γ δ ε ε
β β γ δ ε ε ε
γ γ δ ε ε ε ε
δ δ ε ε ε ε ε
ε ε ε ε ε ε ε

.

We consider now the partially ordered setW = {0, α, β, γ, δ, ε} on which we define two
multiplications ∆6

11 and ⊕6
11, given in the below tables. With multiplication ∆6

11, W be-
comes a Wajsberg algebra and with multiplication ⊕6

11the associated MV-algebra is ob-
tained.
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∆6
11 0 α β γ δ ε

0 ε ε ε ε ε ε
α δ ε ε δ ε ε
β γ δ ε γ δ ε
γ β β β ε ε ε
δ α β β δ ε ε
ε 0 α β γ δ ε

⊕6
11 0 α β γ δ ε

0 0 α β γ δ ε
α α β β δ ε ε
β β β β ε ε ε
γ γ δ ε γ δ ε
δ δ ε ε δ ε ε
ε ε ε ε ε ε ε

.

We remark that in this structure the idempotent elements are {0, β, γ, ε} and we have
β ∨ γ = ε and β ∧ γ = 0. Therefore, as MV-algebra, W ' (−∞, β] × (−∞, γ], where
(−∞, β] = {0, α, β}, (−∞, γ] = {0, γ}. From here, we get that there are only two non-
isomorphic MV-algebras of order 6. Thus, we can remark that in an MV-algebra of order
6 we can have only 0 or 2 proper idempotents.

Example 3.4. We consider now a totally ordered set
W = {0 ≤ α ≤ β ≤ γ ≤ τ ≤ υ ≤ ρ ≤ ε} on which we define two multiplications ∆8

0

and ⊕8
0, given in the below tables. With multiplication ∆8

0, having the properties α = ρ,
β = υ, γ = τ , W becomes a Wajsberg algebra and with multiplication ⊕8

0the associated
MV-algebra is obtained. We remark that in the MV-algebra structure, the only idempotent
elements are 0 and ε.

∆8
0 0 α β γ τ υ ρ ε

0 ε ε ε ε ε ε ε ε
α ρ ε ε ε ε ε ε ε
β υ ρ ε ε ε ε ε ε
γ τ υ ρ ε ε ε ε ε
τ γ τ υ ρ ε ε ε ε
υ β γ τ υ ρ ε ε ε
ρ α β γ τ υ ρ ε ε
ε 0 α β γ τ υ ρ ε

⊕8
0 0 α β γ τ υ ρ ε

0 0 α β γ τ υ ρ ε
α α β γ τ υ ρ ε ε
β β γ τ υ ρ ε ε ε
γ γ τ υ ρ ε ε ε ε
τ τ υ ρ ε ε ε ε ε
υ υ ρ ε ε ε ε ε ε
ρ ρ ε ε ε ε ε ε ε
ε ε ε ε ε ε ε ε ε

We consider now the partially ordered set W = {0, α, β, γ, τ, υ, ρ, ε}. On W we define
two multiplications ∆8

11 and ⊕8
11, given in the below tables. With multiplication ∆8

11,
W becomes a Wajsberg algebra and with multiplication ⊕8

11the associated MV-algebra is
obtained .

∆8
11 0 α β γ τ υ ρ ε

0 ε ε ε ε ε ε ε ε
α ρ ε ρ ε ρ ε ρ ε
β υ υ ε ε ε ε ε ε
γ τ υ ρ ε ρ ε ρ ε
τ γ γ υ υ ε ε ε ε
υ β γ τ υ τ ε ρ ε
ρ α α γ γ υ υ ε ε
ε 0 α β γ τ υ ρ ε

⊕8
11 0 α β γ τ υ ρ ε

0 0 α β γ τ υ ρ ε
α α α γ γ υ υ ε ε
β β γ τ υ τ ε ρ ε
γ γ γ υ υ ε ε ε ε
τ τ υ ρ ε ρ ε ρ ε
υ υ υ ε ε ε ε ε ε
ρ ρ ε ρ ε ρ ε ρ ε
ε ε ε ε ε ε ε ε ε

In this structure the idempotent elements are {0, α, ρ, ε}. For α and ρ we have that
α ∨ ρ = ε and α ∧ ρ = 0. Therefore, as MV-algebra, W ' (−∞, α] × (−∞, ρ], where
(−∞, α] = {0, α}, (−∞, ρ] = {0, β, τ, ρ}.
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In the following, we consider the partially ordered set W = {0, α, β, γ, τ, υ, ρ, ε}, where
we define two multiplications ∆8

21 and ⊕8
21, given in the below tables. With multipli-

cation ∆8
21, W becomes a Wajsberg algebra and with multiplication ⊕8

21 the associated
MV-algebra is obtained.

(3.2.)

∆8
21 0 α β γ τ υ ρ ε

0 ε ε ε ε ε ε ε ε
α ρ ε ρ ε ρ ε ρ ε
β υ υ ε ε υ υ ε ε
γ τ υ ρ ε τ υ ρ ε
τ γ γ γ γ ε ε ε ε
υ β γ β γ ρ ε ρ ε
ρ α α γ γ υ υ ε ε
ε 0 α β γ τ υ ρ ε

⊕8
21 0 α β γ τ υ ρ ε

0 0 α β γ τ υ ρ ε
α α α γ γ υ υ ε ε
β β γ β γ ρ ε ρ ε
γ γ γ γ γ ε ε ε ε
τ τ υ ρ ε τ υ ρ ε
υ υ υ ε ε υ υ ε ε
ρ ρ ε ρ ε ρ ε ρ ε
ε ε ε ε ε ε ε ε ε

In this structure all elements are idempotent, therefore it is a Boolean algebra. For α
and ρwe have that α∨β∨τ = ε, α∧β∧τ = 0 and υ∨ρ∨γ = ε, υ∧ρ∧γ = 0. Therefore, as
MV-algebra,W ' (−∞, α]×(−∞, β]×(−∞, τ ] orW ' (−∞, υ]×(−∞, ρ]×(−∞, γ], where
(−∞, α] = {0, α}, (−∞, β] = {0, β}, (−∞, γ] = {0, γ}, (−∞, τ ] = {0, τ}, (−∞, υ] = {0, υ},
(−∞, ρ] = {0, ρ}.

From here, we get that there are only three non-isomorphic MV-algebras of order 8.
Thus, it results that in an MV-algebra of order 8 we can have only 0, 2 or 6 proper idem-
potents.

4. BINARY BLOCK CODES ASSOCIATED TO A BOOLEAN ALGEBRA

In this section we will denote Boolean algebras of order 2k, k ≥ 1, with B2k .
In [5], to an MV-algebra and to a Wajsberg algebra were associated binary block codes

and, in some circumstances, it was proved that the converse is also true. Using some of
these ideas, to algebra B2k+1 we will associate a binary block code and we will prove that
the converse of this statement is also true, namely to such a binary block code a Boolean
algebra B2k+1 can be associated.

Definition 4.9. Two Boolean algebras (B,∨∧, e, 0, 1) and (B′,g,f,̃ ,0,1) are said to be
isomorphic if there is a bijective function f : B → B′ satisfying the following conditions:

i) f (x ∨ y) = f (x) ∨ f (y) ,for all x, y ∈ B;
ii) f (x ∧ y) = f (x) ∧ f (y) , for all x, y ∈ B;

iii) f (ex) = f̃ (x), for all x ∈ B;
iv) f (0) = 0;
v) f (1) = 1.

Let B2 be a Boolean algebra with multiplication given in the following table

(4.1.)
⊕2

11 β ε
β β ε
ε ε ε

.

and the map

(4.2.) ϕ2 : B2 × B2 → B2, ϕ2 (x, y) = x⊕2
11 y.

In the following, we will use for the table
β ε
ε ε

the same notation B2 .
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We consider C2 a Boolean algebra of order 2 isomorphic to B2, which has the following
multiplication table

(4.3.)
⊕′211 0 α
0 0 α
α α α

and the map

(4.4.) θ2 : C2 × C2 → C2, θ2 (x, y) = x⊕′211 y.

Similar as above, for the table
0 α
α α

, we use the same notation C2. Let f2 : C2 → B2
be an isomorphism of Boolean algebras.

Therefore, the multiplication table of B4, given in (3.1), can be written under the form

B4 =
C2 B2
B2 B2

.

We remark that B4 = C2 ∪ B2 and C2 ∩ B2 = ∅. To Boolean algebra B4 we will attach the
map

(4.5.) ϕ4 : B4 × B4 → B4, ϕ4 (x, y) =


θ2 (x, y) , for x, y ∈ C2

ϕ2 (f2(x), y) , for x ∈ C2, y ∈ B2
ϕ2 (x, f2(y)) , for x ∈ B2, y ∈ C2
ϕ2 (x, y) , for x ∈ B2, y ∈ B2

.

From the above, it is easy to see that ϕ4 (x, y) = x⊕4
11 y.

Continuing the above idea, with the above notations, we remark that the multiplication
table of the Boolean algebra B8 can be written under the form

B8 =
C4 B4
B4 B4

,

where (C4,⊕′411) is a Boolean algebra isomorphic toB4. Let f4 : C4 → B4 be an isomorphism
of Boolean algebras. To Boolean algebra C4 we will attach the map

θ4 : C4 × C4 → C4, θ4 (x, y) = x⊕′411 y.
We remark that B8 = C4 ∪ B4 and C4 ∩ B4 = ∅. To Boolean algebra B4 we will attach the
following map

ϕ8 : B8 × B8 → B8, ϕ8 (x, y) =


θ4 (x, y) , for x, y ∈ C4

ϕ4 (f4(x), y) , for x ∈ C4, y ∈ B4
ϕ4 (x, f4(y)) , for x ∈ B4, y ∈ C4

ϕ4 (x, y) , for x, y ∈ B4

.

From here, it is easy to see that ϕ8 (x, y) = x⊕8
21 y.

Therefore, by using the above ideas, we obtain an algorithm with which the multipli-
cation table of the Boolean algebra B2k can be written under the form

(4.6.) B2k =
C2k−1 B2k−1

B2k−1 B2k−1
,

where C2k−1 is a Boolean algebra isomorphic to B2k−1 .
We can remark that if we will interpret Boolean algebras as Boolean rings the above

results can be also and easily obtained. But, to describe the way to attach a binary block
code to a Boolean algebra and reciprocally we need another algorithm. This algorithm
can be described as follows.
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Algorithm 1
Assuming that we built Boolean algebra (B2k ,⊕2k

21) withϕ2k : B2k×B2k → B2k , ϕ2k (x, y) =

x ⊕2k

21 y and, considering (C2k ,⊕′2
k

11 ) a Boolean algebra isomorphic to B2k , let f2k : C2k →
B

2k
be an isomorphism of these two Boolean algebras.

To Boolean algebra C2k , we will attach the map

(4.7.) θ2k : C2k × C2k → C2k , θ2k (x, y) = x⊕′2
k

11 y.

We consider the set B2k+1 = C2k ∪B2k , with C2k ∩B2k = ∅ and to Boolean algebra B2k+1

we will attach the map

(4.8.) ϕ2k+1 :B2k+1×B2k+1 → B2k+1 ,ϕ2k+1 (x, y) =


θ2k (x, y) , for x, y ∈ C2k

ϕ2k (f2k(x), y) , for x ∈ C2k , y ∈ B2k
ϕ2k (x, f2k(y)) , for x ∈ B2k , y ∈ C2k
ϕ2k (x, y) , for x ∈ B2k , y ∈ B2k

.

By defining the following multiplication

x⊕2k+1

21 y = ϕ2k+1 (x, y) ,

it results that (B2k+1 ,⊕2k+1

21 ) is a Boolean algebra of order 2k+1, as can easily be checked.

We consider now (X,⊕, d, 0) a finite MV-algebra of order n, withX = {0 = α0, α1, α2, ..., αn−2, ε =
αn−1}. Let Cn = {w0, w1, ..., wn−2, wε} be a binary block code, with codewords of length
n. In [5], to an MV-algebra and to its associated Wajsberg algebra binary block codes were
associated. Summarizing these methods, we give the following definition.

Definition 4.10. 1) The block code C is attached to MV-algebra X, if for a codeword wj ∈
X , wj = i0i1...in−2iε, i0, i1, ..., in−2, iε ∈ {0, 1},
j ∈ {0, 1, 2, ..., n− 2, ε}, we have that is = 1 if αj ⊕ αs = ε and is = 0, otherwise,
s ∈ {0, 1, 2, ..., n− 2, ε}.

2) A matrix attached to the code C, is a quadratic matrix
MC = (mi,j)i,j∈{1,2,...,n} ∈ Mn({0, 1}) such that its rows are formed by the codewords of
C.

Remark 4.10. Since a Boolean algebra is an MV-algebra, we have that:
- the code C2 attached the the algebra B2 is C2 = {01, 11} = {w0, w1} and the attached

matrix is

MC2 =

(
0 1
1 1

)
.

- the codeC4 attached to the algebraB4 isC4 = {0001, 0011, 0101, 1111} = {w0, w1, w2, w3}
and the attached matrix is

MC4
=


0 0 0 1
0 0 1 1
0 1 0 1
1 1 1 1

 .
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- the code attached to the algebra B8 is C8 = {00000001, 00000011, 00000111,
00001111, 00010001, 00110011, 01110111, 11111111} and the attached matrix is

MC8 =



0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 1
0 0 0 0 0 1 0 1
0 0 0 0 1 1 1 1
0 0 0 1 0 0 0 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1
1 1 1 1 1 1 1 1


.

If we denote with 0n the zero matrix with n elements, we remark that

MC4
=

(
02 MC2

MC2
MC2

)
,MC8

=

(
04 MC4

MC4
MC4

)
.

Therefore, we have

(4.9.) MC
2k+1

=

(
0

2k
MC

2k

MC
2k

MC
2k

)
,

with C2k+1 the attached binary block code having as codewords the rows of the matrix
MC

2k+1
.

In the following, we provide a method to attach to a binary block code C2k+1 a Boolean
algebra.

First of all, we consider the binary block code C2 = {w0 � w1}, with � the lexico-
graphic order. We define the following multiplication:

(4.10.) w0 ∗2 w1 = w1 ∗2 w0 = w1 ∗2 w1 = w1, w0 ∗2 w0 = w0.

It results that (C2, ∗) is a Boolean algebra, isomorphic to B2.
If we consider C4 = {w0 � w1 � w2 � w3} with the lexicographic order �, let C ′4 =

{w0 � w1} and C ′′4 = {w2 � w3} be two disjoint subsets of C4. We have that (C ′4, ∗2) is a
Boolean algebra of order 2. On C ′′4 we define the multiplication

w2 ∗′2 w3 = w3 ∗′2 w2 = w3 ∗′2 w3 = w3, w2 ∗′2 w2 = w2.

It results that (C ′′4 , ∗′2) is a Boolean algebra isomorphic to (C ′4, ∗2). On C4 we define the
following multiplication

wi ∗4 wj=


wi ∗2 wj , for wi, wj ∈ C ′4,

wi ∗′2 wj , for wi ∈ C ′4, wj ∈ C ′′4 ,
wi ∗′4 wj , for wi ∈ C ′′4 , wj ∈ C ′4,
wi ∗′4 wj , for wi, wj ∈ C ′′4 .

.

From here, we have that (C4, ∗4) is a Boolean algebra isomorphic to B4.

Algorithm 2
Assuming that we have defined the Boolean algebra (C2k , ∗2k) isomorphic to B2k , let

C2k+1 = {w0 � w1 �, ... � w2k−1 � ... � w2k+1−1} be the binary block code defined by the
matrix MC

2k+1
, given by the relation (4.9), with the codewords lexicographically ordered.

We consider the setsC ′2k+1 = {w0 � w1 � ... � w2k−1} andC ′′2k+1 = {w2k � ... � w2k+1−1}.
We have that (C ′2k+1 , ∗2k) is isomorphic to B2k and on C ′′2k+1 we define a multiplication ∗′2k
such that (C ′′2k+1 , ∗′2k) is isomorphic to B2k .
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On C2k+1 we define the following multiplication

(4.11.) wi ∗2k+1 wj=


wi ∗2k+1 wj , for wi, wj ∈ C ′2k+1 ,

wi ∗′2k+1 wj , for wi ∈ C ′2k+1 , wj ∈ C ′′2k+1 ,
wi ∗′2k+1 wj , for wi ∈ C ′′2k+1 , wj ∈ C ′2k+1 ,

wi ∗′2k+1 wj , for wi, wj ∈ C ′′2k+1 .

.

It results that (C2k+1 , ∗2k+1) is a Boolean algebra isomorphic to B2k+1 .

From the above results, we proved the following Theorem.

Theorem 4.1. 1) To each Boolean algebra of order 2k+1, B2k+1 , we can associate a binary block
code C2k+1 , with associated matrix given by the relation (4.9).

2) On binary block code C2k+1 we can define a multiplication ∗2k+1such that (C2k+1 , ∗2k+1) is
a Boolean algebra isomorphic to B2k+1 .

5. CONCLUSIONS

The results obtained in this paper can be considered as a new starting point in the study
of MV-algebras or other logical algebras (such as BCK-algebras, due to the connection be-
tween MV-algebras and bounded commutative BCK-algebras). The obtained connections
can rise the question ”who influence who?”. We have a partial answer to this question,
in the sense that the study of Fibonacci elements or the study of the binary block codes
defined on these algebras provides us new and interesting properties of these algebras.
Will be interesting to find the answer at the converse question: if the study of proper-
ties of MV-algebras, Boolean algebras, bounded commutative BCK-algebras can gives us
new opportunity to find new results regarding Fibonacci sequences or binary block codes
attached.
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